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Abstract Power control algorithms are an important consideration in mobile ad hoc networks

since they can improve network capacity and lifetime. Existing power control approaches in ad

hoc network basically use deterministic or probabilistic techniques to build network topology that

satisfy certain criteria (cost metrics), such as preserving network connectivity, minimizing interfer-

ence or securing QoS constraints.

In this paper, wewill provide a survey of the various approaches to deal with power controlmanage-

ment inmobile ad-hoc wireless networks.Wewill classify these approaches into fivemain approaches:

(a) Node-Degree Constrained Approach, (b) Location Information Based Approach, (c) Graph

Theory Approach, (d) Game Theory Approach and (e) Multi-Parameter Optimization Approach.

Wewill also focus on an adaptive distributed powermanagement (DISPOW) algorithmas an exam-

ple of the multi-parameter optimization approach which manages the transmit power of nodes in a

wireless ad hoc network to preserve network connectivity and cooperatively reduce interference. We

will show that the algorithm in a distributed manner builds a unique stable network topology tailored

to its surrounding node density and propagation environment over random topologies in a dynamic

mobile wireless channel.
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Introduction

The primary goal of the power control algorithm in mobile ad
hoc networks is to achieve performance requirement such as net-

work connectivity. Not only can they improve network capacity
but also node’s battery capacity. Thus, power control algorithm
is an important consideration for mobile ad hoc networks.

Without a central node to administer power control,
improving network topology with energy efficient communica-
tion is more challenging in ad hoc wireless networks. Further,
if the ad hoc network is large consisting of thousands of nodes,

mailto:NPradhan@ccny.cuny.edu
mailto:         Saadawi@ccny.cuny.edu
http://dx.doi.org/10.1016/j.jare.2011.04.009
http://dx.doi.org/10.1016/j.jare.2011.04.009
http://dx.doi.org/10.1016/j.jare.2011.04.009


200 N.L. Pradhan and T. Saadawi
collecting information from all the nodes and passing it to the
concerned nodes lead to high overheads. Thus, distributed
topology control algorithms that are asynchronous, scalable

and localized are particularly attractive for ad hoc networks.
Further to simplify deployment and reconfiguration, the

power control algorithm must adapt to the surrounding node

density, mobility and the physical environment. Pradhan and
Saadawi [1] show that the topology and performance of a mo-
bile ad hoc network significantly depends on the surrounding

physical environment and node mobility. Accordingly,
Pradhan and Saadawi [2] make a strong argument for a dis-
tributed power control algorithm that develops a strongly con-
nected network able to adapt to changing network conditions.

In this paper, we will provide a survey of various approaches
to deal with power control management in mobile ad hoc net-
works. We will classify these approaches into Node-Degree

Constrained Approach, Location Information Based approach,
Graph theory approach, Game theory approach and Multi-
Parameter Optimization approach. We will further present an

example of a Multi-Parameter Optimization approach called
DISPOW to preserve network connectivity, improve the net-
work lifetime and cooperatively reduce interference. The generic

network layer power management algorithm DISPOW, pro-
vides an energy efficient strongly connected network tailored
to the surrounding node density, physical environment and
node mobility. We will also provide analytical and simulation

evaluation of DISPOW over the dynamic wireless channel.
Rest of the paper is organized as follows: ‘Power Control

Algorithms’ surveys and attempts to classify the power control

algorithm in mobile ad hoc networks. The DISPOW algorithm
is also presented, analyzed and evaluated in ‘Distributed power
management algorithm, DISPOW’. ‘Conclusion’ section con-

cludes this paper.
Power control algorithms

Existing power control approaches in the ad hoc network basi-
cally use deterministic or probabilistic techniques to build net-
work topology that satisfies certain cost metrics, such as,

preserving network connectivity, minimizing interference or
securing QoS constraints.

Early approaches in power control techniques were mostly
centralized and attempted to find a complete set of transmis-

sion power for the nodes with the purpose to minimize the
total power consumption as shown by Kirousis et al. [3],
Narayanaswamy et al. [4], Calinescu et al. [5] and Cheng

et al. [6].
For an ad hoc network with a large number of nodes, it be-

comes difficult to calculate the optimal transmission range for

all the nodes. Furthermore, collecting information of all the
nodes and passing them to the concerned nodes lead to high
overheads. Ad hoc networks, unlike cellular radio systems,
do not have a central scheduler and, therefore, power control

algorithms for ad hoc networks must be scalable and localized.
Power control algorithm approach to building network

topology can mainly be summarized as follows:

Node-degree constrained approach

The degree of a node is defined as the total number of links it

has with other nodes in the network. If k(i) is the degree of
node i in the network of N nodes, then the average node degree
is

kmean ¼
1

N

XN
i¼1

kðiÞ ð1Þ

A node i of degree k(i)= 0 is isolated, i.e., it has no neigh-

bors. Different nodes in the network can have different degrees
and the minimum node degree of the network is given by

kmin ¼ min
8i2N

kðiÞ ð2Þ

The Degree Distribution Function P(k) of a network is de-
fined as the probability that nodes in the network has exactly k
neighbors.

Power control algorithms were initially proposed to pre-
serve connectivity by selecting transmit power for nodes so
that the nodes are connected with at least one neighbor. Algo-

rithms proposed by Li et al. [7,8] and Wattenhofer et al. [9]
provide a distributed approach on theoretical lower bound
on node degree for network connectivity.

However, nodes with at least one neighbor make the net-
work vulnerable to node and link failures. Networks can be
made more robust by requiring each node to have at least a
certain number, K, neighbors. Specifically,

kðiÞP K 8 node i in f1; 2; . . . ;Ng ð3Þ

Such a network is said to be K-connected. If (K-1) nodes
fail, the network is still connected. Algorithms, such as Local
Information No Topology (LINT) and Local Information

Link-State topology (LILT) proposed by Ramanathan and
Rosales-Hain [10], collect routing information and adjust
transmit powers of the nodes to maintain a desired number

of neighbors for each node in the network.
A pair of nodes acting in such a distributed manner might

develop an asymmetric link, meaning the link exists in only one

direction. The link coming into the node from its neighbor is
called the incoming link and the link from the node to its
neighbor is called the outgoing link. This is a major drawback
of these distributed attempts as most of the routing algorithms

do not use asymmetric links to route packets. Additionally,
such asynchronous links can be a major source of interference.

Algorithms such as Common Power (COMPOW) proposed

by Kawadia and Kumar [11] overcome this problem by assign-
ing a common power to all the nodes in the network to guar-
antee a lower bound node degree. This, however, requires that

nodes communicate with each other to select a common trans-
mit power leading to a significant increase in overhead. Such
approaches are not scalable as the overhead increases with

the size of the network. Blough et al. [12] goes further to select
a common transmit power for all the nodes in the network
such that the communication graph is connected with at least
k-neighbors over a uniformly distributed network.

However, common power strategies depend on few nodes
isolated in the network by physical location and environment.
These isolated nodes might lead to unnecessarily high common

node power causing inter-node interference in denser part of
the network.

Location information based approach

Power control algorithm can benefit from location information
of nodes in the network. Node equipped with directional
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antenna can utilize the geographical knowledge of their neigh-
bors to significantly reduce interference in the network. This
can lead to a considerable increase in network performance.

GPS systems were initially used to get location information
of nodes in the network. However, fitting a GPS in every node
might not be pragmatic for mobile ad hoc network because of

its large delay in data acquisition and unavailability in certain
conditions such as indoor environments. So, a localized tech-
nique of estimating the direction of the incoming signal from

the Angle of Arrival (AoA) or Time Difference of Arrival
(TDOA) at different elements of the antennas seems more
feasible.

Nodes can have three types of directional antenna systems:

the switched beam antenna system, the steered beam antenna
system and the adaptive antenna system.

The switched beam antenna system has sets of M antennas

capable of covering all directions as shown in Fig. 1. It consists
of several highly directive fixed, pre-defined beams of width h
equal to 2p/M and a coverage area, As. Nodes are able to

transmit through one, multiple, or all sectors at one time, thus
capable of unicast, multicast or broadcast communications.

Based on switch beam antenna systems, a topology-control

problem can be formalized as follows. Let us consider in a net-
work of N nodes in an area A, each node is equipped with
switched-beam antenna that consists of M sectors. Li et al.
[13] proposes a Cone-Based Topology Control (CBTC) algo-

rithm which takes advantage of this directional information
by varying the transmission power of each node such that there
is at least one neighbor in every cone of the angle, h, centered
at the node. It is further shown by Li et al. [14] that h 6 5p/6 is
necessary and sufficient condition to guarantee connectivity of
the network. Further, Huang et al. [15] presents an implemen-

tation of Cone-Based Topology Control to maintain fewer and
closer neighbors in different antenna sectors. These algorithms
require every node to be capable of computing angle of arrival

(AOA) or sector of arrival for its neighbor’s location
information.

Adaptive antenna systems consist of multiple antenna ele-
ments at the transmitting and/or receiving side of the commu-

nication link, whose signals are processed adaptively in order
to exploit the spatial dimension of the mobile radio channel.
Depending on whether the processing is performed at the

transmitter, receiver, or both ends of the communication link,
the adaptive antenna technique is defined as multiple-input sig-
nal-output (MISO), single-input multiple output (SIMO), or

multiple-input multiple-output (MIMO).
Directional antenna has the potential of providing drastic

improvement in the capacity and performance of ad hoc net-
works as shown by Huang et al. [16]. Ramanathan [17] shows

that beam forming technique can significantly improve the
Fig. 1 Directive sector of a switched beam antenna system.
throughput and decrease end-to-end delay in the network.
Further attempts to use the directional antenna at every node
to create low-interference and low-cost network topologies are

presented by Kumar et al. [18] and Raman and Chebrolu [19].
Another algorithm proposed by Huang and Shen [20] attempts
to adjust the power intensity independently in each direction of

a multi-beam directional antennas to reduce the hop count in
the network topology.

Graph theory approach

Graph theory mainly involves placing graphs with vertices as
points in space and the edges as line segments joining select

pairs of these points. It deals with ways to represent the geo-
metric realization of graphs. Because of its inherent simplicity,
graph theory has a very wide range of applications in topology
control.

Graph theory optimization can be applied to ad hoc net-
works to build a topological graph G that minimizes some kind
of cost function. The finite collection of nodes can be consid-

ered as the vertices of the graph. The wireless links between
the nodes can be considered as the edges of the graph. There-
fore, an ad hoc network can be represented by a topological

graph G consisting of N set of nodes and L set of links.
If no loops and parallel links between the nodes are consid-

ered, the topological graph is considered to be simple. Further,
a simple graph is said to be strongly connected if for each node

u and v in {N}, there exists a path from u to v and from v to u.
A Relative Neighborhood Graph (RNG) T of the graph

G= (N, L) is defined as T = (N, L0) where there is a link be-

tween node u and node v if and only if there is no other node
w e N that is closer to either u and v than the distance between
u and v. Formally,

maxfdðu;wÞ; dðv;wÞg < dðu; vÞ ð4Þ

where d(u, v) is the Euclidean distance between the two nodes.
An example of the RNG on a random ad hoc network is
shown in Fig. 2.

RNG is a subgraph of the Delaunay Triangulation (DT)
and has been implemented in the topology control algorithm
proposed by Cartigny et al., [21] to reduce the number of links
between a node and its neighbors.

Another subgraph T of the graph G= (N, L) without any
cycles from node u to v is called a Tree. A tree is one of the
most important kinds of topological graphs. A tree T is said

to be a spanning tree of the graph G if it is a subgraph connect-
ing all the nodes in the set {N}. The spanning tree can only be
Fig. 2 Relative neighborhood graph (RNG) of a random ad hoc

network.
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defined for a connected graph as a disconnected graph does
not have connected paths to every node in the network. In
other words, a graph G that connects all the nodes without

any circuits is its own spanning tree. If there are circuits in
the graph G, then a spanning tree T can be obtained by delet-
ing the edge until a connected circuit-free graph is reached.

A graph in which each edge is assigned a weight is known as
a weighted graph. If the graph G is a weighted graph, then the
weight of the spanning tree T is defined as the sum of the

weights of all the braches in T. A weighted graph G can have
different spanning trees of varying weight. However, the span-
ning tree with the smallest weight is called a shortest spanning
tree or shortest-distance spanning tree or minimal spanning tree

(MST). Fig. 3 shows an MST of a random ad hoc network. Li
et al. [22] introduces a Local Minimum Spanning Tree (LMST)
algorithm independently builds a MST for each node in the net-

work keeping only one-hop on-tree nodes as neighbors.
The 1-connectivity tree might be cost-efficient but it is sus-

ceptible to link failures. To improve reliability, Local Tree-

based Reliable Topology (LTRT) presented by Miyao et al.
[23] adds the concept of Tree-based Reliable Topology
(TRT) in LMST to guarantee K-edge connectivity.

Further, Zhang and Labrador [24] presents a MST based
energy-aware topology control algorithm that considers node
residual energy information known as Residual Energy Aware
Dynamic (READ). Li et al. [25] and Moscibroda and Watt-

enhofer [26] present frameworks on developing low-interfer-
ence topologies. Feng et al. [27] proposes the Minimum
Interference Algorithm (MIA) that looks at interference be-

tween links and tries to minimize the overall interference in
their network graph model. Another algorithm presented by
Jia et al. [28] further builds a topology graph to meet QoS

requirements such as end-to-end traffic and delay.

Game theory approach

If the nodes in the network can be considered as rational play-
ers with an intention to maximize their own objectives, then
the power control algorithm for ad hoc wireless networks
can be based on game theory. A game is a well-defined strate-

gic form consisting of the following elements:

1. the set n = {1, 2, . . . , N} of players,

2. for every player i e N, the set Si of strategies (or choices)
available to player i

3. the set of possible payoffs P
Fig. 3 Minimum spanning tree (MST) of a random ad hoc

network.
It attempts to define and propose a solution or objective for
a strategic situation where gains or payoffs of each node de-
pends not only on its own decision but also on the decisions

taken by other nodes in the network.
Based on the interdependence among the players, game the-

ory is divided into non-cooperative and cooperative game theo-

ries. Cooperative game theory deals with situations where there
are institutions that make agreements among the players bind-
ing. Players act together in different combinations with a com-

mon purpose to maximize payoff acceptable to all the players
or coalitions of players satisfying some desirable properties.

In non-cooperative game theory, all the moves are available
to the players and they make their decision independently

based on those information. There are no contracts or agree-
ments between the nodes because there is no external authority
or institution to enforce them or communication between the

nodes are not possible or allowed.
Non-cooperative game theory can be very useful in model-

ing and understanding multi-node power control problems

characterized by their interdependency. Eidenbenz et al. [29]
presents a framework for a utility-based topology control algo-
rithm to encourage selfish nodes to work for members of a net-

work when the network is established.
In a multi-player non-cooperative game, there can be a state

known as the Nash Equilibrium, where no player can improve his
or her payoff by unilaterally changing their strategy. Sun et al. [30]

proves that a unique Nash equilibrium exists in a non-cooperative
power control game where, each rational player tries to maximize
its utility function. Komali et al. [31] also studies the Nash equilib-

rium properties of a non-cooperative topology control game with
selfish nodes and evaluates the efficiency of the induced topology
when nodes employ a greedy best response algorithm.

Multi-parameter optimization approach

Another approach is a dynamic multi-parameter optimization

of different parameters, such as connectivity, interference and
energy consumption of the network. We present a localized
algorithm DISPOW in ‘Distributed power management algo-
rithm, DISPOW’ that develops a strongly connected network

topology in a completely distributed manner tailored to its sur-
rounding node density and propagation environment. It will
adapt to the changing network topology due to the node mobil-

ity and dynamic physical environment. DISPOW not only has a
receiver-based interference model which attempts to lower inter-
node interference but also has the capability of converting asym-

metric link, which is a major source of concern, to symmetric
link if required. It should be noted that DISPOW, by operating
in a completely distributed manner, is scalable and readily appli-
cable to large heterogeneous networks.

Distributed power management algorithm, DISPOW

In this algorithm, shown in Table 1, nodes periodically check
their connectivity, interference level and battery power.

Problem definition

Let us define PTi
ðtÞ and wi(t) as the transmitting power and

connectivity of node i at time t in the network of N nodes in
an area A. Then by definition, DISPOW selects



Table 1 Distributed power management algorithm

(DISPOW).

DISPOW.Node

1. Set PTi
¼ PTinitial

, compute wi and set timer = sld
2. If wi 6 wimin

, then DISPOW.LowConnectivity

3. Else if Ci < Cicritical , then DISPOW.CriticalBatteryLevel

4. Else if wi 6 wimax
, then DISPOW.HighConnectivity

5. Compute connectivity degree, wDEGi
¼ wi�wimin

wimax�wimin6. If PowerDown_Request received, then

7. DISPOW.PowerDown_Request

8. If PowerUp_Request received, then

9. DISPOW.PowerUp_Request

10. If suffering from interference, then DISPOW.Interference

11. Sleep until timer expires

DISPOW.LowConnectivity

1. If PTi
¼ PTimax

;, then calculate PTi
¼ PTi

þ DP and

2. set timer = ssd
3. Else set timer = sld
4. If No Asymmetric link to itself, then

5. broadcast PowerUp_Request and set timer = smd

DISPOW.HighConnectivity

1. If PTi
¼ PTimax

;, then calculate PTi
¼ PTi

� DP and set

2. timer = ssd
3. Else set timer = sld
DISPOW.Interference

1. Broadcast PowerDown_Request

2. Set TTL and hop count

DISPOW.PowerUp_Request

1. If wDEGi
in high range, then calculate PTi

¼ PTi
þ DP and

2. timer = ssd
3. Else set timer = sld
DISPOW.PowerDown_Request

1. If wDEGi
in high range, then calculate PTi

¼ PTi
� DP and

2. timer = ssd
3. Else set timer = sld
DISPOW.CriticalBatteryLevel

1. If wDEGi
in high range, then calculate PTi

¼ PTi
� DP and

2. timer = ssd
3. Else set timer = sld
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PTi
ðtÞ 8 node i in f1; 2; . . . ;Ng

subjected to the following four constraints:

1. The node should have at least minimum connectivity, wimin,
i.e. minimum acceptable number of neighbors with which

the node has a bi-directional link at any time t.

wiðtÞP wimin
ðtÞ 8 node i in f1; 2; . . . ;Ng ð5Þ

2. For a packet from node j to node i to be correctly detected,

signal to interference and noise ratio at node i, SINRji,
must be greater than a threshold, cth

SINRjiðtÞ ¼
PjiðtÞ

P0 þ
P

k2N
k–j

PkiðtÞ

P cth 8 node i in f1; 2; . . . ;Ng ð6Þ

where T is the set of transmitting nodes causing interference,

Pki the received power levels from node k to node i and P0

thermal noise.
The node should not transmit at such a high level that it

causes interference to other nodes in the neighborhood. Specif-
ically, the algorithm will try to reduce the total noise power PNi

in node i, i.e.

minPNi
8 node i in f1; 2; . . . ;Ng where PNi

¼ P0 þ
X
k2N
k–j

PkiðtÞ: ð7Þ

If a node has high node connectivity, then it can probably

afford to decrease its transmitting power PT and still maintain
acceptable w. Let wimax

ðtÞ be the maximum number of neigh-
bors allowed, i.e. the upper acceptable connectivity threshold.

This has an advantage of decreasing inter-node interference in
the network.

wiðtÞ 6 wimax
ðtÞ 8 node i in f1; 2; . . . ;Ng ð8Þ

3. The P T i for node i should be more than the minimum power

level, P T imin0 but less than the maximum power level, P T imax0

defined by network and node power specifications.

PTimin
6 PTi

ðtÞ 6 PTimax
8 node i in f1; 2; . . . ;Ng ð9Þ

4. The algorithm also tries to conserve node’s battery capac-
ity, C(t), which is an important design consideration for
mobile ad hoc networks. The algorithm will only allow
the nodes to increase their PT if their C is higher than the

critical battery power level, Ccritical.

CiðtÞP Cicritical 8 node i in f1; 2; . . . ;Ng ð10Þ

Now, if wi is less than wimin
for node i, it will attempt to im-

prove its wi by increasing PTi
. It can only increase PTi

if it is

lower than PTimax
. The node checks if there are any uni-direc-

tional links from other nodes. If there are, it will try to build
bi-directional links with those potential neighbor nodes. It in-
creases its PTi

by an increment DP and checks after a short

time delay, sshort_delay. If there are no uni-directional links to
the node, then the node can only create uni-directional link
by increasing its PTi

. Thus it’s equally important for the poten-

tial neighbor to try to establish a link with it too. Hence, the
node increases its PTi

and broadcasts a PowerUp_Request. It
then waits for medium time delay, smedium_delay, to check if it

managed to set up any new link. Since it is trying to construct
link with nodes that are not its neighbors, the maximum hop
count for PowerUp_Request is set at 2. It should not be set
too high because nodes transmitting at high PTi

can interfere

nearby nodes. Thus, it will eventually select the lowest PTi
that

will create bi-directional link.
Now if the node moves into a dense area, it can probably

afford to decrease its PT and still maintain acceptable network
connectivity. This has an advantage of reducing inter-node
interference in the network. So if wi is higher than wimax

, it de-

creases its PTi
and checks its wi after sshort_delay.

A node i will broadcast PowerDown_Request if it is suffer-
ing from interference. It sets the maximum hop count for the

request to 2 to prevent forwarding overhead. It also sets Re-
quest_TTL (Time To Live) so that older requests are ignored.

If a node receives a PowerDown_Request, it will decrease its
Pi if its wi is in a higher acceptable range. When it changes its

Pi, it checks its wi after sshort_delay. Otherwise, it sets the timer
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to long time delay, slong_delay, to avoid excessive calculations
and overhead from frequent changes in Pi. If it receives a Pow-
erUp_Request, it increases its Pi only if its wi is in the lower

acceptable range. It then waits for sshort_delay to check its wi.
A node will forward other node’s requests if they have a valid
Request_TTL and hop count.

If at any instance the Ci is not sufficient, i.e. less than
Cicritical, it will reduce its PTi

to maintain wimin
. This has an

effect of prolonging node battery and network lifetime.

Theoretical transmit power lower bound

Now modeling the wireless channel propagation model with

the log-distance path loss and fading propagation model, for
a receiver at a distance d.

For a correct reception of packet in a receiver at a distance
of d, PTi

should be enough to overcome the propagation loss

and meet the receiver sensitivity, Prs. Now modeling the wire-
less channel propagation model with the log-distance path loss
and fading propagation model, PTi

can be defined as

PTi
dB P Prs dBþ PLðd0Þ þ 10g logðdÞ þ LFading: ð11Þ

If node density, q, is defined as the number of uniformly
distributed nodes in a unit square area then the number of

uni-directional neighbor of node i in its coverage area is given
by

wi ¼ pqðjPTi
Þ
2
g � 1: ð12Þ

Clearly, w directly depends on q, propagation environment
(g) and PT.

DISPOW adjusts node’s PT to maintain at least wimin
. Thus,

the mathematical lower bound PTi
to guarantee wimin

is given in
(9).

Lower bound : PTi
P

1

k

wimin
þ 1

pq

� �g
2

: ð13Þ
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Fig. 4 Connectivity of nodes with DISPOW in the network

depends on their surrounding node density and propagation

environment.
Therefore, it is clearly seen that a node can preserve its w by
tailoring its PT to q and the propagation environment. For
example, in a city environment, characterized by path loss

exponent of 3.2, a node can adjust its PT between its PTmin

and PTmax
to maintain its w between 2 and 14.

Fig. 4 highlights the variation in parameter used by routing

protocol because of node distribution, node mobility, dynamic
nature of wireless channel and environment. DDISPOW
adapts to its surrounding environment and provides strongly

connected reliable.

Simulation results

The performance of DISPOW on a dynamic network of 100
nodes distributed over a 1000 m by 1000 m urban area, such
as a city characterized by no LOS path and multipath effects,
is evaluated through simulations carried out in MATLAB and

OPNET network simulator.
Fig. 5 shows topology of a random equal energy consuming

network with common PT and with DISPOW. As clearly seen

from Fig. 5a, the common node power scheme leads to denser
0 200 400 600 800 1000
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1000

b) with DISPOW Algorithm

0 200 400 600 800 1000
0

200

a) with common power level

Fig. 5 Network topology with power control, with DDISPOW

and equal energy consuming network with common node power.
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clusters but more importantly it leaves out to sparsely con-
nected nodes even some totally disconnected from the net-
work. However with DISPOW, it is clear that every node

individually selects PT that satisfies the parameters of the algo-
rithm. It is interesting to note that two-third of the nodes have
their PT less than the average PT and only about one-tenth of
the nodes have PTmax

. Further, DISPOW algorithm yields a

32% reduction in average total interference in an equal energy
consuming network.

Fig. 6 shows that w of a typical node initially increases to 20

and then steadily decreases as it moves to a low q area even
becoming zero (i.e. the node is totally disconnected) around
700–800 s during the simulation. It is clearly seen that w se-

verely fluctuates during simulation and the node may even be-
come completely disconnected from the network.

Conclusion

Power control algorithm basically uses deterministic or proba-
bilistic techniques to build network topology. Node degree,

thus becomes an important parameter of a connected network.
Therefore, many topology control schemes evaluate their effec-
tiveness by studying the degree of nodes in the network.

We have classified power control algorithm based on their

approaches. Node-degree constrained approach provides a
mechanism to provide a theoretical lower bound on node de-
gree to build network topology. Algorithm based on location

information attempts to benefit from geographical location
of nodes using directional antenna. Another approach is to
build a network graph that minimizes some kind of cost
function. Yet another approach is to model the interaction
among the nodes in the network using game theory to maxi-
mize their own objectives.

We also presented an example of the multi-parameter opti-
mization approach algorithms, DISPOW, which adaptively
manages nodes’ power in a dynamic wireless ad hoc mobile

network to preserve the network connectivity, conserve energy
consumption and reduce interference cooperatively. DISPOW
builds a stable strongly connected network tailored to its sur-

rounding node density and propagation environment. It is also
shown that DISPOW adapts better to the changes in the net-
work due to node mobility and dynamic wireless channel
variations.
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