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Abstract 

A brain-computer interface (BCI) system using electroencephalography 

(EEG) signals provides a convenient means of communication between the human 

brain and a computer. Motor imagery (MI), in which motor actions are mentally 

rehearsed without engaging in actual physical execution, has been widely used as 

a major BCI approach. One robust algorithm that can successfully cope with the 

individual differences in MI-related rhythmic patterns is to create diverse 

ensemble classifiers using the sub-band common spatial pattern (SBCSP) method. 

To aggregate outputs of ensemble members, this study uses fuzzy integral with 

particle swarm optimization (PSO), which can regulate subject-specific 

parameters for the assignment of optimal confidence levels for classifiers. The 

proposed system combining SBCSP, fuzzy integral, and PSO exhibits robust 

performance for off-line single-trial classification of MI and real-time control of a 

robotic arm using MI. The main contribution of this paper is that it represents the 

first attempt to utilize fuzzy fusion technique to attack the individual differences 

problem of MI applications in real-world noisy environment. The results of this 

study demonstrate the practical feasibility of implementing the proposed method 

for real-world applications.  
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I. Introduction 

Brain-computer interfaces (BCIs) [1] based on the user’s voluntary modulations 

of electroencephalography (EEG) [2] signals provide an alternative method of 

communication between humans and machines. Despite the many pivotal techniques 

developed by the pattern recognition community that have been applied and evaluated 

within the context of EEG-based BCI, the overall performance of BCIs is still not robust 

because of inter- and intra-subject variability. This variability introduces a large number 

of uncertainties that severely degrade the performance of BCIs. 

Among existing BCIs [3], efforts to develop EEG-based BCI systems relying on 

motor imagery (MI) [4] have attracted increasing attention in recent years. The brain 

dynamics of MI are predominantly observed in the primary sensorimotor area and 

resemble those observed during the actual execution of movement. A variety of feature 

extraction methods have been proposed to differentiate between the brain dynamics of 

left- and right-hand MI. In addition to event-related potentials [5], many methods [6, 7] 

focus on observing the difference in spectral power between the cerebral hemispheres 

during MI. Among the existing feature extraction methods [8-11], the common spatial 

pattern (CSP) method is one of the most effective approaches for constructing optimal 

spatial filters that are sensitive to differences between left and right imagery [12, 13]. 

However, the performance of these spatial filters depends on the operational frequency 
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band. Searching for the optimal frequency range for each subject can be very time-

consuming. To address this issue, the sub-band CSP (SBCSP) method [14] employs a 

filter bank to decompose EEG signals into different sub-bands as inputs to the CSP 

analysis. The SBCSP approach is used to extract useful features of brain activity during 

MI tasks; subsequently, multiple linear discriminant analysis (MLDA) [15] is applied 

to recognize the EEG signals in each sub-band spectrum. After the sub-band decisions 

are obtained from each LDA, a classifier ensemble is constructed for each sub-band, 

and a fusion algorithm is then employed to obtain a final decision. Because the decision 

is derived from different sub-band classifiers, a combination of classifiers promises to 

offer better uncertainty identification performance than a single classifier. 

Recently, the fuzzy fusion approach [16, 17] has been shown to improve BCI 

performance in terms of classification accuracy and system stationarity. One commonly 

used fuzzy fusion approach is fuzzy integral [18, 19], which allows the uncertain, 

imprecise and incomplete information available from EEG signals to be represented 

and processed using the concept of fuzzy measures introduced by Sugeno [20]. This 

study attacks the misclassification problem that many current BCI systems experience 

because of variations among individuals. A judicious use of multiple sources effectively 

reduces individual uncertainty, and serves to enhance the reliability of the system’s 

performance. Because the fuzzy integral [21-25] integrates decisions from different 



6 
 

sources, using a combination of classifiers holds the promise of achieving better 

performance in uncertainty identification than the recognition technique based on the 

single feature. The fuzzy integral [26] is regarded as a numeric-based connective 

aggregation approach for obtaining collaborative decisions by integrating information 

from multiple classifiers. 

In MI tasks, there are two main difficulties in real-world MI applications: 

individual difference and noisy environment. The individual differences include not 

only inter- but also intra-individual differences, which arise from the fact that 

individuals continually change over time due to factors such as fatigue, attention, and 

stress. Likewise, physiological signals are non-stationary and can change over time due 

to movement artifacts, sensor configuration, and intrinsic noise in the environment. 

Accordingly, features obtained from different subjects under different tempo-spatial 

environments might vary widely. That is, some effective features can be found in 

recordings from one subject but not from another. Hence, each possesses its own set of 

reliabilities and potential uncertainties. As a result, the performance of traditional MI 

systems using a single classifier to recognize all the feature usually degraded obviously 

under the situations of individual differences and noisy environments. To solve this 

problem, the proposed MI based BCI system in this paper employs the fuzzy integral 

with particle swarm optimization to classify EEG feature vectors. The fuzzy integral is 
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a fusion technique that exploits multiple decisions from different sources to reap 

collaborative inferences to achieve the objectives under investigation, a result that is 

infeasible to achieve from each individual source separately. 

In this study, diverse LDA classifiers following the SBCSP approach are 

established as an ensemble of classifiers to collaboratively recognize the user’s mental 

representation of movements from EEG patterns recorded during an MI task. Two fuzzy 

integral methods, i.e., the Sugeno integral [27, 28] and the Choquet integral [29], are 

applied to integrate the information from this ensemble of classifiers and then make a 

joint decision. To effectively assign confidence levels to particular classifiers, particle 

swarm optimization (PSO) [30] is employed to determine the confidence of the 

employed classifiers. The proposed method is demonstrated in the real-time MI control 

of a robotic arm. 

The remainder of the paper is organized as follows. In section II, the proposed 

BCI for deciphering the mental rehearsal of motor actions is introduced. In section III, 

an MI experiment is presented. The classification results obtained using the proposed 

approach are compared with those obtained using conventional ones. Finally, a brief 

conclusion is presented and future studies are suggested in section IV. 

 

II. Materials and Method 
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 The proposed MI-based BCI system is schematically illustrated in Fig. 1. During 

the MI task, the EEG signals are measured by a wireless acquisition device with dry 

electrodes. A filter bank is then used to extract frequency components (ranging from 1–

30 Hz) from the EEG recordings. The CSP method leads to optimal variances for the 

discrimination of two populations of EEG related to left- and right-hand MI. Multiple 

LDA classifiers are established that employ CSP features to integral multi-classifiers. 

Finally, a fuzzy integral with PSO is then applied to fuse the decisions of classifiers and 

decipher the mental rehearsal of motor actions. 

 

A. EEG Acquisition Device 

The EEG acquisition device [31] was designed to measure scalp EEG signals 

using dry electrodes [32] (Figs. 2(a)-(c)) from the sensorimotor area (Fig. 2(d)). The 

acquisition device consists of a pre-amplifier unit, a microcontroller unit, and a 

 

Fig. 1. System architecture of the proposed MI-based BCI fuzzy fusion. 
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Bluetooth transmission unit. The wireless integrated-circuit-based acquisition module 

has dimensions of approximately 55.08 × 38.8 × 5 mm3. The gain of the pre-amplifier 

unit is set to 1361 V/V, and the cut-off frequency is regulated to 0.2 Hz by a high-pass 

filter. The microcontroller unit is used to regulate the signal sampling rate and for noise 

reduction. The microcontroller unit digitizes the analog EEG signal at a sampling rate 

of 512 Hz. A sinc filter is used to remove frequencies above 128 Hz. Moreover, the AC 

power line noise (60 Hz) in the amplified EEG signal is reduced by the microcontroller 

unit using a moving average. Then, the processed EEG signal is transmitted to the 

computer using Bluetooth (v2.1 + enhanced data rate). The power is supplied by a 

commercial 700 mAh Li-ion battery, which provides over 10 hours of operation. 
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B. Common Spatial Pattern and Linear Discriminant Analysis 

Applying the proper spatial filter can improve the discrimination of data from 

different classes, thereby facilitating classification. The common spatial pattern (CSP) 

approach [33] is a popular method that yields the optimal variances for the 

discrimination of two EEG populations related to left- and right-hand motor imagery. 

In this study, the CSP method is applied to each set of filtered data 𝐸 to find a spatial 

filter matrix 𝑊 that maximizes the variance of the spatially filtered data of one class, 

Σ1, and simultaneously minimizes the variance of the spatially filtered data of the other 

class, Σ2. Mathematically, the CSP criterion is written as 

 

Fig. 2. Wireless and portable EEG device. (a) Dry electrodes. (b) Wireless EEG 

acquisition system, which consisting a preamplifier, a filter, a microcontroller, and a 

wireless module. Each circuit board has a width of 55.08 mm. (c) EEG headset. (d) 

Placement of the four recording electrodes. 
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maximize tr(𝑊ΤΣ1𝑊)

subject to 𝑊Τ(Σ1 + Σ2)𝑊 = 𝐼
,        (1) 

where 

Σ1 = Exp
𝐸𝑛∈{class 1}

𝐸𝑛𝐸𝑛
Τ

tr(𝐸𝑛𝐸𝑛
Τ)

 and Σ2 = Exp
𝐸𝑛∈{class 2}

𝐸𝑛𝐸𝑛
Τ

tr(𝐸𝑛𝐸𝑛
Τ)

.  (2) 

This problem can be solved as a generalized eigenvalue problem. With the spatial filter 

transformation 𝑊 thus obtained, the spatially filtered data 𝑍 = 𝑊Τ𝐸 are then used 

as the feature vector for LDA classifiers. 

LDA [34] is a well-known binary classification method based on the estimation 

of the mean vectors and covariance matrices of individual classes to find the linear 

combination of features that maximizes the separability between distinct classes. LDA 

can be formulated in terms of a Bayes rule that aims to assign each sample to the class 

with the maximal posterior probability. In this study, multiple LDA classifiers are 

trained from each sub-band to serve as base classifiers constituting an ensemble system. 

The decisions derived from each LDA classifier, i.e., the posterior probabilities of left- 

and right-hand movements, are then fused by means of a fuzzy integral. 

 

C. Fuzzy Integrals 

The purpose of fuzzy integral is to utilize information regarding the uncertainty or 

confidence of various candidate information sources during the decision-making process 
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as represented using a fuzzy measure. For classifier fusion, an extension of the integral 

operator is used in the fuzzy integral to gather the objective evidence supplied by the 

classifiers in the form of certainty measures. Given the aforementioned benefits of this 

approach, the combination of classifiers based on fuzzy measures and integrals can 

enhance the robustness and reliability of BCI systems. In this paper, the combination of 

classifiers is performed by means of the Sugeno integral [27, 28] and the Choquet integral 

[29], which have been successfully implemented in the pattern recognition community. 

The Sugeno integral is a type of integral with respect to a fuzzy measure that is 

defined for functions whose range is 0 to 1. Given the outputs of 𝑘 classifiers 𝑥𝑘 ∈

[0,1] , the Sugeno integral over the set 𝐴 = {𝑥1, ⋯ , 𝑥𝑖 , ⋯ , 𝑥𝑘}  of a membership 

function ℎ with respect to the confidence 𝑔 is defined as 

𝑆𝑔(ℎ) = ∫ ℎ(𝑥𝑖)。𝑔 =  sup
𝛼∈[0,1]

[min (𝛼, 𝑔(𝐴 ∩ 𝐹𝛼))]
𝐴

,   (3) 

where 𝐹𝛼 = { 𝑥|ℎ(𝑥) ≥ α }. 

The Choquet integral is another type of integral with respect to a fuzzy measure. 

The choice of this integral is inspired by both a theoretical property and a practical one. 

Specifically, it is a proper generalization of the normal integral operator. In addition, the 

learning task can be regarded as a convex quadratic program and can therefore solved 

using well-known algorithms. The Choquet integral is defined as 
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𝐶𝑔(ℎ) = ∑ [ℎ(𝑥𝑖) − ℎ(𝑥𝑖−1)]𝑔(𝐴𝑖)
𝑘
𝑖=1 ,     (4) 

where ℎ(𝑥0) = 0. 

Note that the confidence 𝑔 of each classifier is heuristically assigned. In this study, 𝑔 

is proposed to be determined via PSO (see Section II.D). 

The joint confidence of the entire set of sources, 𝑔(𝐴𝑖), can be obtained as 

𝑔(𝐴𝑖) = 𝑔({ℎ1, . . , ℎ𝑖−1}) + 𝑔({ℎ𝑖}) + 𝜆 × 𝑔({ℎ1, . . , ℎ𝑖−1}) × 𝑔({ℎ𝑖}), (5) 

where 𝜆 ∈ (−1, ∞) and 𝜆 can be obtained by solving the following equation: 

𝜆 + 1 = ∏ (𝜆𝑔𝑖 + 1)𝑘
𝑖=1 .      (6) 

Then, the final decision is determined by the class with the largest fuzzy probability. 

 

D. Particle Swarm Optimization 

To effectively assign confidence levels to the classifiers used in the fuzzy integral, 

PSO [21] is employed to update the confidence of the classifiers. The PSO algorithm is 

a well-known swarm intelligence technique that was developed to imitate the behavior 

of a flock of birds or a school of fish. The objective of PSO is to optimize a model by 

iteratively attempting to improve upon a candidate solution with regard to a given 

measure of quality. The PSO algorithm involves two critical steps: 
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1. Initialize a population of particles with a random distribution within the 

desired range of the search space. 

2. Update the particle positions and velocities as follows: 

𝑣𝑖,𝑑 ← 𝜔𝑣𝑖,𝑑 + 𝜙𝑝𝑟𝑝(𝑝𝑖,𝑑 − 𝑔𝑖,𝑑) + 𝜙𝑓𝑟𝑓(𝑓𝑑 − 𝑔𝑖,𝑑)

𝑔𝑖 ← 𝑔𝑖 + 𝑣𝑖
,   (7) 

where 𝑓 is the best known position of the entire swarm and 𝑝𝑖,𝑑 is the best known 

position of particle 𝑖. When 𝜔 is less than 1, the particle velocities may tend toward 0, 

causing the particles to fall into a local minimum and delaying convergence. 

The confidential weights 𝑔 of the Sugeno integral and the Choquet integral are 

determined by PSO in this study. The initial vector that contains the fuzzy integral 

parameters is randomly chosen; 𝜔 is the inertial weight, 𝜙𝑝 and 𝜙𝑓 are acceleration 

constants, and 𝑟𝑝  and 𝑟𝑓  are random numbers drawn from the uniform distribution 

U(0,1). The confidential weights updated via PSO are calculated according to Eq. 7. 

When a particle finds a better position than its previous best position, the previous 

position is dropped and the new one is stored in the population. This value is called the 

personal best position of that particle, i.e., 𝑝𝑏𝑒𝑠𝑡. The mechanism retains a satisfactory 

confidential weight until the predefined number of iterations is reached. Meanwhile, the 

global best position, i.e., 𝑓𝑏𝑒𝑠𝑡, of the particle swam as a whole is updated by the particle 

swarm optimizer based on the particles that exist in the population. The distances 

between the positions of the particles and the values of 𝑓𝑏𝑒𝑠𝑡  and 𝑝𝑏𝑒𝑠𝑡  decrease 
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during optimization. This procedure allows us to search for the optimal weights for each 

information source to obtain an optimized output during the training phase. 

 

III. Results and Discussion 

Ten male subjects, aged 22–26 years old, were recruited to participate in the MI 

experiment. All participants were neurologically healthy. Before the experiment, the 

participants were required to complete an informed consent form. Each participant was 

seated comfortably in front of a monitor, and the MI task was explained via written 

instructions on the screen. Five dry electrodes were used (four channels to record the 

EEG signals and one for reference) to measure EEG signals from the sensorimotor area. 

The MI experiment consisted of three phases. The first phase was a baseline-

constructing task to establish an individual MI model of the proposed system, with the 

aim of constructing the features for the imagery of left- and right-hand movements. 

Twenty trials were performed in this baseline-constructing phase for the imagery of both 

left- and right-hand movements. The second phase was designed to train the participants 

in imaging left- and right-hand movements for EEG measurements. Each of the two 

directions was tested forty times. In each training trial, an arrow pointing either to the 

left or to the right would randomly appear on the screen. After each imagery trial, a 

picture was displayed on the screen for a randomly determined period of time to help 
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the subjects relax between trials. The training phase was used to calibrate the parameters 

of the proposed measurement system for each user, with the aim of identifying each 

user’s EEG features. The last phase was the actual experiment, also with forty MI trials 

per direction. Upon seeing an arrow indicating a direction, the users were instructed to 

perform imagery of the corresponding left- or right-hand movement. The wireless EEG 

acquisition device was used during the MI experiment. 

 

A. Experimental Procedure 

The experimental paradigm is illustrated in Fig. 3. A subject was seated in a 

comfortable chair, with his hands placed on a table. A blank screen was displayed for 2 

seconds, followed by a cross displayed at the center of the screen for 2 seconds. Then, 

the subject was instructed to perform left/right MI as indicated by a left/right-pointing 

arrow, which was presented for 8 seconds. Finally, a picture was shown on the screen 

for 9-12 seconds to allow the subject to rest. 
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B. Fuzzy Fusion Performance 

In MLDA, classifiers are constructed using a combination of features from 

multiple frequency bands, including four separate frequency bands (i.e., the delta, theta, 

alpha and beta bands) and the full-band signal ranging from 1 to 30 Hz. In each 

frequency band, an LDA classifier is constructed using features extracted via CSP 

projection. Consequently, the MLDA is established using the spatial pattern features 

from these five frequency bands. The separate frequency bands provide the features of 

each band in greater detail and allow more features to be obtained. Accordingly, the 

Sugeno integral or the Choquet integral is used for fuzzy fusion to integrate the MLDA 

decisions constructed using the five base classifiers, namely, the delta, theta, alpha, beta 

and all-band LDA classifiers, in the proposed system. After the aggregation of the 

results from different bands, the fuzzy fusion mechanism is applied to make the final 

decision. Initially, the weights of each classifier in the Sugeno integral and the Choquet 

 

Fig. 3. Experimental paradigm. 
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integral are all set to 0.2. The PSO algorithm is later applied to update these weights. 

The performances of the two fuzzy integrals and of several conventional fusion 

methods were evaluated in terms of the area under the ROC curve (AUC). As shown in 

Table I, each fusion technique outperformed each single classifier, with the proposed 

fusion architecture yielding not only higher AUC values but also smaller standard 

deviations. In comparison with existing fusion techniques, the weighted summation 

approach, the support vector machine (SVM) approach [35] and the Choquet integral 

outperformed the voting approach [36] and the Sugeno integral. As shown in Table II, 

after the application of PSO to update the weights of the classifiers, the results of both 

the Sugeno and Choquet integrals exhibited improvements, from 0.968±0.063 to 

0.998±0.040 and from 0.992±0.014 to 0.998±0.003, respectively. The AUC was 

TABLE I. CLASSIFICATION RESULTS (AUC) FOR THE BASE 

CLASSIFIERS AND VARIOUS CONVENTIONAL AND FUZZY FUSION 

APPROACHES WITH 4-FOLD CROSS-VALIDATION APPLIED 10 TIMES. 

Single LDA 

Area Under ROC Curve 

Delta LDA 0.915±0.020 

Theta LDA 0.904±0.027 

Alpha LDA 0.890±0.050 

Beta LDA 0.880±0.044 

All-band LDA 0.900±0.040 

Conventional 

Methods 

Voting 0.962±0.082 

Weighted 

Summation 
0.990±0.015 

SVM 0.993±0.022 

Fuzzy Fusion  
Sugeno Integral 0.968±0.063 

Choquet Integral 0.992±0.014 
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improved and the standard deviation was reduced, indicating that the system achieved 

higher accuracy and better stability. 

 

C. The Proposed Online BCI System and Its Application 

The flow chart for a subsequent online experiment is shown in Fig. 4. The offline 

experiment reported above was initially required for advance model generation. The 

models thus generated could subsequently be applied in an online experiment using the 

proposed BCI system. When performing the online experiment, each subject wore an 

EEG acquisition system on the top of his head along the central sulcus, and the reference 

was recorded at the earlobes on both sides. Each subject was required to perform a full 

experiment consisting of 4 sessions (160 trials), and the model previously derived for 

that subject was applied in the online system. 

TABLE II. CLASSIFICATION RESULTS FOR THE SUGENO INTEGRAL 

AND THE CHOQUET INTEGRAL AFTER PSO TRAINING WITH 4-FOLD 

CROSS-VALIDATION APPLIED 10 TIMES. 

Fuzzy Fusion 

Fuzzy Fusion w/o PSO w/ PSO 

Sugeno 0.968±0.063 0.998±0.040 

Choquet 0.992±0.014 0.998±0.003 
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In each trial, the user interface of the online system presented a randomly 

generated cue, namely, an arrow pointing to the left or to the right at the center of the 

screen. Each classification result was recorded as a score of +1 or -1; the total 

accumulated score was calculated after every trial. If the final score was above +25 or 

below -25, the system made a final decision of either a left command or a right 

command, respectively. Because the computing speed of the online system was 25 Hz, 

if the subject wished to issue a left or right command, he was required to continuously 

think about the same direction for one second. After each trial, the classification result 

accumulated over one second was plotted as a bar. The accuracy rate was recorded at 

the top of the window. The processing time (from the input of the raw data to the output 

of the result) was 40.1715 ms. In other words, this system is capable of computing at a 

rate of approximately 25 Hz when performing online computations. This computation 

 

Fig. 4. Flow chart of the proposed MI-based BCI system application. 
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rate was the basis for the selection of a value of 25 points as the threshold for the online 

interface. The accuracy rate achieved in the online test was approximately 86 %. 

Depending on the classification result, a robotic arm would immediately grasp a glass 

to either the left or the right. The robotic arm used in this experiment is commercially 

available on the rehabilitation market (Kinova, Canada). It consists of a six-axis robotic 

manipulator arm with a three-fingered hand. This robotic arm can perform a wide 

variety of functions with graceful movements. 

 

D. Reliability Test 

A further test was performed to confirm the model reliability. In this test, the 

performance of the algorithm was evaluated using data acquired from the same subject 

but on a different day. The training set included data recorded continuously from 4 

experimental sessions (160 trials) in a single day for one subject. The test set included 

data from 2 experimental sessions (80 trials) recorded on a different day for the same 

subject. After a model was generated from the training set, that model was applied to 

the test data to evaluate its performance. The accuracy rate of prediction was found to 

be 91.25 %, indicating good model stability. 

 

IV. Conclusions 
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In this study, we propose an innovative ensemble method with swarm-optimized 

fuzzy integral for a MI recognition task. The fuzzy integral provides an effective 

mechanism for representing and processing the uncertainty of the outputs of individual 

ensemble members using the concept of fuzzy measures. Furthermore, PSO is used to 

update the confidence of the employed classifiers. The experimental results derived 

from a typical MI task show that the best classification accuracy is achieved when 

applying the Choquet integral with PSO training in the fusion phase. Additionally, the 

results demonstrate the feasibility of implementing the proposed system in real-time 

robotic arm control. In the future, developing a more advanced BCI system with fuzzy 

theory will be necessary to enable the execution of multidirectional movements. 
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