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Abstract 

We investigate the reliability of broadcasting in product networks containing faulty nodes 
and/or links. Faults considered in this paper are mainly of the Byzantine type, i.e., a faulty 
node or a faulty link may not only stop sending a message but also arbitrarily change a message 
passing through the faulty place or even fabricate a false message. We assume that no nodes have 
a priori information about faults in a network. Hence, the key problem of reliable broadcasting 
in our model is how to control the message transmission so that any corrupted message cannot 
affect the result of the broadcasting too much. We propose the concept of an n-channel graph 
which has n-independent spanning trees rooted at each node. The fault tolerance can be achieved 
by sending n copies of the message along the n-independent spanning trees rooted at the source 
node. In this paper we show how to construct n-independent spanning trees of a product network 
from spanning trees of n-component graphs. Furthermore, we can design an efficient and reliable 
broadcasting scheme based on independent spanning trees for a product network from simple 
broadcasting schemes for component networks. The degrees of fault tolerance against crash faults 
and Byzantine faults of nodes and/or links are, respectively, n - 1 and L(n - 1)/2] in the worst 
case. We can successfully broadcast with a probability higher than 1 - k- rn~21 in any product 
network of order N consisting of n-component graphs of order b or less, if at most N/4b3nk 

faulty nodes are randomly distributed in the network. We can also successfully broadcast with a 
probability higher than 1 - k-‘“!‘l m any product network of size L, of n component graphs of 
size b or less, if at most L/12b2k faulty links are randomly distributed in the network. 0 1998 
Elsevier Science B.V. All rights reserved. 
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1. Introduction 

A processor network is expressed as a graph, where a node is a processor and an 

edge is a communication link. Broadcasting is the process of sending a message from 

the source node to all other nodes in a network. It can be accomplished by message 

dissemination in such a way that each node repeatedly receives and forwards messages. 
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Some of the nodes and/or links may be faulty. However, multiple copies of messages 

can be disseminated through disjoint paths. We say that the broadcasting succeeds if 

all the healthy nodes in the network finally obtain the correct message from the source 

node within a certain limit of time. Recently, a lot of attention has been devoted to 

fault-tolerant broadcasting in networks [l-4,6-9, 1 l-171. The reader may find more 

related references on this topic in good survey papers by Hedetniemi et al. [9] and by 

Pelt [14]. A paper by Hadzilacos and Toueg [S] is also a good survey on fault-tolerant 

broadcasts, but it emphasizes various types of failures including timing failures and the 

consensus problem. 

Two types of faults are usually supposed in the study of broadcasting in networks. 

One is the crash type, and the other is the Byzantine type. For the former type, a 

faulty node or link does not transmit any message (i.e., it stops sending any message). 

For the latter type, a faulty node or link may not only stop sending messages but 

also arbitrarily change messages passing through the faulty place, or even fabricate 

malicious messages. Fault tolerance of broadcasting against faults of the crash type has 

been much studied. However, fault-tolerant broadcasting against Byzantine faults has 

not been much studied. So far we know the following work related to this subject. In 

[l], Bagchi and Hakimi studied reliable broadcasting in a network with faulty nodes of 

the Byzantine type where each healthy node knows local information about faults, i.e., it 

knows which neighboring nodes are faulty. In [13], Pelt studied all-port broadcasting in 

a network with faulty links of the Byzantine type. He proposed a broadcasting scheme 

such that each healthy node sends a message after confirming it by majority voting. In 

[4], Blough and Pelt discussed broadcasting in complete graphs, core graphs and fat- 

ring graphs with faults of the Byzantine type, where no nodes know any information 

about faults. Their broadcasting scheme is based on the principle of vote-and-send in 

networks with the property that each node has a large number of neighboring nodes. In 

[2], Bao et al. discussed the reliability and efficiency of one-port broadcasting schemes 

in hypercubes with faulty nodes and links of the Byzantine type under the assumption 

that no nodes have a priori information about faults. 

In this paper we study fault-tolerant broadcasting against faulty nodes and/or links 

of the Byzantine type in product networks. We assume that the source node is always 

healthy and that no nodes know a priori information about faults. Hence, no information 

about the locations of faults can be used in the broadcasting. We also assume that 

each node in a network has a priori information about the network topology. For 

communication efficiency we should avoid unnecessary message transmissions, although 

some multiple copies of the message are necessary to tolerate faulty nodes and links. 

For this purpose we need a good strategy to control message transmissions so that 

every transmission contributes to the majority voting to obtain the correct message. Our 

fault-tolerant broadcasting scheme is non-adaptive in the sense that for each destination 

node, fixed internally node-disjoint paths from the source node to the destination node 

are used as its transmission channels no matter where faults exist. It does not require 

fault detection. The idea of such a kind of broadcasting scheme may be originally 

by Ramanathan and Shin [16]. Cristian et al. [6] discussed authentication-detectable 
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Byzantine faults that can be detected by error-correcting techniques or cryptographic 

protocols such as digital signatures. However, Byzantine faults considered in this paper 

belong to non-authentication-detectable Byzantine faults. 

The paper consists of five more sections. In Section 2, we introduce the concept 

of an n-channel graph, i.e., a graph that has n independent spanning trees rooted at 

each node. For an n-channel graph, we propose a general broadcasting scheme that 

sends messages along n independent spanning trees rooted at the source node. Fault 

tolerance can be achieved since we send n copies of the message along different chan- 

nels (i.e., independent spanning trees), so that a message corrupted at a place can 

spoil only one channel for each destination node. The degree of fault tolerance means 

the number of faults that can be tolerated. For the broadcasting scheme, the degrees 

of tolerance to crash and Byzantine node (and/or link) faults are, respectively, n - 1 

and [(n - 1)/2]. It was proved in [lo] by Itai and Rodeh that a graph is 2-channel 

if and only if it is 2-connected. It was also proved that any 3-connected graph is a 

3-channel graph by Cheriyan and Maheshari [5], and by Zehavi and Itai [ 191. How- 

ever, it remains open whether any k-connected graph is always a k-channel graph for 

any k>3. 

In Section 3, we show that a product graph of n-component graphs is an n-channel 

graph if each component graph is connected. We give a construction of n independent 

spanning trees of such a product network. Moreover, we derive a one-port broadcasting 

scheme that uses n independent spanning trees, and analyze its efficiency. The efficiency 

here stands for both the running time and the number of transmissions used by the 

broadcasting. The broadcasting discussed in this paper is optimal in the number of 

transmissions while its running time depends on the structure of the n independent 

spanning trees. In Section 4, we discuss the probability of successful broadcasting under 

the assumption that faults are randomly distributed in a network. We can successfully 

broadcast with a probability higher than 1 -k- rr1’21 in any product network of order N 

consisting of n-component graphs of order h or less, if at most N/(4b3nk) faulty nodes 

are randomly distributed in the network. Here the order (size) of a graph means the 

number of its nodes (links). 

In Section 5, we propose a broadcasting scheme for a product network with only 

faulty links of the Byzantine type, where we use the same principle vote-and-send as 

in [13]. The broadcasting in any product network of size L, consisting of n component 

graphs of order b or less succeeds with a probability higher than 1 - k-r”:21, if at most 

L/12b2k faulty links are randomly distributed in the network. This means that broad- 

casting in any product network of size L with O(L) faulty links randomly distributed, 

consisting of n-component graphs, succeeds with a high probability, if b is a constant 

independent of L and n. Conclusions are given in Section 6. 

2. Broadcasting in n-channel graphs 

We first introduce the definitions of independent spanning trees and n-channel graphs. 
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Definition 1. Two spanning trees of a graph G = ( V, E) are called independent if they 

are rooted at the same node r, and for each node v E V, the two paths from Y to V, 

one path in each spanning tree, are internally node-disjoint. The n spanning trees of G 

are said to be independent if they are pairwise independent. 

Definition 2. A graph G is called an n-channel graph at node r if there are n inde- 

pendent spanning trees rooted at r of G. If G is an n-channel graph at each and every 

node, G is said to be an n-channel graph. 

Itai and Rodeh [lo] used independent spanning trees as reliable communication chan- 

nels in networks, and they showed a linear-time algorithm for finding two independent 

spanning trees in a biconnected graph. However, it is open whether for any k > 3, any 

k-connected graph is a k-channel graph [5, 191. 

Theorem 1. For broadcasting in any n-channel graph, the degrees of tolerance to 

crash and Byzantine node (and/or link) faults are n - 1 and [(n - 1)/2], respectively. 

Proof. For the case of faults of the crash type the assertion of the theorem is 

immediate. 

We consider faults of the Byzantine type and a fault-tolerant broadcasting scheme 

sending messages through n independent spanning trees of an n-channel graph G. For 

simplicity, we first assume that each node in a network knows the source node. How- 

ever, this restriction can be removed as stated later in this proof. Let s be the source 

node of G, and let Tt(s), T*(s), . . . , T,(s) be n independent spanning trees rooted at s 

of G. We assume that every node of G knows its parent and sons in Ti(s) for each 

i (1 < i dn). Let m be the original message in the source node s. For each i (1 < i <n), s 

sends message (i,m) to the sons of s in Ti(s). Then each node u of G works concur- 

rently in the following fashion: 

When u receives a message (i;fi) from an adjacent node v, u checks whether 

v is the father of u in T;(s). If yes, then u saves (T, iii) and transmits (7, fi) to 

all its sons in T,:(s); otherwise, u does nothing. 

Note that fi may not be m since a message may be altered at a faulty place. If the 

message received by u is not in the form of (i; Kz), then u ignores it. If u receives 

messages more than once from the same node, it accepts only the message that arrived 

first. The situation of this process is depicted in Fig. 1. 

When the broadcasting is completed, each node u of G obtains at most n copies 

of the message m, each of which comes through one of the n-independent spanning 

trees Tl (s), TV, . . . , T,(s). Although any faulty node can affect all the n-independent 

spanning trees, for each node u the faulty node can affect just one of the n paths from 

s to u, each path in its corresponding independent spanning tree. Hence, if at most 
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the subtrer ofT, (s) rooted nt u the subtree of T2 (s) rooted ot u the subtrre of T,, (s) rooted ot u 

Fig. 1. Message transmissions through u. 

[(Fl - I)/21 f au It y nodes and/or links exist, then every node u of G can obtain the 

correct message m by majority voting. 

In the discussion above, we assumed that every node u of G knows s to be the 

source node. However, this assumption is too restrictive, and it can be removed by 

slightly modifying the broadcasting procedure as follows. Suppose that node s wants 

to broadcast a message m in the network where other nodes do not know that s is the 

source node. Let G be an n-channel graph, and let T,(r), Tl(r), . . , T,(r) be n indepen- 

dent spanning trees rooted at node Y. Every node u of G knows T,(r), Tl(r), , T,(r) 

for each node r since we assume that every node has a priori information about the 

network topology. In the modified version of the broadcasting, for each i( 1 <i<n), .s 

sends message (~.i,m) to its sons in Ti(.F). Then every node u of G works concurrently 

in the following fashion: 

When u receives a message (S; T, 6) from an adjacent node ti, u checks whether 

c is the father of u in T;(S). If yes, and u did not receive any message (S.i,@) 

from t’ before, then u saves (S, i, +z) and transmits (S, i; #z) to all the sons of u 

in I;-(S). Otherwise, u does nothing. 

When the broadcasting is completed, for some node x of G, each node u of G 

may obtain at most n messages which are claimed to be originally from x, namely, 

(x, l,mi), (x,2, mz), . . , (x,n,m,). If the message through the jth independent spanning 

tree did not reach U, or it was rejected by u because of its illegal format (e.g., (x,,j,rn,) 

is rejected by u if it reached u through an edge not in T,(x)), we interpret m, as an 

empty value. Then u chooses the most common non-empty value of {ml, m2,. , m,,}. 

If at least [(n + 1)/21 non-empty common values exist in the set, u decides the most 

common value to be the message from the source node x. If at most [(n - I)/21 

faults exist in the network and only s broadcasts message m, then every node u knows 

correctly that the message disseminated from s is m by majority voting. Note that if 

a malicious node x pretends to be the source node and sends a message through n- 

independent spanning trees rooted at x, in general we cannot remove such a message 

from the malicious node x. However, even in such a case every healthy node can 

obtain the correct message from the correct source node if the number of faults is at 

most L(n - 1)/2]. 0 
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In order to tolerate L(n- 1)/21 faults of the Byzantine type in G under the assumption 

that no nodes have a priori information about faults, each node should receive at least n 

copies of the message originally from the source node. Hence, for this purpose at least 

(1 V(G)1 - 1)~ transmissions are required, where 1 V(G)] denotes the order of G (i.e., 

the number of nodes of G). As described in the proof of Theorem 1, the broadcasting 

based on n-independent spanning trees uses exactly (1 V(G)/ - 1 )n transmissions if 

no faults exist. We therefore can say that the broadcasting through the n-independent 

spanning trees in this fashion is optimal for communication complexity. It is hard to 

estimate the number of transmissions when faults of the Byzantine type exist. The 

running time of the broadcasting depends on various factors of the network. These 

factors are the structures of the n-independent spanning trees, communication mode 

(one-port or all-port), timing of transmissions, and so on. 

3. Broadcasting in product networks 

For a pair of graphs Gi =(Vl,El) and G2 =(Vz,Ez), the product of Gt and G2, de- 

noted by G = Gi x Gz, is a graph with the node set VI x V2 = {(x, y) 1 x E VI, y E V2) 

and the edge set such that two nodes (ui,u2) and (01, ~2) are adjacent in Gi x G2 if and 

only if either ui = vi and (24 02) E E2, or 2.~2 = v2 and (~1, vi) E El. The definition of the 

product of two graphs can be generalized to the product of n graphs in the natural way. 

That is, Gi x GZ x . . . x G, means (Gi x . . . x Gk) x (Gk+i x ... x G,) for some k 

(l<k<n-1). Each Gi (1dibn)iscalledacomponent graphofG, XGZX ... xG,. 

The product of graphs is also called a product network. To avoid trivial cases, through- 

out this paper we assume that each component graph is connected and has at least two 

nodes. An edge in a network is often called a link in this paper. 

Some popular interconnection networks are product networks. For example, the 

n-dimensional hypercube (n-cube for short) Q,, is QnPi x K2 = Qn-2 x K2 x K2 = . . = 

K2 x K2 x . . . x K2, and an n-dimensional generalized hypercube QL is QL_, x Kt = 

Q;_2~Kt~Kt=Kt~Kt~ ... x K,, where Kt is the complete graph of order t. 

The (ml x ... x m,)-mesh is L,, x ... x L,,,, and the (ml x ... x m,)-torus is 

R,, x . . . x R,,,, where Lm2 and R,, are a linearly linked graph of order mi and a 

ring of order m,, respectively. 

Let d(G), deg(G), d,,,(G) and c(G) denote the diameter, the degree, the average 

distance and the node connectivity of G, respectively. Youssef [ 181 proved that for 

a pair of graphs Gi and G2. d(G1 x Gz)=d(Gi) + d(Gz), deg(Gi x G~)=deg(Gi) 

+ de&), &,,(GI x G2) = &,,(Gi) + &s(G2), and c(Gi x G2) = ~(GI ) + c(G2). 
In this section, we construct n-independent spanning trees in a product network of 

n-component graphs, G = Gi x G2 x . . . x G,,. We use just one spanning tree of each 

Gi, i.e., we only require that each Gi is connected. The construction of independent 

spanning trees given in this section is suitable for a product network such that each 

component graph cannot be expressed as a product of graphs and has a small con- 

nectivity. For example, we construct n-independent spanning trees of the n-cube Qn 
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from nK2’s (i.e., we use the structure Qn = K2 x K2 x K2 instead of the structure 

Qn = Qi x Q,,_;). Note that from the structure Q,, = Qi x Qn-; we can obtain only two 

independent spanning trees of Q,, by our construction. The construction given in this 

section is relatively simple, and the proof of its correctness is clear. The basic idea 

of this construction can be generalized to a construction using more spanning trees 

of each component graph. However, that construction is complicated and will not be 

discussed in this paper. 

Theorem 2. For any node s = (sI,s~, . . . , s,) of’ product G=G,xGzx ... xG,,, 

there exist n-independent spanning trees of’ G rooted at s, where Gi is connected 

and si is a node of Gi for each i (1 <i<n). 

Proof. Let Tf be a spanning tree of Gj rooted at s, for each j (1 <j <n). From these 

spanning trees, T;’ (1 d j <n), we construct n independent spanning trees I”, , . . i T,, 

rooted at (sI,...,~,) of G. 

For each i ( 1 d i d n) we construct 7; as follows: We first develop the ith component 

along T, then develop the (i + 1)th component along TL$, , the (i + 2)th component 

along Tf+2,. . , the nth component along T,f, the first component along r;, . . , and 

finally the (i - 1 )th component along q_, (if i = 1, the final development is along 7”). 

Each node in {(Xl ,..., Xi_r,Si,xi+r ,..., Xn)lXjEG/ for j=1,2 ,..., i- l,i+ l,..., 11) is 

connected to the node obtained by replacing the ith component s, by one of its sons 

in Tf , say t,. Each of these edges is used as a link to reach a node with s, in the ith 

component. The construction of Ti is more formally described as follows: 

(1) Let V,={(sr ,..., si_~,xi,si+~ ,..., s,)~x,E V(G,)}. Each pair of nodes in VI, 

(SI,. ..,Ss_l,,vlrSj+r ,..., s,) and (sr ,..., sIPr,yi,s;+r ,..., s,,) are connected by an 

edge if and only if y, and yj are adjacent in Tf. 

(2) For each k (1 <k<n - i), let Vr+k = {(sr ,...,sI-I:& >...> Xifk, Si+k+l,...,&f) lx, E 
V(Gi)-{si}, and Xj E V(Gj) for j = i+l, i+2,. . . , i+k}. Each pair of nodes in Vl+k, 

(Slr...,Si-I,XI,...,Xi+k-l,Yi+k, Si+k+lr...,Sn) and (sI,...,s,-~,~i,...,XI+I-l,?i:tk, 
s,+k+l,. . ,s,) are connected by an edge if and only if y,+k and _v:+~ are adja- 

cent in T.’ r+k 

(3) For each k (n - i + 1 <k<n - l), let V l+k={(XI,...,Xk~n+i,Sk-n+iil,... ’ ,J,-1, 

x; ,..., x,)Ixi~V(Gi)-{si}, andxiE(Gj) forj=i+l,..., n,1,2 ,..., k-n+i}. 

Each pair of nodes m Y,+x., (xl,. ..t~k--n+,-l,,~k--n+i,~k--n+i+l,..~,~i~l,~ir.-.~~,i~ 

and (X~,...,Xk--n+i-~,Y~_~+i,Sk--n+i+I,... , s,_ 1, xi. . . ,x, ) are connected by an edge 

if and only If yk_n+i and yL_,,+, are adjacent in Ti_-n+i. 

(4) Let V,+j = {~xl~~~~~xi-l~~i~xi+l~~~ .,X,) (Xi E V(G,) for j# i}. For each node 

(Xl ,..., xi-r,si,Xi+r ,..., x,) in Vn+l, it is connected to (XI ,..., Xl-l,f;,Xi+l,..-, x,,) 

by an edge, where ti is the leftmost son of Si in y. 

Apparently, VI - {s} c Vz c c V,,, and V, U VT?+, is equal to V(G). Let T, be 

the graph with the node set V(G) and the edge set specified in (l)-(4) above. From 

the construction of T,, for each node u in T; there is a path from s to u. Hence, 

I; is connected. Let bi denote jV(G,)) f or each i ( 1 <i <n). The numbers of edges 
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constructed in Vr, I’,, Vs,..., V,,, Vn+l are bi - l,(bi - l)(bi+r - l),(bi - l)bi+l(bi+z 

- l),..., (bi - l)bi+l . ..b.bl . ..bi-2(bi-l - l),bl . ..bi_lbi+l . ..b., respectively. The 

edge between (sI,s~, ,s,) and (St,. . . ,Si_lrti,Si+l , . . . ,s,) appears twice, both in VI 

and in V,,+l. All other edges appear exactly once. Hence, the number of edges of T, is 

(b~-l)+(b~-l)(b~+~-l)+(b~-l)b~+~(b~+~-l)+~~~+(b~-l)b~+~ ..‘b,bl . ..bi-2(bi-l 

-l)+bl...bi_lbi+l...b,-l=blb~...b,-l=IV(G)I-l.Hence, Tiisaspanning 

tree rooted at s=(st,...,s,) of G. 

For each node u=(ur,..., u,) of G and each i (1 <i <n), a path from s to u 

in Ti excluding s and u is denoted by pi(s, u). We show that pr(s, u), . . . , p,(s,u) 

are node-disjoint. Suppose that Sj = Uj if j E {il,. . . , ik}, and otherwise sj # Uj, where 

l<il <“’ <ik<n. 

We first consider the case where j E {iI,. . . , ik}. Then the jth component of every 

node on pj(s,u) is tj, the leftmost son of Sj in Ty, whereas for any if j, the jth 

component of every node on pi(s,u) is Sj. Hence, for any i # j, pi(s, u) and pj(s,u) 

are node-disjoint. 

We next assume that j @ {iI,_. . ,ik}. Then we need only to prove that for i $ 

{i],...,ik} and if _I, pi(s, u) and p,(s, u) are node-disjoint. Suppose that i $4 {il,. . , ik}. 

Without loss of generality, we may assume that i<j. Let Y be the largest integer such 

that r<j and u, fs, (i.e., r${il,..., ik}). Since Ui #si, such r exists. Then the jth 

component of any node on pi(S,u) is Sj unless its rth component is ur. On the other 

hand, the rth component of any node on pj(s,u) is not ur, and the jth component of 

any node on pj(S, u) is not Sj. Hence, pi(S, u) and pj(s, u) are node-disjoint. 

Thus, the n spanning trees Tl, T,, . . . , T,, we constructed above are independent 

spanning trees rooted at s of G = Gt x G2 x . . . x G,. 0 

Note: “Disjoint spanning trees” of a product network constructed in [12] are just 

edge disjoint. Those spanning trees are much weaker than independent spanning trees 

considered in this paper, i.e., the fault tolerance of broadcasting along the spanning 

trees in [12] is much weaker than ours in this paper against faulty nodes. 

The next theorem is immediately from Theorem 1 and the discussion in Section 2. 

Theorem 3. For broadcasting in the product network Gl x . . x G,, the degrees of 

tolerance to crash and Byzantine node (and/or link) faults are n - 1 and [(n - 1)/21, 

respectively. 

We next consider the efficiency of the broadcasting scheme based on n-independent 

spanning trees. The time interval for a message transmission through a link is assumed 

to be a unit time. This time unit is also called a step. Broadcasting time is measured 

as the number of concurrent steps from the start to the end of the broadcasting. The 

number of messages transmitted during the broadcasting is measured as the total number 

of link transmissions in the network. In general, we cannot evaluate the number of link 

transmissions in a network with faults of the Byzantine type, since faulty nodes and/or 

links may arbitrarily fabricate messages and send them. However, if there are no faults, 
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the number of link transmissions during the broadcasting through the n-independent 

spanning trees of a product network is n(N - l), where N is the order of the product 

network and n is the number of its component graphs. 

We can consider two types of broadcasting with respect to message transmission 

methods. One is the all-port broadcasting, and the other is the one-port broadcasting. 

For the former type each node can transmit messages to all adjacent nodes in a step, 

whereas for the latter type each node can transmit a message to only one of the adjacent 

nodes or receive a message from one of the adjacent nodes in a step. 

Theorem 4. Let s = (~1,. . ,s,) be the source node in the product network G = G, x 

x G,. Suppose that aI is the minimum time oj’ull-port broudcusting jiom ,yi through- 

out G, und thut /3i is the minimum time of one-port broudcusting jiom si throughout 

Gi,Jor i= 1,2,... , n. Then the following two ussertions hold true: 

(1) There exists a fault-tolerant &port broadcasting jLom s throughout G such 

thut its running time is 1 + C:=, a,, und its degree qf tolerunce to Byzantine 

faults is [(n - 1)/2]. 

(2) There exists a fault-tolerant one-port broadcasting from s throughout G such 

that its running time is 2 c:z,’ /I+/$,+ 1, and its degree of tolerance to Byzantine 

jbults is L(n - 1)/2J. 

Proof. From Theorem 3 both types of broadcasting can tolerate up to [(n - I)/21 faults 

of the Byzantine type. 

(1) Since cl; is the minimum time of all-port broadcasting from si throughout G,, 

there exists a spanning tree TfF rooted at si of G such that its height is x, for each i 

(1 <idn). Let TI,T~ ,..., T, be n-independent spanning trees rooted at s = (~1.. , s,,) 

of G constructed from rf, T;,. . ., T,f. From the construction described in the proof 

of Theorem 1, the height of z is C. ,@{I ,..., i--l,i+1,_.., II} CI, + max{ xl, 2). Hence, the all- J 
port broadcasting through the n-independent spanning trees T,, Tl, . , T,, finishes in 

1 + C:=, c(, steps. 

(2) Again, we suppose that for each i (1 <i<n), T; is the spanning tree rooted at 

si of G, and that the one-port broadcasting through T,! needs PI steps. Let TI, Tz, I T,, 

be the n-independent spanning trees rooted at s = (~1,. ,s,,) of G constructed from 

r;‘, T’ 2’...,T;. 

We consider a particular implementation of the broadcasting to estimate its run- 

ning time. We divide the broadcasting process into 2n rounds, say round,,roundl, . _, 

roundz,. For each i (1 <i <n - 1 ), each of round, and round,+i consists of pi steps, 

round,, consists of /?,, steps, and roundl, consists of just one step. Consider broadcast- 

ing through T; (1 <i <n). From the construction of the n-independent spanning trees 

the following implementation is possible: the development of the jth component can 

be done along q during round, if j>i, and can be done during roundJTn if j ti. The 

development of the ith component can be done along q? during roundi except for one- 

step moves from (XI,. ,-X-1, ti,xi+l,. . ,x,~) to (xl.. ,-~i_l,si,xi+l,. .,x,{), where for 

each k, xk is any node in the kth component graph. These one-step moves can be done 
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in a step of round,+i. We can see that this implementation is a one-port broadcasting by 

considering the following restriction on transmissions: Let u = (~1,. . . , ui_ 1, ui, Ui+l, . . . , 

u,) and u’=(Ui )..., Ui_i,nI,ni+i )...) u,) be a pair of adjacent nodes in Gi x . . . x G,,. 

We allow node u to send message to u’ only at the jth step of roundi or roundi+, if 

in the one-port broadcasting in Gi through the spanning tree T,!, the transmission from 

ni to ui is at the jth step. Since Tl, . . . , T,, are independent, u has at most one message 

to send at each step. Hence, the one-port broadcasting finishes in 2 CyQ’ pi + /In + 1 

steps. 0 

4. Randomly distributed faults 

For large networks the worst case rarely appears. That is, broadcasting succeeds with 

a high probability even if many more than [(n - 1)/2] faults exist in a product network 

of n component graphs. 

We assume that f faulty nodes of the Byzantine type are randomly distributed 

in a product network and that all the links are healthy. We consider broadcasting 

from the source node through n-independent spanning trees of a product network. The 

purpose of this section is to show the relation between the number of faulty nodes 

and the probability of successful broadcasting, i.e., we show that the broadcasting 

in a product network G can tolerate a constant fraction of N/(b3n) Byzantine faults 

randomly distributed in G with a high probability, if II is sufficiently large, where N 

is the order of G, n is the number of component graphs of G, and b is the maximum 

among the orders of the component graphs. 

Suppose that each configuration of the network with f faulty nodes is equally prob- 

able. We denote a configuration of network G with f faulty nodes by CL, and denote 

the set of all configurations of G with f faulty nodes by Cf,. If broadcasting in cfc 

succeeds, then ci is called a successful configuration, otherwise ci is called a failed 

configuration (see Fig. 2). We denote the set of all successful configurations of G with 

f faulty nodes and the set of all failed configurations of G with f faulty nodes by 

0 

healthy node 
0 

faulty node 

Fig. 2. A failed configuration. 
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SC; and FCf,, respectively. Then the probability of successful broadcasting in G with 

f faulty nodes is equal to ISCf,l/lCf,I = 1 - IFC$/ICfGI. 

Let us consider a product network G = Gi x . x G,, where the order of each G, 

(1 did n) is not greater than b. Let s be the source node of G, and let q1 (s, u), . , q,, 

(s, u) be n paths from s to u in the n-independent spanning trees ri, Tz, . . , T,, respec- 

tively. As shown in the previous section, these n paths are internally node-disjoint. By 

the broadcasting scheme the message from the source node s is disseminated to each 

node u of G through the n-independent spanning trees. From the construction of the 

n-independent spanning trees, for each i (1 bi <n) there are at most nb nodes on 

qi(S, 24). If in a configuration cfc, more than L(n-1)/2] paths among ql(s,u), qz(s, u), . . . 

qn(s,u) contain faulty nodes, then co f is called a failed configuration for U. We denote 

the set of all failed configurations for u by FC&(u). Then we have 

lFCf,I -=c c IFC’GG4. 
UE V(G) 

Theorem 5. If f faulty nodes of the Byzantine type are randomly distributed in 

a product network G = G, x . . . x G, with no faulty links, then the broadcasting 

through the n-independent spanning trees in G is successful with a probability higher 

than 1 - (4b3nf /N)rn/‘l, where N is the order of G and b is the maximum order of 

the component graphs. 

Proof. The probability of successful broadcasting through the n-independent spanning 

trees of G is 

IS4 
m= 

1 _ IF@ > 1 _ &V(G) IFci%)l 
lCf,l I@ 

For any node u of G, there are n internally node-disjoint paths ql(s,u), . . . , q,(s, u) 

of length at most bn. Let us consider the configurations where exactly [n/21 faulty 

nodes exist and they are on the different paths among the n node-disjoint paths from 

s to u. The number of such configurations is apparently no more than (bn) rfl/2’ ($t,). 

By repeatedly counting, we have 

lFCf,(u)l <(bn) ‘n’21 (,;2,) (7: ;I;;;). 

Hence, 

= N(bn)r"'21 
f(f - l)...(f + 1 - 1421) 
N(N - 1). . (N + 1 - [n/21 ) 

<b”(bn)r”/212” 
(,),.,- < (4b;f )““, 



14 F. Bao et al. IDiscrete Applied Mathematics 83 (1998) 3-20 

Then we have 

The probabilistic assumption in Theorem 5 is that there are exacly f faulty nodes 

randomly distributed in the network. We can also more realistically consider all con- 

figurations with up to f faults to estimate the probability of successful broadcasting. 

In this case, we assume that the probabilities of configurations with the same number 

of faults are equal. Then we can derive a similar result for such a distributed model 

of faults as described in the next theorem. 

Theorem 6. If up to f faulty nodes of the Byzantine type are randomly distributed in 
a product network G = G1 x . . x G,, with no faulty links, then the the broadcasting 
through the n-independent spanning trees in G is successful with a probability higher 
than 1 - (4b3n f /N) rn12’, where N is the order of G and b is the maximum order of 
the component graphs. 

Proof. We assume that for any i (i< f ), every configuration with i faulty nodes is 

equally probable. Let the probability that exactly i faulty nodes exist be pi. Since we 

assume that there are up to f faulty nodes exist in the network, Elf=, pi = 1. From 

Theorem 5 we have 

l~~l>~_(~)ln:2i>l_(4b~f)in21, 

Hence, when there are up to f faulty nodes randomly distributed in the network, the 

probability of successful broadcasting is 

5 IS!‘, I p,, 1 _ 4b3nf ““’ q 

i=o I%1 Z ( ) N ’ 

The next corollary is immediately from Theorem 6. 

Corollary 1. For any k > 1, if at most N/4b3nk faulty nodes of the Byzantine type are 
randomly distributed in a product network G = G1 x . . . x G,, then the broadcasting 
through the n-independent spanning trees in G is successful with a probability higher 
than 1 - k-‘“i2’, where N is the order of G and b is the maximum order of the 
component graphs. 

From Corollary 1, we can say that if b is a constant independent of N and n, and 

if n is sufficiently large, then the product network can tolerate a fraction of N/n faulty 

nodes of the Byzantine type randomly distributed in the product network with a high 

probability. 
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We can similarly prove the next corollary. 

Corollary 2. For any k > 1, if at most N/b2nk faulty nodes of the crash type are 

randomly distributed in a product network G = G1 x x G,, then the broadcasting 

through the n-independent spanning trees in G is successjiil with a probability higher 

than 1 -ken, where N is the order of G and b is the maximum order of the component 

graphs. 

In the case where faulty links exist in a product network with no faulty nodes, we 

can derive a similar result to Theorem 6. 

Theorem 7. If up to f faulty links of the Byzantine type are randomly distributed 

in a product network G = GI x . . x G, with no faulty nodes, then the broadcasting 

through the n-independent spanning trees in G is successful with a probability higher 

than 1 - (4b3nf /L)r”l’l, where L is the size of G and b is the maximum order of the 

component graphs. 

The following two corollaries can be also similarly derived. 

Corollary 3. For any k > 1, zf at most L/4b3nk faulty links of the Byzantine type are 

randomly distributed in a product network G = G1 x . . . x G,, then the broadcasting 

through the n-independent spanning trees in G is successful with a probability higher 

than 1 - k-l*l’l, where L is the size of G and b is the maximum order of the 

component graphs. 

Corollary 4. For any k > 1, if at most L/b2nk faulty links of the crash type are 

randomly distributed in a product network G = Gl x . x G,, then the broadcasting 

through the n-independent spanning trees in G is successful with a probability higher 

than 1 -kP’, where L is the size of G and b is the maximum order of the component 

graphs. 

5. Tolerate O(L) faulty links 

From Theorem 7 or Corollary 3 in the previous section, if the number of faulty 

links is at most L/4b3nk, then broadcasting through the n-independent spanning trees 

succeeds with a probability higher than 1 - k- rn’2l. This means that the broadcasting 

can tolerate, with a high probability, O(L/n) faulty links of the Byzantine type randomly 

distributed in a product network of n-component graphs. In this section, we give another 

broadcasting scheme that can tolerate, with a high probability, O(L) faulty links of the 

Byzantine type randomly distributed in a product network of n-component graphs. 

This result supports the intuition that the malicious results caused by faulty links of 

the Byzantine type are fewer than those caused by faulty nodes of the Byzantine 

type. 



16 E Bao et al. IDiscrete Applied Mathematics 83 (1998) 3-20 

Let us consider broadcasting from the source node s = (~1,. . . ,s,) in a product net- 

work G= Gt x ... x G,. Let T be one of the n-independent spanning trees rooted at 

s of G, say T = T,, where T,, . . . , T,, are specified in the proof of Theorem 2. Consider 

a pair ofnodes of G, tl=(ut ,..., ui_t,ui,ui+i ,..., u,) and U’=(Ut ,...y Ui_t,Ui,Ui+t ,..., 

u,,), where Ui and ui are adjacent in Gi. Then there exist the following n internally 

node-disjoint paths from u to u’, q1 (u, u’), . . . , q,(u, u’): Let qi(u, u’) be the link between 

u and u’. Let for each j (1 <j # i < n), qj(u, u’) be the path, 

+-+(a.. .,Uj-l,tj,Uj+l,...,Ui--l,UI,Ui+l,...,Un) 

++(w,..., ~j-l,~j,~j+l,...,~i-l,~I,ui+l~..~, u,)=u’, 

where tj is an adjacent node of uj in Gj. 

For each j (1 <j# idn), there are dcg(uj) choices of qj(u, u’), or say tj, where 

deg(uj) is the degree of Uj. These deg(aj) paths, qj(u,u’)‘s are internally node- 

disjoint, and each of qj(U, u’) and any qk(u, u’) (k #j) are also internally node-disjoint. 

Hence, there exist at least 1 + Clgjgi_ deg(uj) node-disjoint paths of length less 

than or equal to 3 between u =(ut,uz,. . .,u,) and U’ =(Ut,. . . ,ui_l,u~,ui+l,. . .,u,). 

In this section, for each pair of adjacent nodes u and u’ we only consider the n 

paths q1 (u, u’), . . . , q,(u,u’) instead of all the 1 + xlgjfiGn deg(uj) paths. However, 

it is not difficult to modify the broadcasting scheme so that we use all the 1 + 

Cl Gjfi+, deg(uj) paths for connecting u and u’. The analysis of its fault tolerance 

will be similar. 

We modify the broadcasting scheme as follows: Consider the broadcasting from s 

in G through the spanning tree T rooted at s. We replace the transmission between 

each pair of adjacent nodes in T, say, from u to u’ by n transmissions through the n 

paths, 41 (u, u’), . . . , q,(u,u’) of length less than or equal to 3. The majority voting is 

taken by u’ on the n messages transmitted through ql(u, u’), . . . , qn(u, u’), respectively. 

The difference between the principles of the modified broadcasting and the original 

one proposed in Section 2 is as follows: in the original broadcasting, the majority 

voting is taken at every node after all the transmissions have finished while in the 

modified broadcasting, each node takes the majority voting on the n messages received 

through the n paths of length at most 3 as described above. Then it transmits the 

message chosen from the majority ones to other nodes along the modified graph from 

T. The principle of the modified broadcasting is shown in Fig.3. The transmission graph 

obtained by the modification of the spanning tree in this way is called the transmission 

pseudo-tree. 

The number of transmissions used by the modified one is not larger than three times 

of the number of transmissions by the original one. For the case of all-port broadcasting, 

the running time of the modified one is about three times as much as the running time 

of the original one. For the case of one-port broadcasting, it is difficult to estimate the 

running time of the modified one. 
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Fig. 3. Each link of T is replaced with n paths of length equal or less than 3 

Theorem 8. Zf up to f faulty links of the Byzantine type are randomly distributed 

in a product network G = G1 x . . x G, with no faulty nodes, then the broadcasting 

through the transmission pseudo-tree in G is successful with a probability higher 

than 1 - ( 12b2 f IL) in121, where L is the size of G and b is the maximum order of the 

component graphs. 

Proof. We assume that for any i (i < f ), every configuration with i faulty links is 

equally probable. We first consider the case where there exist exactly f faulty links of 

the Byzantine type randomly distributed in the network. We denote a configuration of 

G with f faulty links by I$, and the set of all configurations of G with f faulty links 

by ci. For the broadcasting through the transmission pseudo-tree in G, we denote the 

set of successful configurations of G with f faulty links by Sci, and the set of failed 

configurations of G with f faulty links by Fc’fG. 

Let T be r, (i.e., the first spanning tree specified in the proof of Theorem 2). Let 

for each link (u,v) of T, F&u,u) be the set of configurations of G such that at 

least (n/21 paths among ql(u, II), . . . , q,(u, u) contain faulty links. Then the following 

inequality holds: 

Since the length of each q;(u, Y) (1 <i<n) is at most 3, we have 

IFcf,(u, v)l < ( ,n;2, ) 3r”21 (; 1 F; ) . 

Hence, 

3rn,2;f(f - l)...(f + 1 - [n/21> 
L(L - l)...(L + 1 - [n/21) 

<b”2”3[“/21 (;)‘“;” < ( 12;f)‘“2’, 
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where N is the order of G. Thus, we have 

I@ _ 1 _ (FCij > 1 _ r”2’ 
-_ _ 

IG 1% 

The rest of the proof is similar to the proof of Theorem 6, i.e., using the inequality 

shown above and the same argument as the proof of Theorem 6, we can show that 

the probability of the successful broadcasting is higher than 1 - ( 12b2f/L)1”“’ in the 

case where there exist up to f faulty links of the Byzantine type randomly distributed 

in the network. 0 

The next corollary is immediate from Theorem 8. 

Corollary 5. For any k > 1, if at most L/12b2k faulty links of the Byzantine type are 
randomly distributed in a product network G = G1 x . . ’ x G,, with no faulty nodes, 
then the broadcasting through the transmission pseudo-tree in G is successful with a 
probability higher than 1 - kkr”121, where L is the size of G and b is the maximum 

order of the component graphs. 

We can similarly prove the next corollary. 

Corollary 6. For any k > 1, tf at most L/3bk faulty links of the crash type are ran- 
domly distributed in a product network G = G1 x . . ‘ x G,, with no faulty nodes, then 
the broadcasting through the transmission pseudo-tree in G is successful with a prob- 
ability higher than 1 - k-“, where L is the size of G and b is the maximum order of 
the component graphs. 

6. Conclusions 

We studied the reliable broadcasting in product networks. We showed that any prod- 

uct network of n-component graphs is an n-channel graph. The reliability of our broad- 

casting scheme is based on message transmissions through the n-independent spanning 

trees rooted at the source node. For the case where all the nodes are healthy but some 

links may be faulty, we proposed a modified broadcasting scheme which is more re- 

liable against faulty links but less efficient than the original one. Since we assume 

that no nodes in a network have a priori information about faults, the method using 

independent spanning trees is the most efficient and the most reliable against Byzantine 

faults. However, the following two problems arise from our approach if we consider a 

general network: 

(1) How can we construct independent spanning trees for an arbitrary graph? This 

is a very hard problem. In fact, it is open whether every n-connected graph has 

n-independent spanning trees with the same root. The problem has been solved only 

for k-connected graphs, k63 in [5, 191. Furthermore, even if we know a method of 
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constructing independent spanning trees for some graphs, the independent spanning 

trees obtained by the method may not have good properties. It is important to con- 

struct independent spanning trees with good properties, e.g. with low heights and regular 

structures. 

(2) How can we devise efficient broadcasting schemes, in particular, for one-port 

broadcasting, based on message transmissions through independent spanning trees if 

they are available? Since such broadcasting consists of sub-broadcastings, each through 

one of the independent spanning trees, there are few hints about how each node uses 

an efficient strategy at each step. A good scheme has a short broadcasting time, but a 

poor scheme may need a long broadcasting time. 

These problems would be worthy of further investigation. 
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