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Abstract—We propose transmit optimization techniques
for multi-input multi-output (MIMO) wiretap channels
with statistical channel state information (CSI) at the trans-
mitter. We consider doubly correlated channels towards
the legitimate receiver and the eavesdropper. The aim is
to maximize the secrecy rates using the knowledge of the
channel correlation matrices. We develop gradient-descent
based optimization algorithms for obtaining the optimal
transmit signals for both Gaussian and finite-alphabet
inputs. Furthermore, we introduce a joint precoder and
artificial noise (AN) design scheme. We demonstrate the
efficacy of the proposed schemes via numerical examples.

I. INTRODUCTION

Securing wireless communications at the physical
layer serves as an appealing approach to replace the
conventional key-based solutions, especially in decen-
tralized networks where key management is expensive.
The idea in physical layer security is to exploit the
inherent randomness of the channel to allow a transmitter
to deliver its messages to a legitimate receiver while
making them unintelligible at an eavesdropper [1].

Establishing the fundamental limits for secure trans-
mission rates has been one of the most important objec-
tives of the studies in the area of physical layer security,
and a variety of channel models with different assump-
tions on the transmitter’s knowledge of the channel state
information (CSI) have been investigated (see [2] for a
survey). A common assumption in many of these studies
is that the transmitter is capable of estimating at least
the instantaneous main channel coefficient. However, in
fast fading scenarios, the transmitter may not be able to
track the rapidly varying channel. An initial study on the
secrecy capacity of the fast faded multi-antenna wiretap
channel has been reported in [3] where it has been shown
that when both the main and the eavesdropper’s channels
have independent identically distributed (i.i.d.) complex
Gaussian entries with zero-mean and unit variance, the
secrecy capacity achieving input is Gaussian without
prefixing. The authors in [4] have studied MIMO wiretap
channels with statistical CSI in semi-correlated scenarios

with correlation at the transmitter side only. So as to
maximize the ergodic secrecy rates, they have proposed
transmit precoding schemes which rely on statistical wa-
terfilling and generalized singular value decomposition
(GSVD)-based beamforming.

In this paper, we focus on fast Rayleigh faded doubly
correlated channels towards the legitimate receiver and
the eavesdropper, and assume that the transmitter only
knows the transmit and receive correlation matrices cor-
responding to both channels. First, with the assumption
that the transmitter employs Gaussian signaling, we pro-
pose an input covariance matrix optimization algorithm
which relies on gradient-based updating. We demonstrate
via numerical examples that this scheme achieves higher
ergodic secrecy rates with respect to the solutions in [4].
Furthermore, we introduce a signal design algorithm for
a more practical scenario where the channel inputs are
drawn from a finite-alphabet. Transmit signal design for
secrecy rate maximization over MIMO wiretap channels
under finite-alphabet inputs with perfect and partial CSI
at the transmitter have been addressed in [5] and [6],
respectively. In [6], a joint precoder and AN design
algorithm is proposed with the aid of the instantaneous
CSI of the main channel along with the statistical CSI
of the eavesdropper. Similar to [7], it was assumed that
AN is injected along the null-space of the main channel
and hence, no degradation occurs in the reception of
the legitimate receiver. On the other hand, injection of
AN along the null-space of the main channel is not
possible when the transmitter only knows the statistics
of the channels. Hence, we propose a joint precoder and
AN design algorithm in which the AN can be injected
in all directions spanned by the main channel. In the
proposed scheme, the data and the AN precoder matrices
are optimized in a manner that the ergodic secrecy rate
is maximized.

The remainder of this paper is organized as follows.
In the next section, we describe the system model under
consideration. In Sections III and IV, we propose trans-
mit signal design algorithms with Gaussian signaling and978-1-5386-3531-5/17/$31.00 © 2017 IEEE



finite-alphabet inputs, respectively. Section V presents
numerical examples, and finally, Section VI concludes
the paper.

Notation: Vectors and matrices are denoted by lower-
case and uppercase bold letters, respectively. The expec-
tation of a random variable A is represented by EA{.}.
(.)H and ‖ . ‖ denote the Hermitian and Frobenius norm
operations, respectively.

II. SYSTEM MODEL

Consider a general multiple-input-multiple-output-
multiple-antenna eavesdropper (MIMOME) wiretap
channel. The number of antennas at the transmitter (Al-
ice), the legitimate receiver (Bob) and the eavesdropper
(Eve) are Nt, Nrb and Nre , respectively. The received
vectors at Bob and Eve are given by

y = Hbx + ny, z = Hex + nz, (1)

where Hb and He are the Nrb × Nt and Nre × Nt
channel matrices corresponding to the legitimate receiver
and the eavesdropper, respectively. Both channels are
assumed to be doubly correlated. The receive correlation
matrices corresponding to the main channel and the
eavesdropper’s channel are denoted by Ψrb ∈ CNrb

×Nrb

and Ψre ∈ CNre×Nre , respectively, whereas the transmit
correlation matrices are Ψtb ∈ CNt×Nt and Ψte ∈
CNt×Nt . The channel matrices are as follows

Hb = Ψ
1/2
rb ĤbΨ

1/2
tb , He = Ψ1/2

re ĤeΨ
1/2
te , (2)

where Ĥb and Ĥe are complex matrices with i.i.d.
zero mean unit variance circularly symmetric complex
Gaussian entries. ny and nz denote i.i.d. additive white
Gaussian noise terms. The elements of noise vectors
follow circularly symmetric complex Gaussian distribu-
tions, CN (0, σ2

ny
) and CN (0, σ2

nz
), respectively. More-

over, Ĥb, Ĥe, ny and nz are independent. The fading
process is assumed to be ergodic. The legitimate receiver
and the eavesdropper know their own channels perfectly.
However, the transmitter does not know the realizations
of the channels and it is only capable of acquiring
the long-term statistics. In other words, the transmitter
knows the correlation matrices Ψtb, Ψte, Ψrb, Ψre and
the noise variances at the receivers.

Regarding the channel input, we make different as-
sumptions in different sections of the paper. In Section
III, we consider zero-mean Gaussian distributed inputs
the covariance matrix of which (Qx = E(xxH)) is
subject to optimization. In Section IV, however, we
consider a more practical scenario where the channel
input is selected equiprobably from a discrete signal
constellation. Under the assumption that Alice does not
know the instantaneous Hb and He, while Bob knows Hb

and Eve knows both Hb and He perfectly, the secrecy
capacity is given by [8, Eq. (3)]

Cs = max
p(x|w),p(w)

I(w; y|Hb)− I(w; z|He), (3)

where w is an auxiliary random variable which satisfies
the Markov chain w → x → y, z. Determining the
optimal joint distribution of (w, x) and the resulting exact
secrecy capacity is an open problem. Throughout this
paper, we quantify secrecy using an achievable ergodic
secrecy rate (a lower-bound on (3)) as

Rs =
[
I(x; y|Hb)− I(x; z|He)

]+
. (4)

III. INPUT COVARIANCE MATRIX OPTIMIZATION

In this section, we assume that Alice employs Gaus-
sian signaling and we tackle the ergodic secrecy rate
maximization problem via optimizing the input covari-
ance matrix using an iterative approach.

A. Optimization of Input Covariance
Our objective is to obtain a covariance matrix Qx that

is the optimizer of the following problem:

max
Qx

f(Qx) = EĤb
log det

(
INrb

+
1

σ2
ny

HbQxHH
b

)
− EĤe

log det
(

INre
+

1

σ2
nz

HeQxHH
e

)
, (5)

s.t. tr(Qx) = 1, Qx � 0. (6)

The objective function f(Qx) is a lower-bound on
the achievable ergodic secrecy rate in (4). In order to
solve the non-convex optimization problem in (5)-(6), we
propose a numerical algorithm which iteratively searches
for local maxima of f(Qx) using a gradient-based update
rule. In order to implement this algorithm, we obtain the
gradient of the objective function with respect to Qx as
[9, Eq. (12)]
∇f(Qx) =EĤb

{
HH
b

(
INrb

+
1

σ2
ny

HbQxHH
b

)−1
Hb

}
− EĤe

{
HH
e

(
INre

+
1

σ2
nz

HeQxHH
e

)−1
He

}
.

(7)

The iterative procedure for this optimization is given
in Alg. 1. Once the covariance is updated using the
gradient in (7), the power constraint, i.e., tr(Qx) = 1, and
the positive semi-definiteness of the updated covariance
matrix, i.e., Qx � 0, need to be established. While the
former is addressed using a normalization, the latter is
handled heuristically. Particularly, without taking into
account the positive semi-definiteness constraint, we
run Alg. 1 with different initializations and we ignore
those which produce non-positive semidefinite Qx’s. It
is verified through numerical experiments that suitable
starting points (e.g., solutions of [4]) lead to feasible
solutions with a high probability.

IV. PRECODER DESIGN FOR FINITE-ALPHABET
INPUTS

Although Gaussian signals are secrecy capacity
achieving in a variety of scenarios, the transmit signal
design under Gaussian input assumption can be quite
sub-optimal when applied to the practical signals drawn



Algorithm 1 Grad. Desc. for Maximizing f(Qx) (or g(PD))
Step 1: Initialize Q1 (or PD1 ) with constraint tr(Qx) = 1 (or
tr(PDPHD) ≤ Nt). Set step size u and min. tolerance umin
Step 2: Set k = 1, compute f1 = f(Q1) (or g1 = g(PD1

))
Step 3: Compute ∇Q1

f(Q1) using (7) (or ∇PD
g(PD) using (13) )

Step 4: If u ≥ umin goto Step 5, otherwise Stop algorithm and return
Qk (or PD)
Step 5: Calculate Q̂k = Qk + u∇Qk

f(Q) (or PDk
using (12)).

Step 6: Compute f̂ = f(Q̂k) (or ĝ = g(P̂Dk
)) If f̂ ≥ fk (or

ĝ ≥ gk) update fk+1 = f̂ (or gk+1 = ĝ ) and Qk+1 = Q̂k (or
PDk+1

= P̂Dk
) and goto Step 7, O/W let u = 0.5u and goto Step 4

Step 7: k = k + 1 goto Step 3

from discrete constellations. With this motivation, in this
section, we propose transmit signal design algorithms for
practical finite-alphabet inputs.

A. Precoder Optimization
In this section, we assume that Alice transmits a

precoded signal as

x = PDs, (8)

where s ∈ CNt×1 is the channel input which is drawn
from an equiprobable discrete constellation set such as
quadrature amplitude modulation (QAM) or phase shift
keying (PSK) with modulation order M and identity co-
variance (E{ssH} = I). PD ∈ CNt×Nt is the precoding
matrix which is subject to optimization. In evaluation of
(4), the mutual information expression corresponding to
the main channel is calculated as [10]

I(s; y|Hb) = Nt logM −
1

MNt
×

MNt∑
i=1

EĤb,ny
log

MNt∑
j=1

exp

(
−‖HbPDdij + ny‖2 − ‖ny‖2

σ2
ny

)
,

where dij = si−sj . Each vector si contains Nt symbols
which are independently taken from the M -ary signal
constellation. The mutual information expression cor-
responding to the eavesdropper’s channel is calculated
similarly.

With the assumption that the transmitter knows the
correlation matrices Ψtb, Ψte, Ψrb and Ψre as well as
the signal-to-noise ratio (SNR) values at the receivers,
the objective is to obtain the optimal precoder matrix
PD which maximizes the ergodic secrecy rate in (4).
To formulate this optimization problem, we consider a
lower-bound on Cs given by

g(PD) = I(s; y|Hb)− I(s; z|He), (9)

and define the relevant optimization problem as

max
PD

g(PD) (10)

s.t. tr(PDPHD) ≤ Nt. (11)

Due to the nonconvexity of the problem in (10)-(11),
we implement a numerical algorithm which iteratively

search for local maxima of the objective function. This
procedure is explained in Alg. 1. In this scheme, the
precoder is updated as

PDk+1
=
[
PDk

+ u∇PD
g(PDk

)
]†

tr(PDPH
D)≤Nt

, (12)

where k and u are the iteration index and the step-size
of the update, respectively, and [.]†tr(PDPH

D)≤Nt
stands for

the normalization which guarantees the feasibility of the
solution at each step. More specifically, for cases where
the updated precoder matrix P̂Dk

does not satisfy the
constraint in (11), similar to [11], we adopt a normal-

ization as P̂Dk
=

√
Nt/tr(P̂Dk

P̂
H

Dk
)P̂Dk

, which projects
the solution onto the feasible set. In order to evaluate the
gradient of g(PD), we use the results in [11] to obtain

∇PD
g(PD) = EĤb

{
log2 e

σ2
ny

(
HH
b HbPD∆b(PD)

)}
− EĤe

{
log2 e

σ2
n′
z

(
HH
e HePD∆e(PD)

)}
, (13)

where ∆b(PD) and ∆e(PD) are the minimum mean
square error matrices corresponding to estimation of s
upon the observations at the legitimate receiver and the
eavesdropper which are calculated using [11, Eq. (12)].

B. Joint Precoder and AN Optimization
In this section, we introduce a joint precoder and AN

optimization scheme based on statistical CSI. Since the
instantaneous CSI of the main channel is not known at
the transmitter, it is not possible to inject AN in the
null-space of Hb. Therefore, we consider injection of a
generalized AN which is allowed to be transmitted in
all directions spanned by Hb [12] and we develop an
optimization algorithm to obtain the optimal pair of data
and AN precoders, which maximize the ergodic secrecy
rate. Particularly, we assume that Alice transmits a signal
as

x = PDs + PANv, (14)

where s is the data signal and v stands for the AN signal
that follows CN (0, INt

). PD and PAN are the precoder
matrices for the data and the artificial noise signals,
respectively. Although this AN degrades the reception
both at the legitimate receiver and the eavesdropper, it is
possible to optimize PAN in a manner that the achievable
rate at the eavesdropper is highly suppressed while the
mutual information over the main channel undergoes less
degradation.

The received vectors at the legitimate receiver and the
eavesdropper are given as

y = HbPDs + HbPANv + ny, (15)

z = HePDs + HePANv + nz. (16)

The objective is to obtain the optimal PD and PAN by
solving the following optimization problem

max
PD, PAN

g(PD,PAN ) (17)

s.t. tr(PDPHD) + tr(PANPHAN ) ≤ Nt, (18)



Algorithm 2 Alternating Optimization for Maximizing Rs,l
Initialize λh > λl = 0, PD , PAN and converg. criteria εL and ελ:
Step 1: update λ = 1

2
(λl + λh)

Step 2: repeat:
obtain optimal PD with fixed PAN similar to Alg. 1
obtain optimal PAN with fixed PD similar to Alg. 1
until: consecutive values of L(PD,PAN , λ) differ by less than εL
Step 3: If tr(PDPHD) + tr(PANPHAN ) < Nt then update λh = λ

If tr(PDPHD) + tr(PANPHAN ) > Nt then update λl = λ

until: two consecutive values of λ differ by less than ελ.

where g(PD,PAN ) is equal to the right hand side of (9).
Since n′y = HbPANv + ny is colored with covariance
Kn′

y
= HbPANPHANHH

b + σ2
ny

INrb
, the mutual infor-

mation over the main channel can be calculated after
whitening the noise by pre-multiplying (15) with K−

1
2

n′
y

as
y′′ = K−

1
2

n′
y

HbPDs + n′′y , (19)

where n′′y is a zero-mean additive white Gaussian noise
with unit variance. Therefore, we have

I(s; y′′|Hb) = Nt logM −
1

MNt
×

MNt∑
i=1

EĤb,n′′
y
log

MNt∑
j=1

exp

(
−‖K

− 1
2

n′
y

HbPDdij+n′′y‖2+‖n′′y‖2
)
.

The expression for I(s; z|He) can be calculated by taking
similar steps. Instead of directly tackling the non-convex
optimization in (17)-(18), we solve a Lagrange dual
optimization problem. The Lagrangian associated with
(17)-(18) is given by

L(PD,PAN , λ) = g(PD,PAN )

+ λ(Nt − tr(PDPHD)− tr(PANPHAN )), (20)

where λ is the Lagrange dual variable. We define the
Lagrange dual optimization problem as

min
λ>0

D(λ), (21)

where D(λ) denotes the Lagrange dual function, which
is given by

D(λ) = max
PD, PAN

L(PD,PAN , λ). (22)

It can be seen that D(λ) is a convex function in λ. To
solve the problem in (21), similar to [13], we employ a
bisection method as described in Alg. 2. In this scheme,
when the subgradient ∇D(λ) = Nt − tr(PDPHD) −
tr(PANPHAN ) is positive, λ is decreased and otherwise,
it is increased.

In order to maximize the Lagrangian for a fixed λ, we
update PD and PAN in an alternating fashion. To obtain
the optimal PD with a fixed PAN , and conversely, to
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Fig. 1: Ergodic secrecy rates for Gaussian signaling.

obtain the optimal PAN with a fixed PD, we employ
gradient descent type algorithms similar to Alg. 1. Once
the optimal λ is obtained, the corresponding PD and
PAN become the desired precoder matrices, which serve
as suboptimal solutions for the optimization in (17)-(18).

V. NUMERICAL EXAMPLES

In order to illustrate the performance of the proposed
signal design schemes, we provide numerical examples
for Gaussian inputs as well as inputs drawn from discrete
constellations. We consider a MIMOME setup with
Nt = 4, Nrb = 4 and Nre = 2. Throughout the
simulations, equal noise variances are assumed at the
legitimate receiver and the eavesdropper. In order to
evaluate ergodic secrecy rates, the average mutual infor-
mation terms in (4) are evaluated using 500 realizations
of Ĥb and Ĥe.

A. Examples with Gaussian Signaling
In this subsection, we compare the secrecy perfor-

mance of the proposed input covariance optimization
approach with those of the existing suboptimal solu-
tion (statistical waterfilling based on Ψtb, and GSVD-
based precoding [4]). We assume that the legitimate re-
ceiver and the eavesdropper experience indoor-to-indoor
and indoor-to-outdoor environments which correspond
to highly correlated and partially decorrelated cases,
respectively. To model these scenarios, we employ the
experimentally validated model in [14]. We assume that
Ψtb and Ψrb are as [14, Eq. (12)] and we consider Ψte

and Ψre as given at the bottom of the page.
Fig. 1 depicts the ergodic secrecy rates for different

transmission schemes. It is clear that the proposed in-
put covariance optimization outperforms statistical wa-
terfilling and GSVD-based precoding. One reason for
this enhanced performance is that unlike the precoding
schemes in [4], the proposed transmit signal design
scheme is carried out by taking into account the transmit
and receive correlation matrices corresponding to both
channels. Furthermore, since in Alg. 1, the secrecy rate

Ψte =

 1 −0.61 + 0.77i 0.14− 0.94i 0.24 + 0.89i
−0.61− 0.77i 1 −0.85 + 0.50i 0.57− 0.78i
0.14 + 0.94i −0.85− 0.50i 1 −0.91 + 0.4i
0.24− 0.89i 0.57 + 0.78i −0.91− 0.4i 1

 Ψre =

[
1 −0.12− 0.18i

−0.12 + 0.18i 1

]
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Fig. 2: Ergodic secrecy rates for BPSK input (ρtb = 0.9
and ρrb = 0.6).

increases from one iteration to the next, by initializing
the proposed numerical algorithm with the covariance
matrices corresponding to the ones obtained in [4], equal
or higher secrecy rates are guaranteed to be attained.

B. Examples with Finite-Alphabet Inputs
In this subsection, we provide ergodic secrecy rates

for the scenarios where the channel is driven by finite-
alphabet inputs. We consider correlation matrices with
exponentially decaying entries as [Ψ(ρ)]ij = ρ|i−j|.

Fig. 2 depicts the ergodic secrecy rates with BPSK
inputs. The proposed algorithms are shown to achieve
positive ergodic secrecy rates at low and moderate SNRs.
However, at high SNRs, under the finite-alphabet input
constraint, secrecy rate drops to zero. This is in contrast
to the scenarios with Gaussian signaling where achiev-
able secrecy rates increase monotonically by increasing
SNR (with Nrb > Nre, e.g., the results in Fig. 1).

We also observe that injection of AN provides slight
improvements in moderate to high SNR regions. This
behavior is different from the cases with uncorrelated
channels where injection of AN with statistical CSI
is a waste of power [15]. Fig. 2 also underlines the
importance of availability of the main channel CSI at
the transmitter. By jointly optimizing the precoder and
the AN using the knowledge of instantaneous CSI of the
main channel [16], considerably higher secrecy rates are
attained with respect to the transmit signal design with
statistical CSI only. More specifically, in the presence of
instantaneous CSI of the main channel, the transmitter
is capable of injecting AN in a more efficient manner
where the noise leakage at the legitimate receiver is
minimal (or zero when AN is injected along null-space
of the main channel). Therefore, at high SNRs, the
transmitter allocates a considerable portion of the total
power to AN which efficiently suppresses the reception
at the eavesdropper. However, when the instantaneous
CSI of the main channel is not available, due to the
leakage of AN at the legitimate receiver, allocating a
large portion of the total power to AN does not help,
and since at high SNRs the mutual information over
both channels approach the saturation value of Nt logM ,
ergodic secrecy rate drops to zero.

VI. CONCLUSIONS
We have provided transmit signal design algorithms

for MIMO wiretap channels where the transmit and
receive correlation matrices are the only CSI available at
the transmitter. We have considered both Gaussian and
finite-alphabet inputs. With Gaussian signaling, the pro-
posed gradient-based input covariance matrix optimiza-
tion outperforms the existing solutions. Under the finite-
alphabet input assumption, we have shown that injecting
AN with statistical CSI provides some improvements in
the secrecy rate. However, it does not prevent secrecy
rate from dropping to zero at high SNRs.
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