
This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail.

Powered by TCPDF (www.tcpdf.org)

This material is protected by copyright and other intellectual property rights, and duplication or sale of all or
part of any of the repository collections is not permitted, except that material may be duplicated by you for
your research use or educational purposes in electronic or print form. You must obtain permission for any
other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not
an authorised user.

Liu, Jian; Li, Wenting; Karame, Ghassan O.; Asokan, N.

Toward Fairness of Cryptocurrency Payments

Published in:
IEEE Security and Privacy

DOI:
10.1109/MSP.2018.2701163

Published: 01/05/2018

Document Version
Peer reviewed version

Please cite the original version:
Liu, J., Li, W., Karame, G. O., & Asokan, N. (2018). Toward Fairness of Cryptocurrency Payments. IEEE
Security and Privacy, 16(3), 81-89. https://doi.org/10.1109/MSP.2018.2701163

https://doi.org/10.1109/MSP.2018.2701163

1540-7993/18/$33.00 © 2018 IEEE	 Copublished by the IEEE Computer and Reliability Societies	 May/June 2018� 1

ELECTRONIC CURRENCY

Given that blockchain participants typically do not trust each other, enabling fairness in existing crypto-
currencies is an essential but insufficiently explored problem. We explore the solution space for enabling
the fair exchange of a cryptocurrency payment for a receipt.

T he phenomenal success of Bitcoin1 has fueled
innovation in a number of application domains

such as financial payments, smart contracts, and iden-
tity management. There are currently more than 500
alternate cryptocurrencies—most of which are simple
variants of Bitcoin. One of the (many) reasons that led
to the growing adoption of blockchain-based crypto-
currencies is their promise of low-cost global payments
without the need for a bank account or a cumbersome
registration process. However, although existing cryp-
tocurrency schemes can reasonably ensure the security
of payments (for example, double-spending resistance
and integrity of payment), they do not provide any
guarantee of fairness. Given that blockchain partici-
pants do not necessarily trust each other, we argue that
fairness is an especially important property that should
be preserved to ensure the growth of existing crypto-
currency exchanges.2

For instance, consider the example where a payer
Alice makes a payment to a payee Bob in return for an
expected good (digital or physical) or a service. This
process is unfair toward Alice if her expectation is not
met after Bob receives the payment. On the other hand,
it is unfair toward Bob if he does provide the service
but Alice later cancels or double-spends the payment.
A fair payment scheme should ensure that Bob receives
the payment if and only if Alice’s expectations are met

and vice versa. We can model this as a fair exchange of
payment-for-receipt where the receipt is a digital signa-
ture, which can act as a proxy for a physical/digital good
or real-world service.

While there is a wealth of literature on fair exchange
in a general setting,3,4 little attention has been paid to
the problem of fair exchange involving cryptocurren-
cies.2 In this article, we explore the solution space to
achieve fair payment-for-receipt for cryptocurren-
cies. More specifically, we analyze how well-known
fair exchange techniques can be adapted for use with
existing cryptocurrencies, in particular by leveraging
functionality from a blockchain. We investigate three
blockchain-based fair payment-for-receipt solutions,
and systematically compare them based on both theo-
retical analyses and prototype implementations. We
identify pros and cons of different schemes and discuss
scenarios where a given solution is likely to be prefer-
able. We hope that this work motivates researchers to
further investigate this largely unexplored area of fair
cryptocurrency payments.

Blockchain and Smart Contracts
The notion of blockchains was originally introduced
by the well-known hash-based proof-of-work (PoW)
mechanism that confirms cryptocurrency payments in
Bitcoin.1 Bitcoin payments are performed by issuing

Toward Fairness of Cryptocurrency
Payments
Jian Liu | Aalto University
Wenting Li and Ghassan O. Karame | NEC Laboratories
N. Asokan | Aalto University

2	 IEEE Security & Privacy� May/June 2018

ELECTRONIC CURRENCY

transactions that transfer Bitcoin coins from the payer
to the payee. These entities are referenced in each trans-
action by means of pseudonyms, denoted by Bitcoin
addresses. Each address maps to a unique public/private
key pair; these keys are used to transfer the ownership of
coins among addresses. Miners are entities that partici-
pate in the generation of Bitcoin blocks. These blocks
are generated by solving a hash-based PoW scheme;
more specifically, miners must find a nonce value that,
when hashed with additional fields (for example, the
Merkle hash of all valid transactions or the hash of the
previous block), the result is below a given target value.
If such a nonce is found, miners then include it in a
new block, thus allowing any entity to verify the PoW.
Because each block links to the previously generated
block, the Bitcoin blockchain grows upon the genera-
tion of a new block in the network.

As such, the PoW-based blockchain ensures that all
transactions and their order of execution are available to
all blockchain nodes and can be verified by these enti-
ties. Consensus by the majority of participating miners is
required for every transaction exchanged in the system.
This inherently prevents double-spending attacks (where
the payer attempts to spend the same coin twice) and
ensures the correctness of all transactions confirmed in the
blockchain as long as the majority of the network is honest.

To ensure that a payment in a cryptocurrency trans-
action is definitive, a payee needs to wait until a suffi-
cient number of new blocks have been appended to
the block that contains the particular transaction so as
to minimize the probability that the block is not part
of the eventual consensus. In Bitcoin, this may take up
to an hour. In some situations (for instance, low-value
transactions), a payee may be willing to accept a transac-
tion as soon as it is broadcast to the network. These are
referred to as zero-confirmation transactions, which are
fast but carry a risk of payment reversal.

Smart contracts refer to binding contracts between
two or more parties that are enforced in a decentral-
ized manner by the blockchain nodes without the need
for a centralized enforcer. Smart contracts typically
consist of self-contained code that is executed by all
blockchain nodes. For example, Ethereum5 is a decen-
tralized platform that enables the execution of arbitrary
applications (or contracts) on its blockchain. Owing to
its support for a Turing-complete language, Ethereum
offers an easy means for developers to deploy their dis-
tributed applications in the form of smart contracts.
Ethereum additionally offers its own cryptocurrency
Ether, which is also used as the main fuel to execute the
contracts and send transactions. Ether payments are
commonly used to cover the costs related to contract
execution; these costs are measured by the amount of
gas they consume.

Fair Exchange
A two-party exchange usually involves two players who
exchange items between themselves. Each player holds
an item that it wants to contribute to the exchange
and an expectation about the other player’s item it
wants to receive in exchange. Fair exchange is executed
between players that do not necessarily trust each
other; examples include commercial scenarios such as
payment-for-receipt, online purchase, digital contract
signing, and certified mail. We say that a player is hon-
est if it follows the protocol; otherwise, it is malicious
(behaves arbitrarily). A fair exchange protocol must
ensure that a malicious player cannot gain any advan-
tage over an honest player. More specifically, it should
satisfy the following requirements:4

■■ Effectiveness: If both players behave correctly and
are willing to exchange, the protocol will eventually
succeed.

■■ Fairness: There are two possible notions of fairness.
In strong fairness, at the time of protocol termina-
tion, either both players get what they want (that is,
yhe exchange succeeds) or neither of them does (that
is, the exchange fails). For weak fairness, in situations
where strong fairness cannot be achieved, an honest
player can prove to an (external) arbiter that the other
player has received (or can still receive) the item the
latter expects.

■■ Timeliness: Regardless of the behavior of the other
player, an honest player can be certain that the
exchange will complete (either succeed or fail) in a
certain time. At completion of the protocol, the state
of the exchange is final from that player’s perspective
(for instance, the fairness achieved by the protocol
will not be changed from strong to weak).

■■ Noninvasiveness: The protocol should allow the
exchange of arbitrary items without making any
demands on their structures. For example, a protocol
is invasive if it requires anyone who wants to verify
the exchanged signatures to access and perform some
check on the blockchain.

The timeliness requirement defines a fixed point
in time at which the protocol will be completed. This
property aims to avoid the case where one player in the
exchange has to wait indefinitely for the other player to
take an action that will determine how the exchange
will be concluded (succeed or fail). Timeliness is
particularly important for resource-constrained IoT
devices (for instance, a simplified payment verification
[SPV] client), which cannot afford to be online for long
stretches of time or poll indefinitely. One way to achieve
the timeliness requirement, as stated in “Fairness in Elec-
tronic Commerce,”4 is to agree on a predefined timeout.

www.computer.org/security� 3

This is typically a challenging task, because it is difficult
to predefine an optimal time point at which the protocol
should be completed: a short timeout will result in the
exchange failing even when both players are honest (thus
harming the effectiveness requirement), whereas a long
timeout is unacceptable for resource-constrained devices
with limited battery or bandwidth. Ideally, the notion
of timeliness should capture the possibility that either
player can decide to conclude the exchange at any point
during the exchange without having to depend on the
actions of the other player. To remedy this, we therefore
define a new notion of timeliness, dubbed strong timeli-
ness, as follows: an honest player can, any point in time,
choose to complete the protocol. At completion, the state
of the exchange is final from that player’s perspective.

In this article, we consider the “payment-for-
receipt,” where an entity, Alice, makes a digital pay-
ment to another entity, Bob, in order to get a receipt
for the payment in the form of a digital signature. Our
goal is to explore the solution space for integrating a
fair exchange of payment for receipt into existing cryp-
tocurrency payment schemes (hereafter referred to as
fair payments for the sake of brevity). We assume the
communication is weakly synchronous, under which
messages are guaranteed to be delivered after a certain
time bound.

Fair Payments via Timelocking
Bitcoin and other cryptocurrencies support timelocking,
which enables a payer to reclaim its payment within a
time window tw if the payment has not been spent yet.
Many blockchain-based applications are built on top of
this mechanism, for instance, online lottery,6 fair mul-
tiparty computation,7–9 and anonymous payments.10,11
In this section, we discuss why the use of timelocking
can negatively impact fairness guarantees and possibly
even the overall security of the protocol. We take the
anonymous payment protocol in “Blindly Signed Con-
tracts: Anonymous On-Blockchain and Off-Blockchain
Bitcoin Transactions”10 as an example to explain that
the fairness issue may lead to a serious attack. Similar
attacks exist in all the above-mentioned applications.

Here, a user Alice wants to fairly exchange a crypto-
currency payment for a voucher from an intermediary
Bob. The voucher is in fact a blind signature; Alice will
unblind the voucher and send it privately to an anony-
mous payee who can exchange it with Bob in such a way
that Bob cannot link Alice and the payee.10

This is achieved without relying on any external
entity through the use of blockchain-based script and
using a fixed, predefined, timeout to implement a timely
fair exchange. First, Alice generates a transaction that
enables her to pay a predefined amount to Bob under
the condition that Bob must publish a valid signature

on a message within a certain time window. The output
of this transaction will become an input in one of the
following two blockchain transactions:

■■ a transaction that is signed by Bob and contains a valid
signature on the requested message (that is, exchange
is successful and fair); or

■■ a transaction that is signed by Alice and the time win-
dow has expired (that is, exchange fails and the money
reverts to Alice).

The condition is fulfilled if Bob posts a transaction
that contains a valid signature and the promised pay-
ment is transferred from Alice to Bob. If Bob does not
publish a signature within the time window, Alice can
sign and post a transaction that returns the promised
payment amount back to herself. All transactions are
broadcast to the blockchain network, thus allowing all
blockchain miners to verify whether the payment con-
ditions have been met, and reach consensus on the state
of the exchange.

This protocol ensures a fair exchange between Alice
and Bob; it prevents Alice from double-spending her
payment and enables Bob to spend Alice’s payment only
if Bob has published his signature. We now analyze this
protocol in relation to the requirements listed earlier:

■■ Effectiveness: If the timeout is too short, there may
be not enough time for Bob’s transaction to be con-
firmed in the blockchain. Namely, the miners will
refuse to confirm that transaction after the timeout
has passed. In this case, the effectiveness of the fair
exchange cannot be guaranteed since the exchange
fails because of the timeout even when both parties
behave correctly.

■■ Fairness: The protocol does not ensure strong fair-
ness since it is possible that the timeout is reached
after Bob broadcasts his transaction, but before it is
confirmed in the blockchain. For example, the adver-
sary may mount a denial-of-service attack to throttle
Bob’s network connectivity.12 In this case, Alice might
receive the signature without Bob receiving the pay-
ment. However, the protocol satisfies weak fairness,
because Bob can prove to an (external) arbiter that
his signature on Alice’s requested message has indeed
been revealed to the public. Note that the lack of
strong fairness implies that the anonymous payment
scheme of “Blindly Signed Contracts”10 is insecure,
since Alice can use the voucher to claim money from
Bob without paying him before!

■■ Timeliness: This protocol satisfies weak timeliness but
not strong timeliness, because once Bob’s transaction
is confirmed, Alice cannot decide to complete the
exchange any sooner than the specific timeout.

4	 IEEE Security & Privacy� May/June 2018

ELECTRONIC CURRENCY

■■ Noninvasiveness: The protocol is noninvasive because
it does not impose any specific structure on Bob’s
signature.

Optimistic Fair Payments
Next, we introduce our first fair payment-for-receipt
solution: optimistic fair payments.

Optimistic Fair Exchange
Optimistic fair exchange (OFE) protocols were first
proposed by Asokan and colleagues;3,4 their protocol
relies on the presence of a trusted third party (TTP)
but only in an optimistic fashion: TTP is required only
when one player attempts to cheat or simply crashes. In
the common case where Alice and Bob are honest and
behave correctly, TTP need not be involved.

OFE consists of an exchange protocol (protocol
exchange) and two recovery protocols (protocol
abort and protocol resolve). First, both players agree
on what needs to be exchanged and which third party
to use in case of an exception. Such an “agreement”
is purely a protocol construct: it has no validity out-
side the context of the protocol. Then, one player (for
instance, Alice) sends a verifiable encryption (cA) of her
item (iA) and her expectation about Bob’s item (eA).
The verifiable encryption enables any entity to verify
the validity of iA (without the need for decrypting the
message) and can be decrypted only by the TTP. Bob
first verifies iA, constructs an encryption cB of (iB, eB),
and decides similarly whether to send it to Alice.

If Bob does not send cB, Alice can abort the proto-
col at any point in time by initiating protocol abort
with TTP that issues an abort token. In this case, the
exchange is unsuccessful but fair: neither player receives
any additional information about each other’s item. If
Bob sends cB and Alice has not decided to abort, she
verifies the validity of iB and decides whether to send iA
to Bob. While waiting for iA, Bob can initiate protocol
resolve at any time by sending (cA, iB) to TTP. TTP will
decrypt cA to get (iA, eA) and return iA to Bob if iB meets
eA and has not previously issued an abort token for this
particular exchange. If a transaction was previously
aborted, TTP will not agree to resolve it. Similarly it will
not agree to abort a transaction that had already been
resolved. Alice can run resolve in the same way while
waiting for iB from Bob. This is a general fair exchange
protocol that can support “items” in the form of signa-
tures in standard signature schemes. It requires TTP to
keep state for every aborted or resolved transaction.

Blockchain-Based OFE with a Stateless TTP
We now extend the above OFE protocol by making use
of a blockchain to avoid the need for TTP to maintain

state. Alice can abort the exchange by publishing an
abort transaction to the blockchain instead of send-
ing an abort message to TTP. Thus TTP only needs to
support the resolve protocol. It does not need to keep
any state with regard to the protocol execution because
all needed state information is recorded in the block-
chain. We implemented this variant of OFE using Ethe-
reum’s smart contracts as shown in Figure 1. Note that
when TTP recovers item iA in response to a resolve
request from Bob, it needs to save Bob’s item iB so that
any subsequent abort from Alice can be answered cor-
rectly by the smart contract without violating Alice’s
fairness. Therefore, TTP will ask the smart contract to
save iB during Bob’s invocation of resolve. Note that
TTPs only use blockchain as an “external storage” to
keep its state, so the security level of the new protocol
is exactly the same as original. (TTP is required to be a
blockchain [Ethereum] user, but it does not necessary
to store the whole blockchain—for instance, it can be
an SPV client).

We can easily build a fair payment protocol based
on this blockchain-based OFE by having iA be a signa-
ture corresponding to a payment message in a crypto-
currency scheme. First, we consider zero-confirmation
payments: the two players exchange payment for a
receipt but do not wait for the payment to be confirmed
in the blockchain. We now analyze this protocol with
regard to our defined properties:

■■ Effectiveness: Effectiveness is guaranteed if both play-
ers behave correctly, because Alice will get Bob’s sig-
nature immediately after the OFE and her payment
will be eventually confirmed.

■■ Fairness: A malicious Bob cannot gain any advantage
from the protocol. He can get Alice’s payment only by
sending his signature either to Alice or to TTP. In both
case, Alice can get his signature. However, a malicious
Alice can double-spend the money associated with iA
after the completion of OFE, thus invalidating strong
fairness. Bob can, however, prove this misbehavior to
an arbiter by showing iA. So, this scheme satisfies only
the weak fairness property.

■■ Timeliness: Strong timeliness is inherited from classi-
cal OFE: either player can invoke protocol resolve
at any point if they have received the other player’s
verifiable encryption (cA or cB). Alice can attempt to
abort at any time. In all cases, the protocol is guaran-
teed to terminate timely.

■■ Noninvasiveness: The signature iB can be any signature
in any form.

This variant can be upgraded from zero confirma-
tion to full confirmation by borrowing the approach
of Mayes and colleagues2 to require that Bob and TTP

www.computer.org/security� 5

Figure 1. Smart contract for blockchain-based optimistic fair exchange to assist abort and resolve procedures in order
to keep trusted third party stateless.

function abort(exchange id idex)
if entry of idex exists then

if sender is the originator and the retrieved entry is a resolved item iB then
return iB to the sender

end if
else

add an entry of idex with an abort token
end if

end function

function resolve(exchange id idex, optional resolved item iB)
if sender is TTP then

if entry of idex exists and the retrieved entry is an abort token then
return aborted

else
add an entry of idex with the optional resolved item iB
return ¬ aborted

end if
end if

end function

check if iA is confirmed on the blockchain as follows.
After getting iA from Alice, Bob broadcasts it and waits
for it to be confirmed on the blockchain before send-
ing iB to Alice. When Bob asks TTP to resolve, TTP
similarly broadcasts iA and waits for it to be confirmed
on the blockchain before storing iB. When it resolves
for Alice, it returns iB only after iA is confirmed on the
blockchain. If iA was double-spent before being con-
firmed, TTP will treat it as though Alice aborted the
protocol. With this modification, a malicious Bob can
still gain no advantage from the protocol. In addition,
a malicious Alice gain no advantage either, since she
can get Bob’s signature only her payment has been con-
firmed on the blockchain. This full confirmation vari-
ant achieves strong fairness but at the expense of longer
transaction duration.

Fair Payments of Blockchain-Based
Signatures
We now describe a variant that dispenses with the need
for TTP altogether but at the expense of making the sig-
nature invasive. Our proposal is as follows. Alice first
constructs the message to be signed and uses it to create
a transaction with an output of some amount of digi-
tal money that is spendable in one of the following two
transactions:

■■ a transaction that is signed by Bob and contains a valid
signature on the requested message; or

■■ an abort transaction that is signed by Alice.

Notice that there are no time constraints in Alice’s
transaction, and it can trigger either of the above two

transactions, depending on which one is confirmed in
the blockchain first. Recall that if both are broadcast,
only one of them will eventually be confirmed (because
they conflict with each other). This protocol is invasive
since Bob’s signature is valid only if it is stored on the
blockchain, hence the term blockchain-based signature.
Namely, a verifier must check not only that the signature
is (cryptographically) valid but also that it is confirmed
in the blockchain.

This protocol can be fully deployed as an Ethereum
smart contract without the need for TTP. In this case,
Alice will first send a deposit to the contract; the con-
tract will forward the deposit either to Bob or back to
Alice, depending on whether it receives Bob’s signature
or Alice’s abort first. An example of such contract func-
tions is sketched in Figure 2.

Our extension ensures the following properties:

■■ Effectiveness: If both players behave correctly, Bob will
receive the payment by publishing a signature, and
Alice will obtain her desired receipt when the signa-
ture has been confirmed on the blockchain.

■■ Fairness: A malicious Alice can double-spend the pay-
ment, in which case, Bob’s signature will not be added
to the blockchain. Alice can still get the content of the
signature, but it is invalid. A malicious Bob cannot
gain any advantage from the protocol because he can
get the payment only if his signature has been added
to the blockchain.

■■ Timeliness: The protocol completes after either the sig-
nature or the abort is confirmed. Alice can choose to
wait for the signature to be confirmed (exchange suc-
ceeds) or issue an abort (exchange fails). Similarly

6	 IEEE Security & Privacy� May/June 2018

ELECTRONIC CURRENCY

Bob can either issue a signature and wait for it to be
confirmed, or simply walk away. In either case, the
state of the exchange is final.

■■ Noninvasiveness: Clearly, the signature is invasive
because it is only valid when it is confirmed in the
blockchain.

Experimental Evaluation
We now describe and evaluate our Ethereum-based
implementation of fair payment with blockchain-based
OFE and with blockchain-based signature.

Implementation Setup
We assigned an Ethereum node to each entity (for exam-
ple, Alice, Bob, and TTP). These nodes are connected
to a private Ethereum network (that is equipped with
private mining functionality) with a bandwidth limit of
100 Mbps. We deployed the mining node and TTP on
two servers both with 24-core Intel Xeon E5-2640 and
32 GB of RAM. In our testbed, Alice and Bob reside on
two machines equipped with 4-core Intel i5-6500 with
8 GB of RAM and 8-core Intel Xeon E3-1230 with 16
GB of RAM, respectively. In our implementation, these
entities prepare and send the transactions to the block-
chain using the JavaScript library web3.js. This library
interfaces the Ethereum nodes through its RPC calls. In
the blockchain-based OFE instantiation, we implement
OFE computation and communication using GoLang
and C. We use the ECDSA signature scheme, which is
directly supported by Ethereum contracts. We use the
verifiable encryption scheme in “Fairness in Electronic

Commerce”4 implemented with cryptographic library
GMP13 in C. We preset and fix the difficulty of our pri-
vate Ethereum testnet in the code and the genesis block
so that the block generation time is around 5 seconds.

In our experiments, we measured the gas and time
consumption for the following procedures: deploy,
optimistic completion, abort, and TTP resolve.
Deploy refers to deploying the smart contract into the
blockchain. In blockchain-based OFE, the smart con-
tract is deployed by TTP to manage its state. Optimis-
tic completion refers to the successful completion
of the exchange without invoking resolve or abort.
Finally, the contract is triggered by Alice for abort and
by TTP for resolve. We consider only the resolve pro-
tocol under the assumption that the exchange has not
been aborted.

To measure gas consumption, we observe the differ-
ence in the account balance before and after invoking
the contract, and we convert this amount to the amount
of gas according to our fixed gas price. We measure the
eclipsed time starting from the initial contract invocation
until the entities receive the notifications from the Ethe-
reum network. In our evaluation, each time measure-
ment is averaged over 10 independent executions of the
fair exchange protocol; where appropriate, we also report
the corresponding 95 percent confidence intervals.

Evaluation Results
Our evaluation results are discussed as follows.

Gas consumption. Our evaluation results are shown
in Table 1. We first observe that for both contracts,

Figure 2. Smart contract for fair payment of blockchain-based signature.

function initExchange(payment Tpay[v], expected item m and recipient)
if state is UNINITIALIZED and contract has received the payment with value v then

record originator, recipient and m
switch state to INITIALIZED

end if
end function
function abort

if state is INITIALIZED and the message is sent by the originator then
refund v to the originator
clear up storage and switch state to UNINITIALIZED

end if
end function
function resolve(signature on m)

if state is INITIALIZED and the message is sent by the recipient then
if signature on m is valid then

send v to recipient and the signature to originator
clear up storage and switch state to UNINITIALIZED

end if
end if

end function

www.computer.org/security� 7

contract deployment consumes the most amount of gas
because the processes of creating contracts and storing
data in the blockchain are expensive in Ethereum.14 As
described earlier, the blockchain-based OFE variant
does not need to involve the blockchain at all during
optimistic exchanges. Therefore, the gas consumption
for an optimistically concluded fair payment is zero.
We contrast this with the blockchain-based signature
variant, which requires 126,457 gas from Alice to ini-
tiate the exchange protocol and 27,935 gas from Bob
to complete it. The large overhead incurred on Alice
here is mainly caused by storing exchange contract
parameters in the blockchain during contract initial-
ization. Notice that abort requires considerably more
gas in blockchain-based OFE when compared to the
blockchain-based signature. This is due to the fact that
the contract may spend more gas to transmit the pre-
vious resolved item (if any). Similarly, TTP resolve
potentially needs to store resolved items in the
contract—which incurs additional gas consumption.

Time consumption. Table 2 shows the measured
eclipsed time. We observe that the contract invoca-
tion process is rather time consuming; for instance,
the protocol initialization procedure by Alice in
blockchain-based signature consumes around 4 sec-
onds. We contrast this with 277 milliseconds required
for the completion of the blockchain-based OFE pro-
tocol. The latter is almost 14 times faster in spite of the
reliance on verifiable encryption, due to the fact that
the blockchain needs to generate a block in order to
include the transactions. Recall that the average block
generation time in our private Ethereum network is
tuned to be around 5 seconds.

The time execution of the remaining operations
is comparable in both protocols, which is around
4 seconds. This value largely depends on block gen-
eration time of the blockchain network. Notice that
the width of the confidence interval corresponds to
the variation of block generation times exhibited in
Ethereum.

Summary. Given our findings, we conclude that the fair
payment protocol based on blockchain-based OFE is
more cost- and time-effective than its counterpart based
on blockchain-based signatures when the protocol is
executed without exceptions.

In the case where an exception occurs, both proto-
cols incur comparable costs and time overhead. Namely,
because transactions can take effect only once they are
confirmed in the blockchain (that is, every 12 seconds
in the Ethereum public blockchain), the reliance on the
blockchain in abort and resolve protocols incurs
considerable time delays.

Comparison and Outlook
In this article, we explored the solution space to realize
fair exchange for cryptocurrency transactions. To this
end, we proposed two fair payment-for-receipt proto-
cols for cryptocurrency payments that leverage func-
tionality from the blockchain to meet both fairness and
strong timeliness. A systematic comparison between
our proposals is shown in Table 3.

Our findings suggest that the fair exchange based
on timelocking cannot satisfy the strong timeliness
property, and as such can only guarantee weak fair-
ness. Furthermore, choosing a short timeout here
can harm the effectiveness of this construct. In this
respect, the constructs based on blockchain-based
OFE and blockchain-based signature provide the
strongest tradeoffs between performance and pro-
visions. Our performance evaluation shows that
the blockchain-based OFE option is more efficient

Table 1. Gas consumption in Ethereum contracts to perform each
action of blockchain-based fair payment protocols.

Actions

Protocols

With
blockchain-based
OFE

With blockchain-based
signature

Deploy 537,783 645,900

Optimistic
completion

Alice 0 126,457

Bob 27,935

Abort 67,574 33,746

TTP resolve 132,600 –

Table 2. Eclipsed time in milliseconds with 95 percent confidence
interval to perform each action of blockchain-based fair payment
protocols.

Actions

Protocols

With
blockchain-based
OFE

With blockchain-based
signature

Optimistic
completion

Alice 277.0 6 9.2 3,831.0 6 973.2

Bob 4,195.8 6 1,077.3

Abort 3,432.4 6 1,000.3 4,301.5 6 1,305.6

TTP resolve 3,773 6 902.5 –

8	 IEEE Security & Privacy� May/June 2018

ELECTRONIC CURRENCY

when the exchange concludes optimistically. As
such, it seems to be ideal in those scenarios where
only weak fairness is sufficient or when noninvasive-
ness is required. Otherwise, we recommend using the
blockchain-based signature option.

Formal verification techniques15,16 can be used to
complement our security analysis. We leave the inves-
tigation of such techniques for future work. Privacy
has not been considered as a requirement for fair
exchange protocols. However, there are a number of
scenarios where privacy considerations play a para-
mount role. For example, the message to be signed
may contain some important information about Alice
that cannot be revealed. In all three constructions,
the contents of the signature can be seen by the pub-
lic; there are, however, a number of techniques that
can be used to protect the contents of signatures. For
instance, one can improve the blockchain-based OFE
protocol by having TTP send a verifiable encryption
of iB to the resolve contract—thus preserving the pri-
vacy of Alice.

W hile there are no “bulletproof ” solutions that
simultaneously achieve all desirable properties

discussed above, we observe that a number of tradeoffs
exist within the solution space to sacrifice one property
in order to achieve the rest. Depending on the applica-
tion scope, this might already offer a differentiator and
stronger value proposition for existing cryptocurren-
cies. We therefore hope that our findings motivate fur-
ther research in this largely unexplored area.

Acknowledgments
This work was supported in part by NEC Laboratories Europe
and a grant from Academy of Finland (309195, BCon).

References
1.	 S. Nakamoto, “Bitcoin: A Peer-to-Peer Electronic Cash

System, 2009; www.bitcoin.org/bitcoin.pdf.
2.	 D. Jayasinghe, K. Markantonakis, and K. Mayes, “Opti-

mistic Fair-Exchange with Anonymity for Bitcoin Users,”
Proc. IEEE 11th International Conference on e-Business Engi-
neering (ICEBE 14), 2014, pp. 44–51; http://ieeexplore
.ieee.org/document/6982058/?reload5true&arnumber
56982058.

3.	 N. Asokan, V. Shoup, and M. Waidner, “Optimistic Fair
Exchange of Digital Signatures,” IEEE Journal on Selected
Areas in Communications, vol. 18, no. 4, 2000, pp. 593–
610; http://dx.doi.org/10.1109/49.839935.

4.	 N. Asokan, “Fairness in Electronic Commerce,” PhD
thesis, University of Waterloo, 1998; https://uwspace
.uwaterloo.ca/bitstream/handle/10012/292/NQ32811.pdf.

5.	 V. Buterin, A Next-Generation Smart Contract and Decen-
tralized Application Platform, 2014; https://github.com
/ethereum/wiki/wiki/White-Paper.

6.	 M. Andrychowicz et al., “Secure Multiparty Computa-
tions on Bitcoin,” Proceedings of the 2014 IEEE Sympo-
sium on Security and Privacy (SP 14), 2014, pp. 443–458;
http://dx.doi.org/10.1109/SP.2014.35.

7.	 I. Bentov and R. Kumaresan, “How to Use Bitcoin
to Design Fair Protocols,” Advances in Cryptology
(CRYPTO 14), 2014, pp. 421–439; http://dx.doi.org
/10.1007/978-3-662-44381-1_24.

8.	 A. Kiayias, H.-S. Zhou, and V. Zikas, Fair and Robust
Multi-party Computation Using a Global Transaction Ledger,
Springer Berlin Heidelberg, 2016, pp. 705–734.

9.	 R. Kumaresan, V. Vaikuntanathan, and P. Nalini Vasude-
van, “Improvements to Secure Computation with
Penalties,” Proceedings of the 2016 ACM SIGSAC Con-
ference on Computer and Communications Security (CCS
16), 2016, pp. 406–417; http://doi.acm.org/10.1145
/2976749.2978421.

Table 3. Comparisons of different blockchain-based fair payment protocols.

Requirements

Types

With timelocking

With blockchain-based OFE
With blockchain-based
signatureZero-confirm Full-confirm

Fairness weak weak strong strong

Timeliness weak strong strong strong

Effectiveness ? √ √ √

Noninvasiveness √ √ √ X

No TTP √ X X √

www.computer.org/security� 9

10.	 E. Heilman, F Baldimtsi, and S Goldberg, “Blindly
Signed Contracts: Anonymous On-Blockchain and
Off-Blockchain Bitcoin Transactions,” Financial Cryptog-
raphy and Data Security (FC 16), 2016, pp. 43–60; http:
//eprint.iacr.org/2016/056.

11.	 E. Heilman et al., “Tumblebit: An Untrusted Tumbler for
Bitcoin-Compatible Anonymous Payments,” IACR Cryp-
tology ePrint Archive, 2016:575, 2016.

12.	 A. Gervais et al., “Tampering with the Delivery of Blocks
and Transactions in Bitcoin,” Proceedings of the 22nd ACM
SIGSAC Conference on Computer and Communications
Security (CCS 15), 2015, pp. 692–705; http://doi.acm.org
/10.1145/2810103.2813655.

13.	 “The GNU Multiple Precision Arithmetic Library,” GMP,
2016; https://gmplib.org/.

14.	 G. Wood, “Ethereum: A Secure Decentralised Gener-
alised Transaction Ledger, 2014; http://bitcoinaffiliatelist
.com/wp-content/uploads/ethereum.pdf.

15.	 A. Mukhamedov, S. Kremer, and E. Ritter. Analysis of a
Multi-party Fair Exchange Protocol and Formal,” Proceed-
ings of the 9th International Conference on Financial Cryp-
tography and Data Security (FC 05), 2005, pp. 255–269.

16.	 R. Chadha, S. Kremer, and A. Scedrov, “Formal Analysis
of Multi-party Contract Signing,” Proceedings of the 17th
IEEE Computer Security Foundations Workshop, 2004,
pp. 266–279.

Jian Liu is a Doctoral Candidate at Aalto University,
Finland. He received his Masters of Science in Uni-
versity of Helsinki in 2014. He is instructed in applied
cryptography and blockchains. Contact at jian.liu@
aalto.fi.

Wenting Li is a Senior Software Developer at NEC Lab-
oratories Europe. She received her Masters of Engi-
neering in Communication System Security from
Telecom ParisTech in September 2011. She is inter-
ested in security with a focus on distributed system
and IoT devices. Contact at wenting.li@neclab.eu.

Ghassan O. Karame is a Manager  and Chief researcher
of Security Group of NEC Laboratories Europe.
He received his Masters of Science from Carnegie
Mellon University (CMU) in December 2006, and his
PhD from ETH Zurich, Switzerland,  in 2011. Until
2012, he worked as  a postdoctoral researcher in ETH
Zurich. He is interested in all aspects of security and
privacy with a focus on cloud security, SDN/network
security and Bitcoin security. He is a member of the
IEEE and of the ACM. More information on his
research at http://ghassankarame.com/. Contact at
ghassan@karame.org.

N. Asokan is  a Professor of Computer Science at Aalto
University where he co-leads the secure systems
research group and directs Helsinki-Aalto Center
for Information Security - HAIC. More information
on  his research at http://asokan.org/asokan/. Contact
at asokan@acm.org.

