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Abstract—Power consumption limits the application of 
public key cryptosystem in portable devices. This paper 
proposes a low power design of 1,024-bit RSA. In algorithm, 
the Chinese Remainder Theorem (CRT) and an improved 
Montgomery algorithm are selected to decrease the 
computation of RSA. In architecture and circuit, the 
operand isolation technique is applied to avoid unnecessary 
flip-flops of the combinational logic, and the clock gating 
technique is used to reduce the power dissipation of the 
registers. The proposed design is functionally verified on 
Altera FPGA EP2C8Q208C8N device. With SMIC 0.18μm 
CMOS process, the Synopsys synthesizing result shows that 
the area and the critical path are 7.1k gates and 5.3ns 
respectively, while the power is 2.56mW and the throughput 
can reach 49 kbps. Thus the proposed design requires lower 
power than previous designs. 
 
Index Terms—Montgomery algorithm; Chinese Remainder 
Theory(CRT); operand isolation; clock gating 
 

I.  INTRODUCTION 

As the information technology develops, the security 
of information becomes more and more important. Public 
key cryptography is becoming the preferred solution for 
information security because of its advantage in 
distribution and management of the keys. Nowadays, the 
RSA cryptography [1] is the most widely used public key 
cryptography, the security of which is based on the 
Integer Factorization Problem (IFP). The primary 
operation of the RSA signature is modular exponentiation, 
which can be realized with modular multiplication. 
Montgomery [2] algorithm realizes the modular 
multiplication with addition and shift, making the VLSI 
implementation of modular multiplication possible.  

One of the most critical indices for portable devices is 
power consumption. The length of the operands of RSA 
cryptosystem may be up to 1,024-bit or even 2,048-bit to 
achieve required security class. However, the large area 
and high power consumption usually make the 
application of RSA cryptosystem impossible for battery-
powered and passive devices. Therefore, low power 
design becomes the challenge for application of public 
key cryptosystem RSA in portable devices. 

This paper is organized as below: Section II, the 
description of the design of algorithm level; Section III, 
the design of architecture and circuit level; Section IV, 
comparison between the result of the proposed design and 
previous work; and Section V, the summary and the 
conclusion. 

II.  ALGORITHM SELECTED 

A.  RSA Modular Exponentiation 
The major operation is modular exponentiation when 

the RSA cryptosystem performs encryption and 
decryption. That means the implementation of RSA 
cryptography is actually the implementation of modular 
exponentiation. There are several methods to realize 
modular exponentiation, for example, binary, m-ray and 
sliding window. For low power design, the binary method 
is preferred because of its simplicity, low memory 
requirement and low power consumption. 

There are two ways to execute the binary modular 
exponentiation, namely the left-to-right method and the 
right-to-left method. They are shown in Algorithm 1, 
where E is the key; N = P×Q is the module (P and Q are 
the two primes); M is the message to be encrypted and C 
is the cryptography: 

Algorithm 1: Binary Modular Exponentiation 
The Left-to-Right Method: 
Input: N, M, E 
Output: C = ME (mod N) 

1. If En-1 = 1 then C = M else C = 1 
2. For i = k -2 downto 0 

 a) C = C×C (mod N) 
 b) If Ei = 1 then C = C×M (mod N) 

The Right-to-Left Method: 
Input: N, M, E 
Output: C = ME (mod N) 

1. If E0 = 1 then C = M else C = 1 
2. For i = 1 upto k-1 

 a) M = M×M (mod N) 
 b) If Ei = 1 then C = C×M (mod N) 

A reasonable assumption can be made that half of E's 
digital bits are logic “1”, resulting in that the n-bit 
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modular exponentiation requires 1.5n modular 
multiplications on average. 

B.  Chinese Remainder Theorem (CRT) 
Chinese Remainder Theorem (CRT) [3] can realize a 

2n-bit RSA modular exponentiation with two n-bit 
modular exponentiations, which can effectively reduce 
both time complexity and power consumption of RSA 
cryptosystem.  

As mentioned above, the major operations of an n-bit 
modular exponentiation are about 1.5n modular 
multiplications on average. The most effective modular 
multiplication algorithm so far needs three n-bit 
multiplications to realize an n-bit modular multiplication 
(This will be discussed later). Thus 4.5n n-bit 
multiplications are required to realize an n-bit modular 
exponentiation and that for 2n-bit modular exponentiation 
is 9n. 

Comparing the complexity of one 2n-bit modular 
exponentiation with that of two n-bit modular 
exponentiations, it is found that the numbers of 
multiplications are the same, but the complexity of an n-
bit multiplication is approximately a quarter of that of a  
2n-bit multiplication. That means the complexity of a 
RSA modular exponentiation without CRT is about 4 
times higher than a RSA modular exponentiation with 
CRT. 

Low power consumption is the most critical for 
portable device design. Chinese Remainder Theorem can 
reduce the amount of operations for RSA modular 
exponentiation to about a quarter of that of original RSA 
modular exponentiation, and this reduction will 
significantly decrease the power consumption. So CRT is 
chosen for our design. 

Algorithm 2 describes the Chinese Remainder 
Theorem, where M is the message to signature; P and Q 
are the two primes and P<Q, N = P×Q; E is the private 
key, 0 < A, B < Q-1 and A×P ≡ 1 (mod Q), B×Q ≡ 1 
(mod P). 

Algorithm 2: Chinese Remainder Theorem (SRC) 
Input: M, N, P, Q, E, A, B 
Output: C = ME (mod N) 

1. Mp = M (mod P), Mq = M(mod Q) 
2. Ep = E (mod P-1), Eq = E (mod Q-1) 
3. Cp = C (mod P) = MpEp(mod P) 
4. Cq = C (mod Q) = MqEq(mod Q) 
5. C = CpBQ + CqAP (mod N) 

In practice, Ep and Eq must be pre-computed because 
Montgomery algorithm can only work with odd module, 
so it is impossible to get Ep and Eq with Montgomery 
algorithm. 

The method to execute Chinese Remainder Theorem in 
Algorithm 2 is Single-Radix Conversion (SRC). To 
realize RSA modular with SRC, four modular 
multiplications and one modular addition with module N 
should be performed. This is not good news for hardware 
implementation, because one more module means not 
only one more input parameter, but also a few more pre-
computation. On the other hand, two modular inverses 
should be performed in the pre-computation and then 

both modular inverse results should be added to the list of 
input parameters. 

The Mixed-Radix Conversion (MRC) was first 
proposed by H.L.Garner in 1958, and then improved by 
D. E. Kunth. To execute CRT with MRC, the modular 
operations with module N is unnecessary and only one 
modular inverse is required. Both of these two 
improvements are good for hardware implementation. 

Algorithm 3 describes the Chinese Remainder 
Theorem with Mixed-Radix Conversion, where M is the 
message to signature; P and Q are the two primes and 
P<Q, N = P×Q; E is the private key, 0 < A < Q-1 and 
A×P ≡ 1 (mod Q). 

Algorithm 3: Chinese Remainder Theorem (MRC) 
Input: M, P, Q, E, A 
Output: C = ME (mod N) 

1. Mp = M (mod P), Mq = M(mod Q) 
2. Ep = E (mod P-1), Eq = E (mod Q-1) 
3. Cp = C (mod P) = MpEp(mod P) 
4. Cq = C (mod Q) = MqEq(mod Q) 
5. C = [((Cq + Q - Cp)A)(mod Q)]P + Cp 

The purpose of the extra addition of Q is to make sure 
that the Intermediate result is positive. To realize CRT 
with MRC, only one modular multiplication with module 
P and one multiplication are required. The more 
important thing is that with MRC, we don’t parameters N 
and B in algorithm 2. This improvement can reduce the 
size of required memory and eliminate the hardware for 
the modular operations with module N. Because N = P×Q, 
so the length of N is normally twice as the length of P 
and Q. So the elimination of the modular operations with 
module N means all the modular operations have 
modules with same length, so they can be realized with 
the same hardware device. 

On the other hand, the performance of RSA modular 
exponentiation can be improved by Chinese Remainder 
Theorem as well. In high speed applications, step 3 and 
step 4 can be executed in parallel, reducing the time 
complexity of modular exponentiation to only a quarter 
of the original value. 

C.  Improved Montgomery Algorithm 
The main operation of RSA encryption and decryption 

is modular exponentiation, and modular exponentiation 
consists of modular multiplications, so the actual 
implement of RSA cryptography is the implement of 
modular multiplication. 

The general process of modular multiplication consists 
of two steps: computing T = A×B and reducing T to yield 
M = A×B (mod N). The traditional reduction, which is 
implemented with division operation, is not easy for 
VLSI implement as there is not any good solution for 
VLSI implement of division proposed yet. Several 
modular multiplication algorithms without division 
operation have been proposed to replace the traditional 
reduction. Among them the two most popular algorithms 
are Montgomery algorithm and Barrett algorithm. 

Montgomery algorithm is the most widely used as well 
as the most efficient modular multiplication algorithm 
being applied. It realizes the reduction with addition and 
shift operations, and they are much easier for VLSI 
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implement than division operation. Algorithm 4 shows 
the original Montgomery algorithm where N is the n-bit 
module, should be odd and N>1; R is relative prime to N 
and normally R = 2n, R-1 and N satisfy 0 < R-1 < N, 0 < 
N′< R, RR-1 – NN′= 1. That is RR-1 (mod N) = 1 or NN’ 
(mod R) = -1; A and B are the two multipliers: 

Algorithm 4: Montgomery Modular Multiplication 
Input: A, B, N, N′ 
Output: t = A×B× R-1(mod N) 
1. T = A×B 
2. m = (T mod R) N′ mod R 
3. t = (T + m×N) / R 

if t ≥ N then t = t – N 
Note that the result of Algorithm 4 is ABR-1(mod N) 

instead of AB (mod N). When using it in practice the 
constant R-1 should be eliminated. That means Algorithm 
4 should be executed one more time. 

The primary operation for the hardware 
implementation of Montgomery algorithm is to divided T 
by 2 (because TR-1 = T2-n), and the operation of division 
by 2 can be realize by shift right. It should be 
remembered that the shift operations are with modular N, 
so if T is odd, T = T + N should be performed before the 
shift operation. After divisions by 2 for n times, the result 
t is obtained. The result t will satisfy 0 ≤ t < 2N-1, but it 
is not the final result of the modular multiplication. It is 
T/2n mod N instead of T mod N, so we can not get the 
final result until another transfer, which is a 
multiplication by 2n is performed. 

The hardware implementation of the original 
Montgomery algorithm is shown in Algorithm 5. A and B 
are the two n-bit binary multipliers and can be presented 
as A = (an-1, an-2, ……, a1, a0), B = (bn-1, bn-2, ……, b1, b0), 
N is the n-bit modular and R = 2n: 

Algorithm 5: Hardware Implementation of Original 
Montgomery Algorithm 

Input: A, B, N 
Output: T = ABR-1 mod N 

1. S0 = 0 
2. For i = 0 upto n-1 

if (Si + aiB is even) then Si+1 = (Si + aiB)/2 
                            else Si+1 = (Si + aiB + N)/2 

3. T = Sn 
In fact, Algorithm 4 is not used very much, in practice, 

another method called “High-base” algorithm is more 
widely used, and it can be shown as Algorithm 6. A, B 
and N are presented as A = (aw-1, aw-2, ……, a1, a0)r, B = 
(bw-1, bw-2, ……, b1, b0)r, N = (nw-1, nw-2, ……, n1, n0)r, 
where R = 2n = rw, and 0 ≤ ai < r, 0 ≤ bi < r, 0 ≤ ni < r, and 
n0 and n0′ satisfy n0n0′ mod r = -1. 

Algorithm 6: Modified Hardware Implementation of 
Montgomery Algorithm 

Input: A, B, N, n0′ 
Output: T = ABR-1 mod N 

1. S0 = 0 
2. For i = 0 upto w-1 

mi = (Si + aiB) n0′ mod r 
Si+1 = (Si + aiB + miN)/r 

3. T = Sn 

When r = 2, then n0 = 1 and n0′ = 1, Algorithm 6 will 
degenerate to Algorithm 5. 

The original Montgomery modular multiplication is 
difficult to realize with VLSI because the operands in the 
cryptosystem applications are usually very large. When 
the length of the integers is 1,024-bit or 2,048-bit, even 
the implementation of the simplest operations like 
addition and shift are impossible. As a result, the big 
operands are usually divided into a serious of small 
operands, so that operations on big operands can be 
executed. 

Apparently, the number of arithmetic units can be 
reduced when the big operands are divided into small 
operands, and many registers can also be saved because 
the storage of the big intermediate results will become 
unnecessary. 

Various methods have been proposed to improve the 
Montgomery algorithm under this idea [4]. With these 
modified algorithms, it is much easier to implement 
Montgomery modular multiplication, and higher 
performance can be achieved with lower power. 

The FIPS [4] algorithm proposed by KoC is one of 
those modified algorithms suitable for implementation 
with VLSI, especially for the implementations with 
digital signal processors. The most important feature of 
this algorithm is that in this algorithm, there is no need to 
obtain the result of T = A×B. The less significant words 
of the temporary and the more significant words of the 
intermediate result can be stored in the same memory 
units, and the temporary value and the result can be 
stored in the same memory address, too. As a result, it 
reduces the size of the memory as well as the number of 
operations. Both the cost of hardware and the power 
consumption are therefore lowered. The FIPS algorithm 
is described in Algorithm 7: 

 Suppose A, B and N are decomposed to A = (as-1 as-

2 … a1 a0)r, B = (bs-1 bs-2 … b1 b0)r, and N = (ns-1 ns-2 … n1 
n0)r, where 0≤ai<r, 0≤bi<r, and 0≤ni<r. Normally r is 
chosen to be the power of 2. Let R = rs, so N<R (A<N, 
B<N), and n0n0′(mod r) = -1, where n0′is pre-computed. 

Algorithm 7: FIPS Modular Multiplication 
Input: A, B, N, n0′ 
Output: M = ABR-1  mod N 
1. S = 0 
//Step A: calculate the temporary value m[i] 
2. for i = 0 to s-1 

a) for j = 0 to i-1 
i. S = S + a[j]b[i-j] + m[j]n[i-j] 

b) S = S + a[i]b[0] 
c) m[i] = S n0′(mod r) 
d) S = S + m[i]n[0] 
e) S = S/r 

//Step B: calculate the result and store the result in m[i] 
3. for i = s to 2s -1 

a) for j = i – s + 1 to s – 1 
i. S = S + a[j]b[i-j] + m[j]n[i-j] 

b) m[i-s] = S (mod r) 
c) S = S/r 

//Step C: adjust the result to [0, N) 
4. temp = S (mod r) 



 Design and Implementation of a Low Power RSA Processor for Smartcard 11 

Copyright © 2011 MECS                                                                            I.J. Modern Education and Computer Science, 2011, 3, 8-14 

5. carry = 1 
6. for i = 0 to s-1 

a) (carry, b[i]) = m[i] + not(n[i]) + carry 
7. temp = temp + not(0) + carry 
8. if temp =0  

then for i = 0 to s-1 m[i] = b[i]  

III.  ARCHETECTURE AND CIRCUIT DESIGN 

A.  The Architecture Design 
Algorithm 7 shows that most operations of the FIPS 

Montgomery modular multiplication are multiplications 
and accumulation. Considering the tradeoff between the 
power consumption and the necessary speed, the width of 
the multiplier is chosen as 16-bit. Thus, in Algorithm 4, r 
= 216, and s = 512 /16 = 32. 

The length of the accumulator can then be decided. For 
our design, the accumulator will store the largest 
temporary result when performing Step A of Algorithm 4. 
When i = s-1, the largest temporary result is the sum of 
(1), (2) and the result of S/r in i = s-2:  

 S1 = a[0]b[s-1] + a[1]b[s-2] + … + a[s-1]b[0]. (1) 

 S2 = m[0]b[s-1] + m[1]n[s-2] + … + m[s-2]n[1].(2) 

Equations (1) and (2) show that there will be 2s-1 32-
bit numbers to be accumulated, which means that the sum 
will be less than (2s-1)×232 = 238 – 232. After performing 
the shifting S/r, the length of the initial value in the 
accumulation register is 32-bit, and hence the final result 
will be less than 238. Then the length of the adder can be 
chosen as 38-bit. Because the width of the SRAM used in 
this design is 16-bit, taking the length of register to be 
times of 16 will make the shifting of operands much 
easier. As a result, the length of the accumulating register 
is 48-bit. The data path of the modular multiplier is 
shown in Fig. 1. 

B.  Operand Isolation 
 The power consumption can be divided into two parts: 

static and dynamic power consumption. The static power 
is determined by the fabrication process, where possible 
input from the designers is quite limited. The calculations 
of the combinational logic and the toggles of the registers 
take up most of the dynamic power. As a result, the 
general idea of low power design is to eliminate the 
unnecessary calculations of the combinational logic and 
the redundant toggles of the registers.  

 
Figure 1.  The architecture of the modular multiplier 

Combinational logic circuits are used to realize 
different logic and arithmetic functions. In general, no 
circuit is expected to keep working at any time. Ideally, 
we want them to work only when we want to use them. 
But this is usually not that case, the combinational logic 
circuit will begin to calculate once its input signals are 
changed. Fig. 2 shows the structure of an ALU for a 
RISC CPU, where the arithmetic circuit, the logical 
circuit, the shift circuit and the comparison circuit are 
connected parallel. When the input signals are changed, 
all of the four parts will work together, but obviously 
only one of the four results will be used at the most. That 
means the circuits consume power without generating 
any useful data. So in low power design, we hope that the 
circuits will not work until we want them to work. The 
only way to stop the combinational circuits from working 
is to keep the input of the circuits still. And an effective 
method to keep the input still is the so-called Operand 
Isolation. 

The idea of operands isolation is to keep the inputs of 
the combinational logics constant when they are not 
being used, so that the combinational logics will keep 
quiet and power required during the idle period is reduced. 
Fig. 3 illustrates the operands isolation of the modular 
multiplier. The shadows are the isolation modules. The 
inputs of both the multiplier and the adder stay constant 
when shift is being performed. Only the former stays 
constant when performing additions and subtractions. 

 
Figure 2.  The structure of  ALU 



12 Design and Implementation of a Low Power RSA Processor for Smartcard  

Copyright © 2011 MECS                                                                            I.J. Modern Education and Computer Science, 2011, 3, 8-14 

 

 
Figure 3.  The operands isolation of the modular multiplier 

C.  Clock Gating 
In digital logic circuits, the clock signal has the 

maximum fan out and the highest activity, so the power 
consumption from the clock signal is an important part of 
the total power consumption of the whole circuit. 

Fig. 4 is the functional schematic of a D-type flip-flop. 
It shows that the clock signal needs to drive four transfer 
gates in every D-type flip-flop. When the transfer gates 
are switch, no matter whether the value of the flip-flop is 
changed, the charging and discharging of the capacity of 
the transfer gates will consume dynamic power. There 
can be thousands of flip-flops in a large design, so the 
power consumption on all these flip-flops will be a 
problem for low power design. 

 Fig. 5 shows the principle of clock gating. The upper 
part of Fig. 5 shows the equivalent schematic of a D-type 
flip-flop with synchronous active-high enabling signal. It 
can be seen that the enabling signal acts as the control 
signal of a 2-to-1 multiplexer, but it has no influence on 
the clock signal, which is connected to the control signals 
of the transfer gates. This means that the clock in this 
flip-flop will consume power, no matter whether the 
enabling signal is high.  

 
Figure 4.  The functional schematic of D-type flip-flop 

 
Figure 5.  The principle of clock gating 

As a result, reducing the clock activity effectively 
reduces the unnecessary power dissipation. One solution 
is to insert clock gating. When clock gating is inserted, 
the clock net of the flip-flop will be kept at logic “0”, as 
shown in the lower part of Fig. 5, thus the power 
dissipated on the switch is saved. The most power in an 
ASIC design is consumed by the clock tree, so the 
reduction of clock activity will notably reduce the total 
power.  

IV.  THE RESULT AND COMPARISON 

The proposed design has been implemented by Verilog 
HDL, simulated with ModelSim 6.2b and synthesized 
with Synopsys Design Compiler with SMIC 0.18μm 
process. The result shows that the critical path of the 
design is 5.3ns, so the highest clock frequency of the 
design can be up to 188MHz and its area is 7.1k gates. It 
spends about 3.9M clock cycles to finish a 1,024bit RSA 
signature, so the throughput of this design is about 
49kbps at 188MHz. When working on the frequency of 
188MHz, it requires a power of 2.56mW. Implemented 
with Altera FPGA EP2C8Q208C8N device, the proposed 
design costs 2,439 logic elements and can work at the 
frequency of 47.32MHz. 

The performance and power consumption of proposed 
design are compared with previous works in TABLE I 
and TABLE II. 

ΤΑΒΛΕ Ι.  COMPARISON OF PERFORMANCE 

Design Year Technique Frequency Throughput
(1024-bit) 

[6] 2006 UMC0.18μm 460MHz 586kbps 

[7] 2008 TSMC0.18 μm 200MHz 107.5kbps 

[8] 2009 SMIC0.13 μm 196MHz 5.4kbps 

proposed 2010 SMIC0.18 μm 188MHz 49kbps 
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ΤΑΒΛΕ ΙΙ.  COMPARISON OF POWER 

Design Area Power Power/Throughput

[6] 5.76mm2 830mW 1.42mW/kbps 

[7] 61k Gates 32.5mW 0.30mW/kbps 

[8] 2.6k Gates 2.27mW 0.42mW/kbps 

proposed 7.1k Gates 2.56mW 0.052mW/kbps 

 
From these tables, we can see that the proposed design 

has lower ratio (power/throughput), which means it 
requires less power than the previous designs when 
working at the same speed.  

The proposed RSA processor is implemented by 
Cadence SoC Encounter 8.1 with SMIC 0.18μm CMOS 
process and is integrated in a smartcard with Anti-
counterfeiting capability. The two SRAM blocks are 
generated by SMIC SRAM Generator and the EEPROM 
IP is S018EE16KBS_LPI from SMIC. The design can 
execute 1,024-biy RSA digital signature as well as User 
data read/write. The layout of the smartcard with 
proposed RSA processor is shown in Fig.6. 

V.  CONCLUSION 

The proposed 1,024-bit RSA design achieves ultra low 
power by using the Chinese Remainder Theorem, 
improved Montgomery algorithm and several low power 
techniques. The synthesizing result shows that it has a 
performance of 49kbps at 188MHz while consuming only 
2.56mW and the area is only 7.1k gates. The low power 
and low area make it suitable for smartcards and portable 
device.  

 

 
Figure 6.  Layout of  the smartcard with RSA processor 

 

 

APPENDIX A  THE PROOF OF CHINESE REMAINDER 
THEOREM 

Two theorems will be used when performing RSA 
modular exponentiation. They are shown as Theorem 1 
and Theorem 2. 

Theorem 1: Chinese Remainder Theorem [9] 
Suppose m1, m2, …, mk are relative primes to each 

other, then congruence equation: 
x ≡ b1 (mod m1) 
x ≡ b2 (mod m2) 

…… 
x ≡ bk (mod mk) 

has unique solution. 
Theorem 2: Fermat’s Little Theorem [10] 
Suppose a is an integer and p is a prime number, then 

ap ≡ a (mod p) 
And it can also be written as  

ap-1 ≡ 1 (mod p) 
There are two different algorithms to obtain the unique 

solution in Theorem 1. The first algorithm is the Single-
Radix Conversion, which is shown as Algorithm 8, and 
the improved Mixed-Radix Conversion algorithm is 
shown as Algorithm 9. 

Algorithm 9: The Single-Radix Conversion [11] 
1. M = m1m2…mk 
2. Mi = M/mi (1 ≤ i ≤ k) 
3. ci = Mi

-1 (mod mi) 
4. x = b1c1M1 + b2c2M2 + … + bkckMk (mod M) 

Algorithm 10: The Mixed-Radix Conversion [10] 
1. Aij = mi

-1 (mod mj) (1 ≤ i < j ≤ k) 
2. C1 = b1 (mod m1) 

C2 = (b2 – C1)A12 (mod m2) 
…… 
Ck = (bk – (C1 + m1(C2 + m2(C3 + … + mk-2Ck-

1))))A1kA2k…A(k-1)k (mod mk) 
3. x = Ckmk-1...m2m1 + … + C3m2m1 + C2m1 + C1 

In the case of RSA modular exponentiation, there are 
only two prime numbers P and Q, and N = P×Q, so k=2. 
Then the solutions for the two algorithms can be shown 
as follow: 

With SRC: x = b1ApqP + b2AqpQ (mod N)  
With MRC: x = ((b2 – b1) Apq (mod Q))P + b1 
where Apq = P-1 (mod Q) and Aqp = Q-1 (mod P) 
The last symbols need to be replaced are b1 and b2. 

According to RSA cryptography and Chinese Remainder 
Theorem, the original expressions of b1 and b2 are: 

b1 = ME (mod P), b2 = ME (mod Q) 
M and E can be written as M = UP + Mp and E = V(P-

1) + Ep, so Mp = M (mod P) and Ep = E (mod P-1), Then 
b1 = ME (mod P) = (UP + Mp)V(P-1)+Ep (mod P) = Mp 

V(P-1)MpEp (mod P) = MpEp (mod P). 
With the same process, we can deduce that b2 = MqEq 

(mod Q). Let Cp = MpEp (mod P) and Cq = MqEq (mod 
Q), the solutions can be written as: 

With SRC: x = CpApqP + CqAqpQ (mod N)  
With MRC: x = ((Cq – Cp) Apq (mod Q))P + Cp 

APPENDIX B  THE PROOF OF MONTGOMERY ALGORITHM 

Proof of Algorithm 3: 
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Known: N is odd and N>1; R is relative prime to N, 
and 0 < R-1 < N, 0 < N′< R, RR-1 – NN′= 1. That is RR-1 
(mod N) = 1 or NN’ (mod R) = -1, m = (T mod R) N′ 
mod R. 

Solution: 
Because mN = ((T mod R)N' mod R)N 
Then mN mod R = TNN' mod R 
And because NN' mod R = -1 
So mN mod R = -T modR 
Then (T + mN) mod R = (T-T) mod R = 0 
So t = (T + mN)/R is an integer and tR = T + mN 
Then tR mod N = T mod N 
Then tRR-1 mod N = TR-1 mod N 
Because RR-1 mod N = 1 
Then t mod N = TR-1 mod N 
So t = TR-1 mod N 
Because m = (T mod R) N′ mod R 
So 0 ≤ m < R 
And 0 ≤ T < RN 
So 0 ≤ T + mN < RN + RN 
And because t = (T + mN)/R 
So 0 ≤ t < 2N 

Proof of Algorithm 5: 
Known: A, B and N are n-bit integers and are 

presented as A = (aw-1, aw-2, ……, a1, a0)r, B = (bw-1, bw-

2, ……, b1, b0)r, N = (nw-1, nw-2, ……, n1, n0)r, where R = 
2n = rw, and 0 ≤ ai < r, 0 ≤ bi < r, 0 ≤ ni < r, and n0 and n0′ 
satisfy n0n0′ mod r = -1. 

Solution: 
    Because n0n0′ mod r = -1 

So ((Si + aiB) n0′ mod r)n0 mod r = -(Si + aiB) mod r 
And Si + aiB + miN 

= (Si + aiB) + ((Si + aiB) n0′ mod r)N 
        So (Si + aiB + miN) mod r = 0 
        So Si + aiB + miN is divisible by r 
        So rSi+1 = Si + aiB + miN  

Then we get the follow equations: 
    rS1 = a0B + m0N                           ……(1) 
    rS2 = S1 + a1B + m1N                   ……(2) 

…… 
    rSw = Sw-1 + aw-1B + mw-1N          ……(w) 
(1) + (2) × r + (3) × r2 + … + (w) × rw-1  
Then rwSw = AB + MN 
That is RSw = AB + MN < 2RN 
Where M = m0 + m1r + m2r2 + … + mw-1rw-1 
So Sw = AB R-1 mod N and Sw < 2N 
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