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Cells actively sense and process mechanical information that is provided by the extracellular environment to
make decisions about growth, motility and differentiation. It is important to understand the underlying mecha-
nisms given that deregulation of themechanical properties of the extracellularmatrix (ECM) is implicated in var-
ious diseases, such as cancer and fibrosis. Moreover, matrix mechanics can be exploited to program stem cell
differentiation for organ-on-chip and regenerative medicine applications. Mechanobiology is an emerging mul-
tidisciplinary field that encompasses cell and developmental biology, bioengineering and biophysics. Here we
provide an introductory overview of the key players important to cellular mechanobiology, taking a biophysical
perspective and focusing on a comparison between flat versus three dimensional substrates. This article is part of
a Special Issue entitled: Mechanobiology.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

Cells in our body actively sense and respond to a variety of mechan-
ical signals. The mechanical stiffness of the surrounding extracellular
matrix (ECM) critically determines normal cell function, stem cell dif-
ferentiation and tissue homeostasis [1,2]. Conversely, abnormal changes
in ECM stiffness contribute to the onset and progression of various dis-
eases, such as cancer and fibrosis [3]. Cancer tissues can be up to 10-fold
stiffer than healthy tissues, which is correlated with tumor cell survival
and enhanced proliferation [3–5]. Additionally, cells often experience
forces in the form of shear stress during breathing and blood flow, com-
pression and tension due to muscle contraction. Forces also play a cru-
cial role in regulating tissue morphogenesis in developing embryos [6,
7]. The sensitivity of cells to forces and substrate stiffness has been rec-
ognized as a powerful tool in tissue engineering, where it can be
harnessed to design biomaterials that optimally guide stem cells or res-
ident cells in the patient towards generating a functional replacement
tissue. Given its central importance in cell function and human health,
mechanobiology has emerged as a new and growing field that attracts
researchers from disciplines ranging from cell and developmental biol-
ogy, to bioengineering, material science and biophysics.

A central element in mechanobiology is cellular ‘mechanosensing’
(see Box 1). Cells actively probe the rigidity of their extracellular
obiology.
environment by exerting traction forces via transmembrane proteins
termed integrins [8]. It is still poorly understood how probing by trac-
tion forces allows cells to sensematrix stiffness and how cells transduce
this mechanical information into a cellular response. Answering these
questions is complicated by the large number of mechanosensors and
-transducers that have been identified so far [9]. Prominent examples
are paxillin [10], vinculin [11,12], talin [13], p130CAS [14,15], integrins
[16,17], the actin cytoskeleton (CSK) [18–20] and mechanosensitive
ion channels [21]. It is still unclear how these components work togeth-
er to regulate mechanosensing. Also, most experimental studies until
now were performed with cells cultured on top of two dimensional
(2D), and often rigid, substrates, which inadequately mimic most phys-
iological contexts.

Mechanosensing and -transduction are cellular processes that in-
volve both intra- and extracellular components, as illustrated in Fig. 1.
The main structural components that contribute are (1) integrins,
(2) the ECM and (3) the intracellular CSK. Mechanical forces and bio-
chemical signaling are integrated by various intracellular signaling path-
ways. In this review, we will provide an overview of the roles of these
contributors to cellular mechanobiology. Note that we will not touch
upon mechanosensitive ion channels, which are reviewed elsewhere
[21], norwill we discuss cell–cell interactions, which also play an impor-
tant role in mechanosensing [22,23]. We will focus on a comparison be-
tween cellular mechanobiology on 2D substrates and inside 3D
environments designed to mimic connective tissue. Furthermore, we
will comment on the applications of mechanobiology in tissue
engineering.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.bbamcr.2015.05.007&domain=pdf
http://dx.doi.org/10.1016/j.bbamcr.2015.05.007
http://dx.doi.org/10.1016/j.bbamcr.2015.05.007
http://www.sciencedirect.com/science/journal/01674889
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Box1Terms that are oftenused in the field ofmechanobiology.

Mechanobiology:A field at the interfaceof biology, physics, and
bioengineering, which focuses on how cell/tissue mechanics
and physical forces influence cell behavior, cell and tissue mor-
phogenesis, and diseases related to these processes.
Mechanosensing (\sensation): The process of a cell sensing
mechanical signals provided by its environment.
Mechanotransduction: The process of translatingmechanical
signals into a cellular response.
Durotaxis: Directed cell motility in response to gradients in
substrate rigidity.
Contact guidance: Directed cell migration or orientation
based on anisotropy (alignment) of the microenvironment,
such as collagen fibers in 3D or micropatterned adhesive
lines on a 2D substrate.
Outside-in signaling: Mechanical cues in the environment
causing intracellular signaling cascades, which affect cellu-
lar processes such asmigration, growth, and differentiation.
Inside-out signaling: Intracellular processes affecting theme-
chanical properties of the environment by exertion of trac-
tion forces and secretion/breakdown of ECM material.
Integrin: Heterodimeric transmembrane protein that physi-
cally connects the ECM to the CSK and acts as a bidirection-
al signaling receptor.
Slip-bond: Receptor-ligand interaction whose lifetime is re-
duced when mechanically loaded.
Catch-bond: Receptor-ligand interaction whose lifetime is
enhanced with increasing load to a maximum value, follow-
ed by a gradual decrease when the load is further increased.
Cell-matrix adhesion: Cell-ECM connections mediated by
clusters of integrin in the plasma membrane. This term in-
cludes FAs, focal complexes, focal contacts, fibrillar adhe-
sions, and nascent adhesions.
Adhesome: The collection of more than 150 proteins associ-
ated with cell-matrix adhesions that links the ECM and the
CSK.
Nascent adhesion: A cell-matrix adhesion during its initial
phase of formation. Usually, such an adhesion is significant-
ly smaller andmore punctuate thanmature FAs. Nascent ad-
hesions are thought to be enriched with FA proteins such as
talin and paxillin.
Focal complex: A cell-matrix adhesion that is usually found at
the leading edge of migrating cells. Focal complexes can ei-
ther be nascent adhesions on their way tomaturation or sim-
ply short-lived ECM-cell contacts. Like nascent adhesions,
they are smaller and more punctuate than focal adhesions.
They contain a larger subset of adhesome proteins than na-
scent adhesions, but still a smaller subset than FAs.
Focal adhesion (FA, a.k.a. focal contact): Cell-matrix adhesions
that are usually associated with actin stress fibers. They
have an elongated form and are found at the front, rear,
and periphery of the cell. They are one of the most mature
ECM-cell contact types, besides fibrillar adhesions, and are
therefore associated with a larger variety of proteins from
the adhesome. They are also usually at least twice as large
as nascent adhesions or focal complexes.
Fibrillar adhesion: Elongated cell-matrix adhesions that are
usually not found in the lamellipodium, but under the nucleus
and the lamella behind the lamellipodium. The length of the-
se adhesions is several times larger than that of FAs.
Acto-myosin contractility: Contractile activity of the actin cy-
toskeleton mediated by non-muscle myosin II-A and II-B
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Fig. 1. Schematic showing a cell inside a three dimensional fibrous extracellular network
The boxes indicate the focus areas of this review. (i) Integrins are composed of anα (pink
and β subunit (purple) and are clustered in focal adhesions (FAs) together with other FA
proteins (triangle, square and circle). The adhesions connect the extracellular matri
(ECM) and the (actin) cytoskeleton (CSK). Integrins can be classified as slip- or catch
bond adhesion molecules, which differ in their bond lifetime under an applied force. (ii
The ECM provides multiple cues to the cell, specifically pore size, stiffness
nanotopography and dimensionality. (iii) The CSK is composed of actin (green), interme
diate filaments (yellow) andmicrotubules (brown). (iv) Summary of important signalin
pathways. Note that we will not discuss mechanosensitive ion channels (gray pores). Th
cell nucleus is depicted in blue.

motor proteins. Actomyosin contractility is responsible for
traction forces exerted on the substrate at cell-matrix
adhesions.
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2. Contributors to cellular mechanosensing

Integrins play a central role in cellularmechanosensing because they
physically connect the CSK to the ECM, typically in clusters termed ‘focal
adhesions’ (FAs). Integrins are transmembrane proteins that are hetero-
dimers of an α and β subunit and are restricted to the metazoa [8]. So
far, 24 different heterodimers formed by combinations of 18 different
α subunits and 8 β subunits have been identified [8]. Most integrins
recognize multiple ligands, which share common binding motifs such
as the RGD or LDV motif [24]. The integrin αvβ3 can for instance bind
vitronectin, fibronectin and fibrinogen through the RGD-binding
motif.

The extracellular matrix (ECM) is a complex protein meshwork that
forms the scaffold towhich cells adhere. It providesmechanical support
to cells and tissues, and acts as a reservoir for growth factors, cytokines
.
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and proteolytic enzymes. There are two broad classes of ECM: basement
membrane and connective tissue. Basement membranes are thin struc-
tures that provide a two-dimensional (2D) substrate onto which polar-
ized cells such as epithelial and endothelial cells adhere. Its main
components are laminin, collagen IV, nidogen and heparan sulfate pro-
teoglycans [25]. In contrast, connective tissues provide afibrous 3D scaf-
fold whose structural components aremainly fibrillar collagens (mostly
type I and II, mixed with III and/or V), proteoglycans and glycosamino-
glycans [26]. The diameter and organization of the collagen fibers are
tailored to the biomechanical function of each tissue. The fibrils are,
for example, thick and aligned in stiff tissues like tendon to ensure ten-
sile strength, whereas they are thin and organized in meshworks in the
cornea to ensure optical transparency. Proteoglycans and glycosamino-
glycans are hydrophilic macromolecules forming a background matrix
for the collagen fibers, which facilitate water retention and influence
cell migration and ECM deposition [27]. The ECM also contains non-
structural components that modulate cell-ECM interactions, such as
thrombospondin 1 and tenascins [28]. Under influence of force, ECM
proteins could also act as a mechanotransducer by exposing cryptic
sites and growth factors [29]. During wound healing, cells encounter a
provisional ECM that forms as a result of blood clotting. Thismatrix con-
sists of a scaffold of fibers made of the plasma proteins fibrin and fibro-
nectin. Due to their biocompatibility and physiological scaffold role,
both collagen and fibrin are popular biomaterials for in vitro studies
and tissue engineering. However, it is important to emphasize that
such simplified matrices do not mimic the full tissue-specific context
(in terms of architecture and chemical composition) that is offered by
the in vivo ECM. The architecture, composition and stiffness of the
in vivo ECM is further subject to changes during disease progression
and aging. Since cells are sensitive to all of these extracellular cues, the
ECM is increasingly recognized as an active player and potential thera-
peutic target in diseases such as fibrosis, artherosclerosis and cancer
[5,30–33].

The cytoskeleton (CSK) is a space-filling network of protein filaments
that enables cells to maintain their shape andmechanical strength [34].
The CSK enables cells to withstand external forces, while at the same
timebeingdynamic and self-deforming. ThemammalianCSK comprises
three types of protein filaments: actin, microtubules (MTs) and inter-
mediate filaments (IFs). Actin and MTs are polar filaments with two
structurally distinct ends, which are capable of generating pushing
and pulling forces by coupling polymerization to nucleotide hydrolysis.
In contrast, IFs are nonpolar and more stable. All three filaments can be
classified as semiflexible polymers: they remain straight under the in-
fluence of thermal fluctuations over a length scale that is comparable
to their ‘persistence length’. This characteristic length scale is much lon-
ger for MTs (a fewmm) than for IFs (0.5 μm) and actin (10 μm). As a re-
sult, actin and IFs are generally considered to provide themain source of
cell stiffness, whereas the more rigid MTs may provide resistance to
compression forces [35]. Purified networks of actin and IFs increase
their stiffness under the influence of force. In other words, these
networks strain-stiffen in response to mechanical shear or stretch
[36–38]. This phenomenon allows cells to actively stiffen their actin cy-
toskeleton on hard substrates by contraction with myosin motors [1].
Moreover, strain-stiffening of IFs is thought to prevent excess deforma-
tion of cells and epithelial tissues [37,38].
3. Role of the ECM in mechanobiology

In this section,wewill focus on the influence of physical cues provid-
ed by the ECM on cell behavior. Cells embedded in 3D interstitial matri-
ces are influenced by various factors that are difficult to decompose,
such as global (i.e. macroscopic) and local (i.e. fiber) stiffness, matrix to-
pography, the porosity and the dimensionality. Below we will review
experimental studies that have sought to disentangle these factors
using biomimetic 3D ECMmatrices or 2D substrates.
3.1. ECM stiffness

It is nowwell recognized that cells cultured on top of a 2D substrate
actively sense and respond to its stiffness [1,39–41]. Many fundamental
aspects of cell behavior are mechanosensitive, including adhesion,
spreading, migration, gene expression and cell-cell interactions [40,
42–46]. Substrate stiffness can also regulate stem cell differentiation
and compete with biochemical cues [1]. Recent experiments with
stem cells on photodegradable substrates showed that stem cells even
remember the mechanical history of their environment [47].

Studies of cells on 2D substrates are usually performed with nonad-
hesive polyacrylamide (PAA) or polydimethylsiloxane (PDMS) coated
with ECM proteins or ligands such as RGD peptides. Surface coupling
should be chosenwith care, since the distance between tethering points
can influence cell fate [48] and cells can pull ligands from the surface if
they are anchored too weakly [49]. The thickness of the gels should also
be chosen with care, because cells can feel the stiff underlying glass/
plastic substrate if the gel is too thin [50,51]. Systematic studies showed
that cells on top of PAA gels can sense over a distance of a few tens of
microns [50,51]. However, this length scale can be increased to
~200 μm for fibrous networks of collagen [52] and fibrin [53]. The
long range of force transmission in these ECM networks has been vari-
ously ascribed to strain-stiffening under the influence of cellular trac-
tion forces [53] or to the fibrous nature of the ECM [54]. The second
explanation is supported by finite-element modeling of the transmis-
sion of traction forces in collagen [54] and fibrin [55] networks. These
simulations show that cell tractions are concentrated in the relatively
stiff ECM fibers, thus propagating farther than in a homogeneous elastic
medium even if this elastic medium strain-stiffens [54]. Finite-element
modeling and analytical theory showed that cell-induced alignment of
collagen fibers further contributes to making force transmission anom-
alously long-ranged [56].

Unclear is whether cells sense their environment by applying a con-
stant stress (i.e. force) and reading out the strain (i.e. deformation) or
vice versa. Theoretical models suggest that cells may readjust their con-
tractile activity and CSK organization to maintain either an optimal strain
or an optimal stress [57]. Experiments with elastic micropost array sub-
strates indicated that epithelial cells and fibroblasts maintain a constant
substrate strain [58,40,59]. However, recent measurements of traction
forces for fibroblasts on PAA gels with a wider range of Young's moduli
(6 to 110 kPa) suggest that cells switch frommaintaining a constant strain
on soft gels (Young's modulus below 20 kPa) to maintaining a constant
stress on stiffer substrates [49]. It was proposed that the cells increasingly
align their actin stress fibers to sustain a constant substrate strain as the
substrate stiffness increases. At substrate rigidities above 20 kPa, the
maximal contractile force that the aligned actomyosin units can
generate would reach a limit. This interpretation is supported by a study
of substrate-dependent stress fiber alignment [60] and a model
representing the cell as a prestrained elastic disk attached to an elastic
substrate via molecular bonds [61]. It is still unclear how these findings
translate to the situation of a cell embedded in a 3D fibrous matrix. One
study offibroblasts inside porous collagen-glycosaminoglycan (GAG)ma-
trices suggests that cells maintain a constant traction stress [62].

Unlike synthetic PAA and PDMS hydrogels, whose stiffness is con-
stant up to large strains, networks of fibrin and collagen strain-stiffen
as soon as the strain reaches values of a few percent [38,63,64]. It has
been proposed that this nonlinear elastic response strongly influences
cellular behavior based on studies of fibroblasts and stem cells cultured
on top of thick fibrin biopolymer gels, which revealed that cell spread-
ingwas independent of the linear elasticmodulus of the gels and similar
to spreading on stiff PAA gels [53]. Apparently, the cells sense a stiff en-
vironment because they actively stiffen the fibrin network by exerting
traction forces. Atomic force microscopy (AFM) nanoindentation as
well as macroscopic shear rheology showed that cells cultured inside
or on top of fibrin gels indeed cause network stiffening [65,53]. In
case of collagen gels, there is also evidence that buildup of stresses
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originating from cellular traction forces affect fibroblast morphology
and motility [66]. Cell-induced ECM stiffening may play an important
role in diseases, such as cancer and fibrosis, where it can provide a pos-
itive feedback that enhances cell contractility [33].

In summary, there is overwhelming evidence that mechanical prop-
erties (linear and nonlinear) of the substrate or ECM play an important
role in determining cell fate. It is still an open question to what extent a
cell embedded inside a 3D fibrous ECMmatrix senses the stiffness of the
overall network (i.e. global stiffness), as on 2D substrates, or the local
stiffness, i.e. the resistance of individual ECM fibers to bending and
stretching. Furthermore, recent studies of cells on 2D hydrogels varying
in their viscous but not their elastic modulus showed that cell differen-
tiation is also sensitive to the viscous modulus [67,68]. Moreover, cell
spreading on soft substrates was shown to be strongly enhanced
when the substrate (an ionically crosslinked alginate hydrogel) exhibit-
ed stress relaxation, an effect that could be recapitulated using a sto-
chastic lattice spring model [69]. It was proposed that stress relaxation
in the substrate may facilitate cell spreading by allowing cells to cluster
ECM ligands. Viscous effects are indeed likely to be important since cel-
lular time scales of traction force generation can be slower than the time
scales at which themechanical properties of cell substrates are general-
ly measured [70].

3.2. Nanotopography

Structural components such as collagen [71], fibrin [72] and fibro-
nectin [73] form hierarchically structured fibers that are radically differ-
ent from the surface presented by standard 2D hydrogels. However,
developments in nanotechnology and micropatterning have allowed
formore advanced 2D substrates with controlled topography and adhe-
sion areas that mimic tissue morphologies [74–76]. When the surface is
patternedwith nanoridges, cells align parallel to the nanoridges andmi-
grate along them, in a process known as ‘contact guidance’ [74–77]. Fur-
thermore, it was shown that cells can distinguishdifferences in height of
a few nanometers [77–79] and can cling onto adhesion regions as small
as 8 nm [80]. Cells are also sensitive to the distance between adhe-
sion islands, as demonstrated by studies with ordered patterns of
RGD-coated nanoparticles [81,82]. Furthermore, disorder in the po-
sition of small adhesion islands can optimize cell differentiation
[83]. Nanotopography is therefore a powerful design parameter in
tissue engineering, as illustrated by a recent study showing that a
controlled nanotopography enhances bone formation around tooth
implants [84].

3.3. Pore size

In vitro studies of cells embedded inside reconstituted networks
composed of collagen or fibrin have shown that cell spreading and mi-
gration is hampered when the mesh size becomes smaller than the
size of the nucleus [85,65,86]. The critical mesh size where cell migra-
tion is affected depends on the ability of the cells to degrade the matrix
with proteolytic enzymes and on the deformability of the nucleus,
which is governed by lamins [87,88]. The pore size of collagen and fibrin
networks can be controlled by tuning the protein concentration and po-
lymerization temperature [89,90,86,88]. However, these variations also
affect the global and local (fiber) stiffness andnetwork structure. The in-
fluence of pore size on cell behavior can be studied in isolation by using
microfabricated channels [91] or synthetic polymer gels [92,93]. These
studies revealed that pore size controls migration speed [91,92] and
stem cell fate by controlling cell shape [93].

The fibrous nature of the ECM limits the availability of binding sites
for cells. There have been several studies using model (synthetic) 3D
matrices where the ligand density was varied independently of the net-
work stiffness and pore size [94,95,92]. These studies suggest an in-
crease in cell spreading and migration speed with increased ligand
density. This is in contrast to 2D studies, where an optimum in both
parameters is observed at intermediate ligand densities [42,43]. Howev-
er, it should be noted that the pore size of the synthetic 3D gels was in
the nm-range, which is outside the physiologically relevant size regime.
The thickness of the fibers in the ECM limits the size of FAs [96]. Howev-
er, it was shown that cells can bend and reorient the fibers to increase
the adhesion area.

We finally note that the ECMpore size can also affect cell behavior in
tissues by influencing the permeability andhence interstitualflow. Fluid
pressure in tissues was shown to affect cell migration and the distribu-
tion of vinculin, actin and α-actinin [97].

3.4. Dimensionality

When considering a cell inside a 3D fibrous ECM, it is unclearwhat is
the effective dimensionality that the cell perceives. If the cell encounters
a single fiber, the environment is perhaps effectively 1D. Indeed, the cell
migration speed on thin micropatterned lines of ligands on a 2D sub-
strate was shown to be comparable to the migration speed inside 3D
cell-derived matrices, suggesting that the 1D situation is relevant
in vivo, at least in certain contexts [98]. However, when the collagen fi-
bers are thick due to bundling, as in dermal tissue, sarcoma cells were
shown to behave as if on a 2D environment [99]. Cells embedded in
reconstituted collagen networks, which consist of thinner collagen fi-
brils, usually interact with multiple fibers and may therefore sense a
more 3D environment. The cells typically adopt a spherical or spindle-
like shape instead of the flat ‘pancake’ shape seen on (rigid) 2D sub-
strates [100,101]. These characteristic cell shapes are recovered when
cells are sandwiched between two flat substrates, suggesting that si-
multaneous adhesion of the ventral and dorsal sides of the cell contrib-
utes to the 3D phenotype [102].

4. Integrins

Integrins are bi-directional signaling receptors. Intracellular proteins
bind to the tail region of integrins, thus causing conformational changes
in the head region that increases the affinity for its extracellular ligands
(inside-out signaling). Vice versa, ligand binding triggers conformational
changes that activate intracellular signaling cascades (outside-in signal-
ing). Ligand binding additionally promotes integrin clustering, which is
essential for cell spreading [81]. Integrins recognize specific motifs in
the ECM and also respond to physical ECM properties. In this section,
wewill briefly review themolecular features of integrinmechanosensing
and compare the role of integrins in 2D and 3D environments.

4.1. Molecular basis of integrin mechanosensing

Single-molecule force spectroscopymeasurements usingAFMor op-
tical tweezers have shown that mechanical loading can directly influ-
ence the lifetime of integrin-ECM bonds. Some integrins, such as
αIIbβ3, exhibit slip-bondbehavior characterized by a decreased lifetime
with increasing load [103], whereas others, such asα5β1, exhibit catch-
bond behavior characterized by an increased lifetime with increasing
load [104,105]. Catch-bond behavior is a common response for many
adhesion molecules [106]. Theoretical modeling has shown that catch-
bond clusters can in principle act as autonomous mechanosensors [16,
17]. However, the relative importance of this mechanism compared to
that of other putative mechanosensors involved in connecting integrins
to the nucleus and the CSK is unresolved [44].

The spatial distribution of extracellular ligands has been shown to
play a role in stem cell behavior [107], lineage determination [108]
and the cellular response to an applied force [109]. Clustering of
integrins to form FA complexes requires a certainminimum ligand den-
sity. Various studies based on nanopatterned surfaces showed that the
maximum distance between ligands where FA complexes can still
form is about 80 nm [81,82,110–112]. Force measurements performed
on single integrin-RGD pairs showed that the force per integrin
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increases with reduced ligand spacing. This is somewhat counterintui-
tive, since one would expect load-sharing to lower the force per
integrin. Perhaps the existence of a threshold ligand density to induce
integrin clustering and enhance actomyosin contractility explains this
observation [113].

4.2. Role of integrins in 2D versus 3D environments

Studies of cells on 2D substrates have shown that different integrins
binding to the same ECMprotein can lead to different phenotypes. Cells
adhering to fibronectin substrates throughαvβ3 versusα5β1 integrins,
for instance, differ in traction force generation [114–116], binding dy-
namics [117], actin CSK remodeling under influence of cyclic strain
[116] and adhesion [117,118]. These integrins activate different intra-
cellular signaling cascades [115,119] and interchanging the ligand bind-
ing domains reverses the signaling phenotype [120,121]. Similarly,
expression of αvβ6 integrins in the presence or absence of α5β1
changes traction force generation [17]. Different splice variants of
α6β1 with distinct cytoplasmic domains also give rise to different
phenotypes due to the two distinct cytoplasmic domains [122].
Thus cells can regulate their mechanosensitivity by modifying their
integrin expression profile.

In 3D environments, integrins are required for the fibrillogenesis of
various ECM proteins [123,124]. Most research on mechanobiology in
3D matrices focused on integrins with the β1 subunit, which binds
most ECM proteins including collagen [24]. The β1-integrins, in combi-
nationwith alterations inmatrix stiffness, have been shown to promote
tumor progression [31,5,33]. However, β1-integrins also appear to sup-
press tumor metastasis in some contexts [125,126]. Inhibition or dele-
tion of the β1-integrins can induce metastasis via upregulated TGF-β
signaling and increased expression of αV integrins has been implicated
in this process [127,128]. Interestingly, several αV integrins can bind
and activate the latent TGF-β complex, which is an integral component
of the ECM. For integrin αVβ6 it has been demonstrated that traction
forces that are transduced from the actin CSK, through integrins, alter
the conformation of the integrin-bound latent TGF-β complex, thereby
supporting TGF-β activation [129].

Advances in 3D traction force microscopy [130,131] in combination
with FRET-based molecular force sensors [132] are necessary tools to
elucidate the mechanisms of integrin-mediated mechanosensing in 3D
matrices. Microscopic characterization of the size, morphology and
dynamics of cell-matrix adhesions within 3D matrices is technically
challenging [133,134]. In reconstituted collagennetworks, FAs generally
appear to be smaller than on (rigid) 2D substrates [133,135]. However,
in acellular porcine epithelium, which presents cells with thicker colla-
gen bundles, sarcoma cells were shown to exhibit similar FA size and
dynamics as on 2D substrates [99].

5. Signaling pathways

Integrins recruit more than 150 proteins to the cell-ECM interaction
sites, which are referred to as the adhesome. The adhesome includes FA
adapter proteins, shuttling proteins and kinases that influence gene
transcription as well as the CSK [136]. We provide a brief overview of
the main signaling pathways below.

5.1. Mechanosensitive FA proteins

Prominent examples of mechanosensitive proteins in the adhesome
are talin [13], vinculin [132], and p130Cas [14]. In its unstretched form,
talin's cryptic sites are hidden and vinculin cannot bind, but actomyosin
contraction opens up talin and recruits vinculin [13]. Using a FRET-
based molecular force sensor, the force threshold for vinculin recruit-
ment was shown to be 2.5 pN [132]. Studies of vinculin-knockout cells
and vinculin mutants unable to bind p130Cas have shown that vinculin
is necessary for p130Cas activation in response to changes in substrate
rigidity [137]. p130Cas has a central substrate domain that is intrinsical-
ly disordered and can be stretched with AFM or magnetic tweezers
[138,139]. Vinculin likely anchors p130Cas into FAs, to allow stretching
of the central substrate domain [14]. Stretching can make tyrosine mo-
tifs accessible to Src kinases for phosphorylation, which are known to
influence FA formation and actin dynamics [140]. In other words,
p130Cas transduces cellular traction forces, due to tyrosine phosphory-
lation motifs that are exposed, and hereby changes actin dynamics and
FA formation further downstream. Only recently, studies of p130Cas
have been extended to substrates with variable stiffness such as PAA
gels [137] and PDMS micropillar arrays [15]. A more extensive review
on the functions of talin, vinculin and p130Cas can be found elsewhere
[141].

Paxillin, zyxin and Hic-5, which are among the LIM domain proteins,
have also been identified as being mechanosensitive [142]. Zyxin re-
cruits the proteins Ena (Enabled) and VASP (Vasodilator-stimulated
phosphoprotein) to FAs and to cell-cell contacts, where they promote
F-actin polymerization [143,144]. Both zyxin and paxillin contribute to
stress fiber repair, a critical process for maintaining the tensional bal-
ance within adherent cells [145]. When actin stress fibers were severed
by laser ablation or damaged by mechanical strain, zyxin re-located to
the newly exposed barbed ends of actin filaments at the damaged
sites [146]. Interestingly, LIM proteins exhibit divergent responses to a
mechanical strain. While Hic-5 and zyxin localize to stress fibers when
cells cultured on 2D substrates are exposed to cyclic stretch, paxillin
does not [142]. Even though cells in 3D matrices do not show similar
stress fibers as on 2D substrates, zyxin and paxillin do localize at the
end of protrusions that are reminiscent of FAs in cellsmigrating through
a network of polycaprolactone fibers [96] and paxillin plays a critical
role in 2D and 3D cell migration [147].
5.2. Rho GTPases

Following kinase-mediated phosphorylation, for example of
p130Cas, many FA proteins promote Rho GTPase activity. Three mem-
bers of the Rho family of small GTPases are of particular interest in the
context of mechanosensing: RhoA, Rac and Cdc42. Rac and Cdc42 are
primarily linked to actin polymerization at the leading edge in
lamellipodia (and filopodia in the case of Cdc42). RhoA ismainly associ-
atedwith the activation of actomyosin contractility, togetherwith ROCK
(Rho-associated, coiled-coil containing kinase). Rho GTPases are regu-
lated via GEFs (guanine exchange factors) and GAPs (GTPase activating
proteins) [148].While RhoGTPases are usually considered in relation to
actin, there is growing evidence that they are also coupled to IFs [149]
and MTs [150].

Most studies of Rho GTPase activity have been performed using 2D
cell cultures, but there are some studies in the context of 3D migration
of tumor cells in collagen matrices. Rho-mediated actomyosin contrac-
tilitywas shown to be necessary formammary cancer cells to orient col-
lagen matrix perpendicular to the tumor boundary. These fibers then
promote cell invasion by contact guidance [151]. Interestingly, if the col-
lagen matrix was artificially pre-aligned, the Rho/ROCK/MLC pathway
became dispensable for invasion. ROCK also contributes to stem cell dif-
ferentiation: expressing a constitutively active form of ROCK in hMSCs
cultured in a 3D hydrogel was shown to induce a switch from adipogen-
esis (soft tissue fate) to osteogenesis (stiff tissue fate) [131], whereas
ROCK inhibition with Y-27632 reduced osteogenesis.

RhoA and Rac are targeted to the plasma membrane in a
mechanoresponsive manner, as demonstrated by cyclic stretch experi-
mentswith aortic smoothmuscle cells on a PDMSmembrane [152]. Inter-
estingly, targeting was also microtubule-dependent. Similar stretching
experiments performed on monolayers of endothelial cells that mimic
the lung epithelium identified Rho GTPases as key regulators of tissue ho-
meostasis [153], which is crucial in the lung endothelium that constantly
experiences cyclic stretch.
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5.3. Integrin-mediated regulation of gene transcription

Integrin-mediated mechanosensing feeds into cell fate decisions by
activating various downstream signaling cascades connected to gene
expression [136]. One of the most widely studied pathways involves
the mitogen-activated protein kinase (MAPK) family. The MAPK path-
way is an evolutionarily conserved signaling mode that controls cell
proliferation, survival and differentiation. It involves three protein fam-
ilies: the extracellular signal-regulated kinase (ERK) family, the p38 ki-
nase family and the c-Jun N-terminal kinase (JNK) family. Activation of
receptor tyrosine kinases (RTK) causes activation of ERK, which can
subsequently phosphorylate nuclear substrates that in turn enhance
or suppress gene transcription. The MAPK family has been established
as a key regulator of the mechanoresponse of osteoblasts and
osteoprogenitor cells [154]. Cyclic stretch or shear flows can cause acti-
vation of members of theMAPK family, which enhances osteoblast pro-
liferation and differentiation [155]. Similar effects are seen for vascular
smooth muscle cells and endothelial cells [153]. However, it is still an
open question how these observations, mostly made for cells on rigid
substrates, translate to more physiologically relevant environments,
especially given that MAPK signaling is known to be dependent on sub-
strate stiffness [154]. Vinculin stretching was recently shown to initiate
stiffness-sensitive mitogen-activated protein kinase 1 (MAPK1) signal-
ing in hMSCs, causing differentiation to a muscle phenotype [156].

A second network that links integrin-mediated mechanosensing to
gene transcription is the Hippo network, which functions as a tumor-
suppressor pathway in vertebrates [157,158]. Its central components
are the transcriptional co-activators YAP1 (Yes-Activated Protein) and
TAZ (transcriptional co-activator with PDZ-binding motif). YAP/TAZ
binds to transcription factor partners, driving a transcriptional program
that specifies cell growth, proliferation and cell fate decisions. In cells
cultured on 2D hydrogels or micropillar substrates, YAP increasingly re-
locates from the cytoplasm to the nucleuswhen the substrate stiffness is
increased [159,160]. Cell stretching can likewise cause YAP relocation to
the nucleus [161,162]. It has been suggested that YAP/TAZ respond to
substrate stiffness by sensing contractile actin networks, since YAP acti-
vation is dependent on myosin contractility and is therefore enhanced
on stiffer substrates [163]. In addition, the actin-binding proteinsDiaph-
anous and Cofilin [161,159] and the Rho GTPases Rac and Cdc42 have
been implicated in YAP/TAZ activation [164,165]. YAP/TAZ activation
on a rigid substrate promotes osteogenic differentiation of mesenchy-
mal stem cells, whereas silencing YAP/TAZ favors the adipocyte fate re-
gardless of substrate stiffness [159].

A third family of co-activators of gene transcription is provided by
myocardin and the related transcription factors MRTF-A and MRTF-B,
whichmediate transcriptional regulation of the Serum Response Factor
(SRF) [166]. Rigidity-dependent signaling through MRTF-A involves di-
rect binding of MRTFA-A to the actin CSK. By binding and sequestering
actin monomers, MRTFA-A prevents actin polymerization [167]. Me-
chanical stress exerted by actomyosin contractility (on rigid substrates)
or exerted externally promotes actin polymerization and thus releases
MRTF-A, which is then able to move into the nucleus and activate SRF.
For fibroblasts, pulling on β1 integrins using collagen-coated beads
held in magnetic tweezers causes nuclear translocation of MRTF-A,
resulting in transcriptional activation of smoothmuscle actin and differ-
entiation to myofibroblasts [168].
actin-cap transverse arcs

Fig. 2. Schematic of a cell on top of a (stiff) two dimensional substrate. Focal adhesions
(FAs, pink) tend to be larger than for cells insidefibrous 3Dnetworks. Actin forms different
sets of stress fibers, as indicated. FAs are connected to actin stress fibers, and some can also
connect to microtubules (MT) and intermediate filaments (IFs). Newly formed FAs
(nascent adhesions, NAs) are not connected to stress fibers. The NAs canmature into larg-
er FAs upon actomyosin contraction. The cell nucleus is depicted in blue and the cellmem-
brane in gray.
6. The cytoskeleton (CSK)

In this section we will summarize recent findings reporting the con-
tributions of actin, MTs and IFs to cellular mechanosensing. Although
the emphasis has mostly been on the role of the actin CSK, which is re-
sponsible for traction force generation [19], there is growing evidence
that crosstalk between all three cytoskeletal systems is important
[169–171].
6.1. Actin

Cells in 2D culture typically show stress fibers, which are contractile
bundles of actin andmyosin II [19]. There are several different classes of
stress fibers [19,18]. Ventral stress fibers usually span almost the entire
cell length and are anchored at both ends to FAs. Dorsal stress fibers are
shorter and only connected to a FA at one end. Transverse arcs are
present in the leading edge during cell migration and are not associated
with FAs. The newly discovered actin-cap stress fibers span over, and
are anchored to, the cell nucleus (see Fig. 2). The degree of actin
crosslinking and bundling increases with increasing substrate stiffness.
For fibroblasts, this allows cells to adapt their stiffness to that of the sub-
strate [172].

Actomyosin contractility helps tomature nascent FAs into larger and
mature FAs [173] and reinforces actin anchoring via talin and vinculin
[174]. In motile cells, nascent adhesions form in the lamellipodium
withoutmyosin II activity. However, without actin-myosin contractility,
these adhesionswill notmature andwill instead turn over rapidly [173].
Actin polymerization is crucial for the formation of nascent adhesions.
The forces exerted on nascent adhesions is set by the speed of actin ret-
rogradeflow. However, in FAs that are anchored to stress fibers this cor-
relation no longer holds [173].

In reconstituted 3D ECMnetworks, stress fibers tend to be fewer and
thinner compared to 2D, and localized near the cell membrane [101].
However, similar to cells in 2D, the formation of stress fibers is depen-
dent on matrix stiffness [175]. For stem cells, stiffer matrices result in
a higher actin concentration near the cell cortex [100]. In 3D collagen
gels under dynamic compression, actin protrusions are correlated to
matrix remodeling [176].
6.2. Microtubules (MTs)

Despite the well-known roles of MTs in cell polarity and migration
[177], their role in mechanosensation has received relatively little
attention.

On 2D substrates, MTs do not appear to influence the degree of cell
spreading [177]. In contrast, MTs are crucial for cell spreading in 3D col-
lagen networks [177]. In the context of 2D cell migration, MTs promote
FA turnover, preventing the FAs to become so large that migration is
hampered. The exact mechanism of this regulation is still poorly under-
stood [178]. MTs may be required for delivery of a ‘relaxing factor’ by
kinesin motors [179], or for increased FA turnover via endocytosis
[180]. Other studies have shown a paxillin-dependent pathway in regu-
lating MT depolymerization [181,147]. Crosslinking of growing MTs to
actin stress fibers is required to guide the MTs to FA sites [182,183].
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MTs also influence FAs by regulating traction forces via crosstalk
with the actomyosin machinery. Both for fibroblasts on 2D substrates
[184,185] and inside 3D collagen gels [186,187], MT depolymerization
causes increased traction forces and thereby FAmaturation [188]. Inter-
estingly, this effect was not seen for metastatic breast cancer cells [189].
Inside collagen gels, increasing the matrix stiffness by increasing the
collagen concentration triggered MT depolymerization, which en-
hanced actomyosin contractility by releasing GEF-H1, which activates
RhoA [190]. A difficulty with this assay is that changing the collagen
concentration changes not only the matrix stiffness, but also its pore
size and the ligand density [90,191]. Recently a different assay was re-
ported, where endothelial cells were cultured in collagen networks of
fixed density, attached to PAA gels of varying stiffness [192]. In this
case, increasing the PAA gel stiffness did not affect the growth persis-
tence of the MTs.

6.3. Intermediate filaments (IFs)

IFs form a large family of proteins that can be classified into five dif-
ferent types based on their self-assembly behavior [193]. Here we will
focus on vimentin, which is important in mesenchymal cells like fibro-
blasts [194]. Through plectins, IFs can interact with actin and MTs
[195], as well as with integrins containing the β3 subunit [196]. Also,
vimentin directly links α6 integrins with the cell nucleus via plectin
and nesprin [197], although the function of this is unclear. In fibroblasts
on 2D substrates, the association of vimentin with integrins increases
the lifetime of FAs [198,199] and enhances traction forces [200]. FA-
binding of vimentin requires an intact MT network [199,200]. Intrigu-
ingly, vimentin knockout mice only show defects under conditions of
stress. They, for instance, exhibit reduced dilation of arteries in response
to shear flow [194]. At the single-cell level, vimentin responds to shear
flow [198]. Vimentin knockout mice also exhibit impaired wound
healing, which can be traced back to impaired fibroblast migration
[149,201]. Thismigration defectwas recently linked to reduced actomy-
osin contractility [149]. Vimentin increases cell stiffness and can protect
the cell against compressive loads [202]. In 3D collagen gels, the
vimentin and MT network persists after dynamic compression, while
the actin forms local patches to remodel the ECM [176]. Intriguingly,
on 2D substrates, the solubility of vimentin depends on the underlying
substrate stiffness [171], which may contribute to stiffness adaption of
cells to their substrate. In 3D matrices, vimentin-deficient fibroblasts
have a dendritic morphology and they make less cell-cell contacts
than wild type cells [201]. However, the implications for
mechanosensing in 3D are still unknown.

7. Moving forward from 2D to 3D

During the past few decades we have learned a lot about themolec-
ular and physical principles of cellular mechanosensitivity from 2D cell
culture studies. There is overwhelming evidence that cell fate critically
depends on the stiffness of the substrate, which is therefore an impor-
tant design parameter in tissue engineering. First studies of cells in
reconstituted 3D collagen and fibrinmatrices indicate that many results
carry over from the 2D to the 3D context. However, the ECM pore size,
nanotopography, the thickness and mechanics of the constituent fibers
influence cell behavior in complex ways. A key challenge for future re-
search is to design physiologically relevant assays that can unravel
these effects. Another key question is, what are the mechanisms by
which viscous and nonlinear mechanical properties of the matrix influ-
ence cell behavior? On the molecular side, it will be interesting to un-
derstand the influence of integrin composition. By changing the
fractions of catch- and slip-bond integrins, cells may modulate their
sensitivity to forces and matrix mechanics. Finally, there is growing
evidence that the actin CSK, that is generally considered to be the
main player for mechanosensing, is coordinated with MTs and IFs.
Comparatively little is currently known about the roles of MTs and IFs
in mechanosensing, especially in a 3D context.
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