
I.J.Modern Education and Computer Science, 2011, 3, 8-14
Published Online June 2011 in MECS (http://www.mecs-press.org/)

Copyright © 2011 MECS I.J. Modern Education and Computer Science, 2011, 3, 8-14

Design and Implementation of a Low Power

RSA Processor for Smartcard

Zhen Huang
Institute of Microelectronics Tsinghua University, Beijing, China

Email: huangz04@mails.tsinghua.edu.cn

Shuguo Li
Institute of Microelectronics Tsinghua University, Beijing, China

Email: lisg@tsinghua.edu.cn

Abstract—Power consumption limits the application of
public key cryptosystem in portable devices. This paper
proposes a low power design of 1,024-bit RSA. In algorithm,
the Chinese Remainder Theorem (CRT) and an improved
Montgomery algorithm are selected to decrease the
computation of RSA. In architecture and circuit, the
operand isolation technique is applied to avoid unnecessary
flip-flops of the combinational logic, and the clock gating
technique is used to reduce the power dissipation of the
registers. The proposed design is functionally verified on
Altera FPGA EP2C8Q208C8N device. With SMIC 0.18μm
CMOS process, the Synopsys synthesizing result shows that
the area and the critical path are 7.1k gates and 5.3ns
respectively, while the power is 2.56mW and the throughput
can reach 49 kbps. Thus the proposed design requires lower
power than previous designs.

Index Terms—Montgomery algorithm; Chinese Remainder
Theory(CRT); operand isolation; clock gating

I. INTRODUCTION

As the information technology develops, the security
of information becomes more and more important. Public
key cryptography is becoming the preferred solution for
information security because of its advantage in
distribution and management of the keys. Nowadays, the
RSA cryptography [1] is the most widely used public key
cryptography, the security of which is based on the
Integer Factorization Problem (IFP). The primary
operation of the RSA signature is modular exponentiation,
which can be realized with modular multiplication.
Montgomery [2] algorithm realizes the modular
multiplication with addition and shift, making the VLSI
implementation of modular multiplication possible.

One of the most critical indices for portable devices is
power consumption. The length of the operands of RSA
cryptosystem may be up to 1,024-bit or even 2,048-bit to
achieve required security class. However, the large area
and high power consumption usually make the
application of RSA cryptosystem impossible for battery-
powered and passive devices. Therefore, low power
design becomes the challenge for application of public
key cryptosystem RSA in portable devices.

This paper is organized as below: Section II, the
description of the design of algorithm level; Section III,
the design of architecture and circuit level; Section IV,
comparison between the result of the proposed design and
previous work; and Section V, the summary and the
conclusion.

II. ALGORITHM SELECTED

A. RSA Modular Exponentiation
The major operation is modular exponentiation when

the RSA cryptosystem performs encryption and
decryption. That means the implementation of RSA
cryptography is actually the implementation of modular
exponentiation. There are several methods to realize
modular exponentiation, for example, binary, m-ray and
sliding window. For low power design, the binary method
is preferred because of its simplicity, low memory
requirement and low power consumption.

There are two ways to execute the binary modular
exponentiation, namely the left-to-right method and the
right-to-left method. They are shown in Algorithm 1,
where E is the key; N = P×Q is the module (P and Q are
the two primes); M is the message to be encrypted and C
is the cryptography:

Algorithm 1: Binary Modular Exponentiation
The Left-to-Right Method:
Input: N, M, E
Output: C = ME (mod N)

1. If En-1 = 1 then C = M else C = 1
2. For i = k -2 downto 0

 a) C = C×C (mod N)
 b) If Ei = 1 then C = C×M (mod N)

The Right-to-Left Method:
Input: N, M, E
Output: C = ME (mod N)

1. If E0 = 1 then C = M else C = 1
2. For i = 1 upto k-1

 a) M = M×M (mod N)
 b) If Ei = 1 then C = C×M (mod N)

A reasonable assumption can be made that half of E's
digital bits are logic “1”, resulting in that the n-bit

 Design and Implementation of a Low Power RSA Processor for Smartcard 9

Copyright © 2011 MECS I.J. Modern Education and Computer Science, 2011, 3, 8-14

modular exponentiation requires 1.5n modular
multiplications on average.

B. Chinese Remainder Theorem (CRT)
Chinese Remainder Theorem (CRT) [3] can realize a

2n-bit RSA modular exponentiation with two n-bit
modular exponentiations, which can effectively reduce
both time complexity and power consumption of RSA
cryptosystem.

As mentioned above, the major operations of an n-bit
modular exponentiation are about 1.5n modular
multiplications on average. The most effective modular
multiplication algorithm so far needs three n-bit
multiplications to realize an n-bit modular multiplication
(This will be discussed later). Thus 4.5n n-bit
multiplications are required to realize an n-bit modular
exponentiation and that for 2n-bit modular exponentiation
is 9n.

Comparing the complexity of one 2n-bit modular
exponentiation with that of two n-bit modular
exponentiations, it is found that the numbers of
multiplications are the same, but the complexity of an n-
bit multiplication is approximately a quarter of that of a
2n-bit multiplication. That means the complexity of a
RSA modular exponentiation without CRT is about 4
times higher than a RSA modular exponentiation with
CRT.

Low power consumption is the most critical for
portable device design. Chinese Remainder Theorem can
reduce the amount of operations for RSA modular
exponentiation to about a quarter of that of original RSA
modular exponentiation, and this reduction will
significantly decrease the power consumption. So CRT is
chosen for our design.

Algorithm 2 describes the Chinese Remainder
Theorem, where M is the message to signature; P and Q
are the two primes and P<Q, N = P×Q; E is the private
key, 0 < A, B < Q-1 and A×P ≡ 1 (mod Q), B×Q ≡ 1
(mod P).

Algorithm 2: Chinese Remainder Theorem (SRC)
Input: M, N, P, Q, E, A, B
Output: C = ME (mod N)

1. Mp = M (mod P), Mq = M(mod Q)
2. Ep = E (mod P-1), Eq = E (mod Q-1)
3. Cp = C (mod P) = MpEp(mod P)
4. Cq = C (mod Q) = MqEq(mod Q)
5. C = CpBQ + CqAP (mod N)

In practice, Ep and Eq must be pre-computed because
Montgomery algorithm can only work with odd module,
so it is impossible to get Ep and Eq with Montgomery
algorithm.

The method to execute Chinese Remainder Theorem in
Algorithm 2 is Single-Radix Conversion (SRC). To
realize RSA modular with SRC, four modular
multiplications and one modular addition with module N
should be performed. This is not good news for hardware
implementation, because one more module means not
only one more input parameter, but also a few more pre-
computation. On the other hand, two modular inverses
should be performed in the pre-computation and then

both modular inverse results should be added to the list of
input parameters.

The Mixed-Radix Conversion (MRC) was first
proposed by H.L.Garner in 1958, and then improved by
D. E. Kunth. To execute CRT with MRC, the modular
operations with module N is unnecessary and only one
modular inverse is required. Both of these two
improvements are good for hardware implementation.

Algorithm 3 describes the Chinese Remainder
Theorem with Mixed-Radix Conversion, where M is the
message to signature; P and Q are the two primes and
P<Q, N = P×Q; E is the private key, 0 < A < Q-1 and
A×P ≡ 1 (mod Q).

Algorithm 3: Chinese Remainder Theorem (MRC)
Input: M, P, Q, E, A
Output: C = ME (mod N)

1. Mp = M (mod P), Mq = M(mod Q)
2. Ep = E (mod P-1), Eq = E (mod Q-1)
3. Cp = C (mod P) = MpEp(mod P)
4. Cq = C (mod Q) = MqEq(mod Q)
5. C = [((Cq + Q - Cp)A)(mod Q)]P + Cp

The purpose of the extra addition of Q is to make sure
that the Intermediate result is positive. To realize CRT
with MRC, only one modular multiplication with module
P and one multiplication are required. The more
important thing is that with MRC, we don’t parameters N
and B in algorithm 2. This improvement can reduce the
size of required memory and eliminate the hardware for
the modular operations with module N. Because N = P×Q,
so the length of N is normally twice as the length of P
and Q. So the elimination of the modular operations with
module N means all the modular operations have
modules with same length, so they can be realized with
the same hardware device.

On the other hand, the performance of RSA modular
exponentiation can be improved by Chinese Remainder
Theorem as well. In high speed applications, step 3 and
step 4 can be executed in parallel, reducing the time
complexity of modular exponentiation to only a quarter
of the original value.

C. Improved Montgomery Algorithm
The main operation of RSA encryption and decryption

is modular exponentiation, and modular exponentiation
consists of modular multiplications, so the actual
implement of RSA cryptography is the implement of
modular multiplication.

The general process of modular multiplication consists
of two steps: computing T = A×B and reducing T to yield
M = A×B (mod N). The traditional reduction, which is
implemented with division operation, is not easy for
VLSI implement as there is not any good solution for
VLSI implement of division proposed yet. Several
modular multiplication algorithms without division
operation have been proposed to replace the traditional
reduction. Among them the two most popular algorithms
are Montgomery algorithm and Barrett algorithm.

Montgomery algorithm is the most widely used as well
as the most efficient modular multiplication algorithm
being applied. It realizes the reduction with addition and
shift operations, and they are much easier for VLSI

10 Design and Implementation of a Low Power RSA Processor for Smartcard

Copyright © 2011 MECS I.J. Modern Education and Computer Science, 2011, 3, 8-14

implement than division operation. Algorithm 4 shows
the original Montgomery algorithm where N is the n-bit
module, should be odd and N>1; R is relative prime to N
and normally R = 2n, R-1 and N satisfy 0 < R-1 < N, 0 <
N′< R, RR-1 – NN′= 1. That is RR-1 (mod N) = 1 or NN’
(mod R) = -1; A and B are the two multipliers:

Algorithm 4: Montgomery Modular Multiplication
Input: A, B, N, N′
Output: t = A×B× R-1(mod N)
1. T = A×B
2. m = (T mod R) N′ mod R
3. t = (T + m×N) / R

if t ≥ N then t = t – N
Note that the result of Algorithm 4 is ABR-1(mod N)

instead of AB (mod N). When using it in practice the
constant R-1 should be eliminated. That means Algorithm
4 should be executed one more time.

The primary operation for the hardware
implementation of Montgomery algorithm is to divided T
by 2 (because TR-1 = T2-n), and the operation of division
by 2 can be realize by shift right. It should be
remembered that the shift operations are with modular N,
so if T is odd, T = T + N should be performed before the
shift operation. After divisions by 2 for n times, the result
t is obtained. The result t will satisfy 0 ≤ t < 2N-1, but it
is not the final result of the modular multiplication. It is
T/2n mod N instead of T mod N, so we can not get the
final result until another transfer, which is a
multiplication by 2n is performed.

The hardware implementation of the original
Montgomery algorithm is shown in Algorithm 5. A and B
are the two n-bit binary multipliers and can be presented
as A = (an-1, an-2, ……, a1, a0), B = (bn-1, bn-2, ……, b1, b0),
N is the n-bit modular and R = 2n:

Algorithm 5: Hardware Implementation of Original
Montgomery Algorithm

Input: A, B, N
Output: T = ABR-1 mod N

1. S0 = 0
2. For i = 0 upto n-1

if (Si + aiB is even) then Si+1 = (Si + aiB)/2
 else Si+1 = (Si + aiB + N)/2

3. T = Sn
In fact, Algorithm 4 is not used very much, in practice,

another method called “High-base” algorithm is more
widely used, and it can be shown as Algorithm 6. A, B
and N are presented as A = (aw-1, aw-2, ……, a1, a0)r, B =
(bw-1, bw-2, ……, b1, b0)r, N = (nw-1, nw-2, ……, n1, n0)r,
where R = 2n = rw, and 0 ≤ ai < r, 0 ≤ bi < r, 0 ≤ ni < r, and
n0 and n0′ satisfy n0n0′ mod r = -1.

Algorithm 6: Modified Hardware Implementation of
Montgomery Algorithm

Input: A, B, N, n0′
Output: T = ABR-1 mod N

1. S0 = 0
2. For i = 0 upto w-1

mi = (Si + aiB) n0′ mod r
Si+1 = (Si + aiB + miN)/r

3. T = Sn

When r = 2, then n0 = 1 and n0′ = 1, Algorithm 6 will
degenerate to Algorithm 5.

The original Montgomery modular multiplication is
difficult to realize with VLSI because the operands in the
cryptosystem applications are usually very large. When
the length of the integers is 1,024-bit or 2,048-bit, even
the implementation of the simplest operations like
addition and shift are impossible. As a result, the big
operands are usually divided into a serious of small
operands, so that operations on big operands can be
executed.

Apparently, the number of arithmetic units can be
reduced when the big operands are divided into small
operands, and many registers can also be saved because
the storage of the big intermediate results will become
unnecessary.

Various methods have been proposed to improve the
Montgomery algorithm under this idea [4]. With these
modified algorithms, it is much easier to implement
Montgomery modular multiplication, and higher
performance can be achieved with lower power.

The FIPS [4] algorithm proposed by KoC is one of
those modified algorithms suitable for implementation
with VLSI, especially for the implementations with
digital signal processors. The most important feature of
this algorithm is that in this algorithm, there is no need to
obtain the result of T = A×B. The less significant words
of the temporary and the more significant words of the
intermediate result can be stored in the same memory
units, and the temporary value and the result can be
stored in the same memory address, too. As a result, it
reduces the size of the memory as well as the number of
operations. Both the cost of hardware and the power
consumption are therefore lowered. The FIPS algorithm
is described in Algorithm 7:

 Suppose A, B and N are decomposed to A = (as-1 as-

2 … a1 a0)r, B = (bs-1 bs-2 … b1 b0)r, and N = (ns-1 ns-2 … n1
n0)r, where 0≤ai<r, 0≤bi<r, and 0≤ni<r. Normally r is
chosen to be the power of 2. Let R = rs, so N<R (A<N,
B<N), and n0n0′(mod r) = -1, where n0′is pre-computed.

Algorithm 7: FIPS Modular Multiplication
Input: A, B, N, n0′
Output: M = ABR-1 mod N
1. S = 0
//Step A: calculate the temporary value m[i]
2. for i = 0 to s-1

a) for j = 0 to i-1
i. S = S + a[j]b[i-j] + m[j]n[i-j]

b) S = S + a[i]b[0]
c) m[i] = S n0′(mod r)
d) S = S + m[i]n[0]
e) S = S/r

//Step B: calculate the result and store the result in m[i]
3. for i = s to 2s -1

a) for j = i – s + 1 to s – 1
i. S = S + a[j]b[i-j] + m[j]n[i-j]

b) m[i-s] = S (mod r)
c) S = S/r

//Step C: adjust the result to [0, N)
4. temp = S (mod r)

 Design and Implementation of a Low Power RSA Processor for Smartcard 11

Copyright © 2011 MECS I.J. Modern Education and Computer Science, 2011, 3, 8-14

5. carry = 1
6. for i = 0 to s-1

a) (carry, b[i]) = m[i] + not(n[i]) + carry
7. temp = temp + not(0) + carry
8. if temp =0

then for i = 0 to s-1 m[i] = b[i]

III. ARCHETECTURE AND CIRCUIT DESIGN

A. The Architecture Design
Algorithm 7 shows that most operations of the FIPS

Montgomery modular multiplication are multiplications
and accumulation. Considering the tradeoff between the
power consumption and the necessary speed, the width of
the multiplier is chosen as 16-bit. Thus, in Algorithm 4, r
= 216, and s = 512 /16 = 32.

The length of the accumulator can then be decided. For
our design, the accumulator will store the largest
temporary result when performing Step A of Algorithm 4.
When i = s-1, the largest temporary result is the sum of
(1), (2) and the result of S/r in i = s-2:

 S1 = a[0]b[s-1] + a[1]b[s-2] + … + a[s-1]b[0]. (1)

 S2 = m[0]b[s-1] + m[1]n[s-2] + … + m[s-2]n[1].(2)

Equations (1) and (2) show that there will be 2s-1 32-
bit numbers to be accumulated, which means that the sum
will be less than (2s-1)×232 = 238 – 232. After performing
the shifting S/r, the length of the initial value in the
accumulation register is 32-bit, and hence the final result
will be less than 238. Then the length of the adder can be
chosen as 38-bit. Because the width of the SRAM used in
this design is 16-bit, taking the length of register to be
times of 16 will make the shifting of operands much
easier. As a result, the length of the accumulating register
is 48-bit. The data path of the modular multiplier is
shown in Fig. 1.

B. Operand Isolation
 The power consumption can be divided into two parts:

static and dynamic power consumption. The static power
is determined by the fabrication process, where possible
input from the designers is quite limited. The calculations
of the combinational logic and the toggles of the registers
take up most of the dynamic power. As a result, the
general idea of low power design is to eliminate the
unnecessary calculations of the combinational logic and
the redundant toggles of the registers.

Figure 1. The architecture of the modular multiplier

Combinational logic circuits are used to realize
different logic and arithmetic functions. In general, no
circuit is expected to keep working at any time. Ideally,
we want them to work only when we want to use them.
But this is usually not that case, the combinational logic
circuit will begin to calculate once its input signals are
changed. Fig. 2 shows the structure of an ALU for a
RISC CPU, where the arithmetic circuit, the logical
circuit, the shift circuit and the comparison circuit are
connected parallel. When the input signals are changed,
all of the four parts will work together, but obviously
only one of the four results will be used at the most. That
means the circuits consume power without generating
any useful data. So in low power design, we hope that the
circuits will not work until we want them to work. The
only way to stop the combinational circuits from working
is to keep the input of the circuits still. And an effective
method to keep the input still is the so-called Operand
Isolation.

The idea of operands isolation is to keep the inputs of
the combinational logics constant when they are not
being used, so that the combinational logics will keep
quiet and power required during the idle period is reduced.
Fig. 3 illustrates the operands isolation of the modular
multiplier. The shadows are the isolation modules. The
inputs of both the multiplier and the adder stay constant
when shift is being performed. Only the former stays
constant when performing additions and subtractions.

Figure 2. The structure of ALU

12 Design and Implementation of a Low Power RSA Processor for Smartcard

Copyright © 2011 MECS I.J. Modern Education and Computer Science, 2011, 3, 8-14

Figure 3. The operands isolation of the modular multiplier

C. Clock Gating
In digital logic circuits, the clock signal has the

maximum fan out and the highest activity, so the power
consumption from the clock signal is an important part of
the total power consumption of the whole circuit.

Fig. 4 is the functional schematic of a D-type flip-flop.
It shows that the clock signal needs to drive four transfer
gates in every D-type flip-flop. When the transfer gates
are switch, no matter whether the value of the flip-flop is
changed, the charging and discharging of the capacity of
the transfer gates will consume dynamic power. There
can be thousands of flip-flops in a large design, so the
power consumption on all these flip-flops will be a
problem for low power design.

 Fig. 5 shows the principle of clock gating. The upper
part of Fig. 5 shows the equivalent schematic of a D-type
flip-flop with synchronous active-high enabling signal. It
can be seen that the enabling signal acts as the control
signal of a 2-to-1 multiplexer, but it has no influence on
the clock signal, which is connected to the control signals
of the transfer gates. This means that the clock in this
flip-flop will consume power, no matter whether the
enabling signal is high.

Figure 4. The functional schematic of D-type flip-flop

Figure 5. The principle of clock gating

As a result, reducing the clock activity effectively
reduces the unnecessary power dissipation. One solution
is to insert clock gating. When clock gating is inserted,
the clock net of the flip-flop will be kept at logic “0”, as
shown in the lower part of Fig. 5, thus the power
dissipated on the switch is saved. The most power in an
ASIC design is consumed by the clock tree, so the
reduction of clock activity will notably reduce the total
power.

IV. THE RESULT AND COMPARISON

The proposed design has been implemented by Verilog
HDL, simulated with ModelSim 6.2b and synthesized
with Synopsys Design Compiler with SMIC 0.18μm
process. The result shows that the critical path of the
design is 5.3ns, so the highest clock frequency of the
design can be up to 188MHz and its area is 7.1k gates. It
spends about 3.9M clock cycles to finish a 1,024bit RSA
signature, so the throughput of this design is about
49kbps at 188MHz. When working on the frequency of
188MHz, it requires a power of 2.56mW. Implemented
with Altera FPGA EP2C8Q208C8N device, the proposed
design costs 2,439 logic elements and can work at the
frequency of 47.32MHz.

The performance and power consumption of proposed
design are compared with previous works in TABLE I
and TABLE II.

ΤΑΒΛΕ Ι. COMPARISON OF PERFORMANCE

Design Year Technique Frequency Throughput
(1024-bit)

[6] 2006 UMC0.18μm 460MHz 586kbps

[7] 2008 TSMC0.18 μm 200MHz 107.5kbps

[8] 2009 SMIC0.13 μm 196MHz 5.4kbps

proposed 2010 SMIC0.18 μm 188MHz 49kbps

CLK

EN
D

0 1

CLK

EN
DL

A
T

C
H

High Activity

Low Activity

D Q

D Q16bit Mul

38bit Add

Reg1 Reg2

Accumulation Reg

Ctl
MUX

A N B M

Add_EN

Add_EN

38'b0

Mul_EN

16'b0

16'b0

 Design and Implementation of a Low Power RSA Processor for Smartcard 13

Copyright © 2011 MECS I.J. Modern Education and Computer Science, 2011, 3, 8-14

ΤΑΒΛΕ ΙΙ. COMPARISON OF POWER

Design Area Power Power/Throughput

[6] 5.76mm2 830mW 1.42mW/kbps

[7] 61k Gates 32.5mW 0.30mW/kbps

[8] 2.6k Gates 2.27mW 0.42mW/kbps

proposed 7.1k Gates 2.56mW 0.052mW/kbps

From these tables, we can see that the proposed design

has lower ratio (power/throughput), which means it
requires less power than the previous designs when
working at the same speed.

The proposed RSA processor is implemented by
Cadence SoC Encounter 8.1 with SMIC 0.18μm CMOS
process and is integrated in a smartcard with Anti-
counterfeiting capability. The two SRAM blocks are
generated by SMIC SRAM Generator and the EEPROM
IP is S018EE16KBS_LPI from SMIC. The design can
execute 1,024-biy RSA digital signature as well as User
data read/write. The layout of the smartcard with
proposed RSA processor is shown in Fig.6.

V. CONCLUSION

The proposed 1,024-bit RSA design achieves ultra low
power by using the Chinese Remainder Theorem,
improved Montgomery algorithm and several low power
techniques. The synthesizing result shows that it has a
performance of 49kbps at 188MHz while consuming only
2.56mW and the area is only 7.1k gates. The low power
and low area make it suitable for smartcards and portable
device.

Figure 6. Layout of the smartcard with RSA processor

APPENDIX A THE PROOF OF CHINESE REMAINDER
THEOREM

Two theorems will be used when performing RSA
modular exponentiation. They are shown as Theorem 1
and Theorem 2.

Theorem 1: Chinese Remainder Theorem [9]
Suppose m1, m2, …, mk are relative primes to each

other, then congruence equation:
x ≡ b1 (mod m1)
x ≡ b2 (mod m2)

……
x ≡ bk (mod mk)

has unique solution.
Theorem 2: Fermat’s Little Theorem [10]
Suppose a is an integer and p is a prime number, then

ap ≡ a (mod p)
And it can also be written as

ap-1 ≡ 1 (mod p)
There are two different algorithms to obtain the unique

solution in Theorem 1. The first algorithm is the Single-
Radix Conversion, which is shown as Algorithm 8, and
the improved Mixed-Radix Conversion algorithm is
shown as Algorithm 9.

Algorithm 9: The Single-Radix Conversion [11]
1. M = m1m2…mk
2. Mi = M/mi (1 ≤ i ≤ k)
3. ci = Mi

-1 (mod mi)
4. x = b1c1M1 + b2c2M2 + … + bkckMk (mod M)

Algorithm 10: The Mixed-Radix Conversion [10]
1. Aij = mi

-1 (mod mj) (1 ≤ i < j ≤ k)
2. C1 = b1 (mod m1)

C2 = (b2 – C1)A12 (mod m2)
……
Ck = (bk – (C1 + m1(C2 + m2(C3 + … + mk-2Ck-

1))))A1kA2k…A(k-1)k (mod mk)
3. x = Ckmk-1...m2m1 + … + C3m2m1 + C2m1 + C1

In the case of RSA modular exponentiation, there are
only two prime numbers P and Q, and N = P×Q, so k=2.
Then the solutions for the two algorithms can be shown
as follow:

With SRC: x = b1ApqP + b2AqpQ (mod N)
With MRC: x = ((b2 – b1) Apq (mod Q))P + b1
where Apq = P-1 (mod Q) and Aqp = Q-1 (mod P)
The last symbols need to be replaced are b1 and b2.

According to RSA cryptography and Chinese Remainder
Theorem, the original expressions of b1 and b2 are:

b1 = ME (mod P), b2 = ME (mod Q)
M and E can be written as M = UP + Mp and E = V(P-

1) + Ep, so Mp = M (mod P) and Ep = E (mod P-1), Then
b1 = ME (mod P) = (UP + Mp)V(P-1)+Ep (mod P) = Mp

V(P-1)MpEp (mod P) = MpEp (mod P).
With the same process, we can deduce that b2 = MqEq

(mod Q). Let Cp = MpEp (mod P) and Cq = MqEq (mod
Q), the solutions can be written as:

With SRC: x = CpApqP + CqAqpQ (mod N)
With MRC: x = ((Cq – Cp) Apq (mod Q))P + Cp

APPENDIX B THE PROOF OF MONTGOMERY ALGORITHM

Proof of Algorithm 3:

14 Design and Implementation of a Low Power RSA Processor for Smartcard

Copyright © 2011 MECS I.J. Modern Education and Computer Science, 2011, 3, 8-14

Known: N is odd and N>1; R is relative prime to N,
and 0 < R-1 < N, 0 < N′< R, RR-1 – NN′= 1. That is RR-1
(mod N) = 1 or NN’ (mod R) = -1, m = (T mod R) N′
mod R.

Solution:
Because mN = ((T mod R)N' mod R)N
Then mN mod R = TNN' mod R
And because NN' mod R = -1
So mN mod R = -T modR
Then (T + mN) mod R = (T-T) mod R = 0
So t = (T + mN)/R is an integer and tR = T + mN
Then tR mod N = T mod N
Then tRR-1 mod N = TR-1 mod N
Because RR-1 mod N = 1
Then t mod N = TR-1 mod N
So t = TR-1 mod N
Because m = (T mod R) N′ mod R
So 0 ≤ m < R
And 0 ≤ T < RN
So 0 ≤ T + mN < RN + RN
And because t = (T + mN)/R
So 0 ≤ t < 2N

Proof of Algorithm 5:
Known: A, B and N are n-bit integers and are

presented as A = (aw-1, aw-2, ……, a1, a0)r, B = (bw-1, bw-

2, ……, b1, b0)r, N = (nw-1, nw-2, ……, n1, n0)r, where R =
2n = rw, and 0 ≤ ai < r, 0 ≤ bi < r, 0 ≤ ni < r, and n0 and n0′
satisfy n0n0′ mod r = -1.

Solution:
 Because n0n0′ mod r = -1

So ((Si + aiB) n0′ mod r)n0 mod r = -(Si + aiB) mod r
And Si + aiB + miN

= (Si + aiB) + ((Si + aiB) n0′ mod r)N
 So (Si + aiB + miN) mod r = 0
 So Si + aiB + miN is divisible by r
 So rSi+1 = Si + aiB + miN

Then we get the follow equations:
 rS1 = a0B + m0N ……(1)
 rS2 = S1 + a1B + m1N ……(2)

……
 rSw = Sw-1 + aw-1B + mw-1N ……(w)
(1) + (2) × r + (3) × r2 + … + (w) × rw-1
Then rwSw = AB + MN
That is RSw = AB + MN < 2RN
Where M = m0 + m1r + m2r2 + … + mw-1rw-1
So Sw = AB R-1 mod N and Sw < 2N

ACKNOWLEDGMENT

This work was supported by the National Natural
Science foundation of China (No.61073173), National
High-Tech Research and Development Program of China
(No.2006AA01Z418). The authors would like to thank
the editor and the reviewers for their comments.

REFERENCES

[1] R. L. Rivest, A. Shamir and L. A. Adleman, “Method for
obtain digital signatures and public-key cryptosystems,”
Communications of the ACM, 1978, 21(2): 120-126.

[2] P. L. Montgomery, “Modular mulbtiplication without trial
division,” Mathematics of Computation, 1985, 44(170):
519-521.

[3] J. -J. Quisquater, C. Couvreur, “Fast decipherment
algorithm for RSA public-key cryptosystem,” Electronics
Letters, 1982, 18(21): 905-907.

[4] C. K. KoC, T. Acar, “Analyzing and comparing
Montgomery multiplication algorithms,” [J]. IEEE Micro,
1996, 16(3): 26-33.

[5] Xiqing Yu, ASIC Design Practical Course (in Chinese),
Zhejiang University Press, Hangzhou, China: Jan. 2007, pp.
229-280.

[6] Chingwei Yeh, En-Feng Hsu, Kai-Wen Cheng, Jinn-Shyan
Wang, Nai-Jen Chang, “An 830mW, 586kbps, 1024-bit
RSA chip design,” Processings of the Conference on
Design, Automation and Test in Europe, Mar. 2006.

[7] Xinjian Zheng, Zexiang Liu, Bo Peng, “Design and
implementation of an ultra low power RSA coprocessor,”
WiCOM' 08. 4th International Conference on Wireless
Communications, Networking and Mobile Computing, Oct.
2008. pp. 1-5.

[8] Wei Huang, Kaidi You, Suiyu Zhang, Jun Han, Xiaoyang
Zeng, “Unified low cost crypto architecture accelerating
RSA/SHA-1 for security processor,” ASICON'09. IEEE 8th
International Conference on ASIC, Oct. 2009. pp. 151-154.

[9] Guanzhang Hu, Dianjun Wang, Applied Modern Algebra
3rd edition (in Chinese), Tsinghua University Press, Beijing,
China: Jul. 2006, pp. 29-34.

[10] K. H. Rose, Elementary Number Theory and Its
Application [M], Addison-Wesley, 1984.

[11] D. E. Kunth, The Art of Computer Programming: Semi-
numerical Algorithms[M], Volume 2. Addison-Wesley, 3rd
edition, 1998

Zhen Huang was born in the province of Guangxi, China, in
March, 1985. He received the Bachelor degree of Engineering
in Department of Micro and Nano Electronics, Tsinghua
University, Beijing, China in 2008.

He is now pursuing the Master degree of Engineering in
Institute of Microelectronics, Tsinghua University. His research
interest is VLSI Implementation of information security
processor.

Shuguo Li received the Bachelor, the Master and the PhD

degree in Computer Department from Xidian University,
Shandong University and Northwestern Polytechnical
University in China in 1986, 1993 and 1999 respectively. In
2001, he finished his postdoctoral position research at Tsinghua
University.

Now he is an associate professor at the Institute of
Microelectronics at Tsinghua University. His current research
interests the algorithm for cryptography and design for
encryption processor and microprocessor processor.

