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Parsimonious Gaussian process models for the
classification of hyperspectral remote sensing

images
Mathieu Fauvel, Member, IEEE, Charles Bouveyron, and Stéphane Girard

Abstract—A family of parsimonious Gaussian process models
for classification is proposed in this letter. A subspace assumption
is used to build these models in the kernel feature space. By
constraining some parameters of the models to be common
between classes, parsimony is controlled. Experimental results
are given for three real hyperspectral data sets, and comparisons
are done with three others classifiers. The proposed models show
good results in terms of classification accuracy and processing
time.

Index Terms—Kernel methods, remote sensing images, parsi-
monious Gaussian process, hyperspectral, classification.

I. INTRODUCTION

Thanks to the development of different Earth observation
missions, the availability of hyperspectral images with high
spatial resolution has increased over the last decade. The
fine spectral resolution improves the discrimination of more
materials while the high spatial resolution allows the analysis
of small structures in the image. Such remote sensing images
provide valuable information about landscapes over large
areas, on a regular temporal basis and at a relatively low
cost. This detailed information is then used in various the-
matic applications, such as ecological science, urban planing,
hydrological science or military applications [1], [2], [3].

One commonly used technique to extract information from
remote sensing images is classification [4]. It consists in
assigning a label, or a thematic class, to each pixel of the
image. Several methods have been developed for images
with moderate spectral resolution [5]. However, because of
the increasing number of spectral variables in hyperspectral
remote sensing images, their classification has become a
more and more challenging problem [6]. For instance, model-
based classification approaches try to fit the class conditional
probability distribution by an ad-hoc parametric model, e.g.,
Gaussian distribution [4]. However, the estimation of the
parameters is difficult when the spectral dimension of the data
increases [7], or leads to intractable processing time when non
Gaussian models are used. In addition, high spatial resolution
images cannot be statistically modeled easily, because spatial
details of the image lead to model each class as a mixture of
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distributions [8]. Alternatively, non-parametric methods such
as random forest (RF) classifier have been investigated for
the classification of hyperspectral images [9], [10]. However,
with the increasing size of the images in the spectral domain,
RF requires a sufficient number of training samples to build
uncorrelated trees and thus to reach good classification accu-
racy. This construction is difficult with a reduced sample set
and a high number of variables. Unfortunately, the collection
of training samples can be a difficult task in remote sensing,
resulting in a small training set.

Since the introductory paper in 2005 [11], kernel methods
have shown very good abilities in classifying hyperspectral
remote sensing images [12]. The use of a kernel function that
defines a measure of similarity between two pixel-vectors,
makes them robust to the spectral dimension or the non-
Gaussianity of the data. The learning step usually involves a
constrained optimization problem, where few hyperparameters
have to be optimized. Regularization of the decision function is
in general included in the optimization problem, making kernel
methods robust to the small sample size problem. The support
vector machine (SVM) is the most used kernel classifier
among the available kernel methods. From its original formu-
lation [13], several methods have been proposed, ranging from
the spatial-spectral classification [6] to the semi-supervised
classification [12], successfully applied in various domains.
The learning step of SVM consists in estimating a separating
hyperplane in the kernel feature space, i.e., a linear decision
function. In general, most of kernel methods solve a linear
problem in the kernel feature space, see for instance kernel
Fisher’s discriminant analysis or kernel principal component
analysis in [12].

Mixing Bayes decision rule and kernel function, M. M. Dun-
dar and A. Landgrebe proposed a kernel quadratic discriminant
classifier (KDC) for the analysis of hyperspectral images [14].
It was a first attempt to build a kernel classifier from a
quadratic classifier (Gaussian Mixture Model). In order to
make the problem tractable, they assumed covariance matrices
of all classes to be equal in the kernel feature space. This
assumption was proposed by the authors to deal with ill-
conditioned kernel matrices. Indeed, unlike the SVM optimiza-
tion process, no regularization is included in the computation
of the decision function with KDC. This function is based on
computing the inverse of the centered kernel matrix, which is
per construction non-invertible: this n×n matrix is estimated
with the original kernel matrix, from which a combination of
rows and lines is removed.
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Since then, techniques have been proposed to extend KDC
to non-equal covariance matrices. Pseudo inverse and ridge
regularization have been proposed in [15]. Xu et al. also
proposed a KDC where the estimation of the covariance matrix
in the feature space is regularized by dropping the smallest
eigenvalues from the computation [16]. Similar techniques
were used in [17] in the context of small sample size problems.

Although good results in terms of classification accuracy
have been reported for the different KDC, several drawbacks
can be identified. For instance, [16] and [17] require the
estimation of a large number of hyperparameters, while the
“equal covariance matrix” assumption in [14] might be too
restrictive in practical situations.

In this paper, a family of parsimonious Gaussian process
models is reviewed and 5 additional models are proposed to
provide more flexibility to the classifier in the context of
hyperspectral image analysis. These models allow to build
from a finite set of training samples, a Gaussian mixture model
in the kernel feature space, where each covariance matrix
is free. They assume that the data of each class live in a
specific subspace of the kernel feature space. This assumption
reduces the number of parameters needed to estimate the
decision function and makes the numerical inversion tractable.
A closed-form expression is given for the optimal parameters
of the decision function. This work extends the models ini-
tially proposed in [18], [19]. In particular, the common noise
assumption is relaxed, leading to a new set of models for
which the level of noise is specific to each class. Furthermore,
a closed-form expression for the estimation of the parame-
ters enables a fast estimation of the hyperparameters during
the cross-validation step. The contributions of this letter are
threefold. 1) The definition of new parsimonious models. 2) A
comparison in terms of classification accuracy and processing
time of the proposed models with state-of-the-art classifiers
of hyperspectral images. 3) A fast cross-validation strategy
for learning optimal hyperparameters.

The remainder of the letter is organized as follows. Sec-
tion II presents the family of parsimonious Gaussian process
models as well as the 5 new models. Section III focuses on
experimental results obtained on three real hyperspectral data
sets. Finally, conclusions and perspectives are discussed in
Section IV.

II. CLASSIFICATION WITH PARSIMONIOUS GAUSSIAN
PROCESS MODELS

In this section, it is shown how a Gaussian mixture model
(GMM) can be computed in the feature space. It makes use
of Gaussian processes as conditional distributions of a latent
process. Then estimators are derived and the proposed models
are compared to those available in the literature.

A. Gaussian process in the kernel feature space

Let S =
{

(xi, yi)
}n
i=1

be a set of training samples, where
xi ∈ Rd, is a pixel and yi ∈ {1, . . . , C} its class, and C the
number of classes. In this work, the Gaussian kernel function is
used k(xi,xj) = exp

(
−γ‖xi − xj‖2Rd

)
, with γ > 0, and its

associated mapping function is denoted φ : Rd → F (the use

TABLE I
LIST OF SUB-MODELS OF THE PARSIMONIOUS GAUSSIAN PROCESS

MODEL.

Model Variance inside Fc qcj pc

Variance outside Fc: Common

pGP0 Free Free Free
pGP1 Free Free Common
pGP2 Common within groups Free Free
pGP3 Common within groups Free Common
pGP4 Common between groups Free Common
pGP5 Common within and between groups Free Free
pGP6 Common within and between groups Free Common

Variance outside Fc: Free

npGP0 Free Free Free
npGP1 Free Free Common
npGP2 Common within groups Free Free
npGP3 Common within groups Free Common
npGP4 Common between groups Free Common

of another kernel is possible). Its associated feature space F
is infinite dimensional. Therefore the conventional multivariate
normal distribution used in GMM cannot be defined in F .

To overcome this, let us assume that φ(x), conditionally
on y = c, is a Gaussian process on J ⊂ R with mean µc

and covariance function Σc. We note φ(x)cj the projection
of φ(x) on the eigenfunction qcj using the following scalar
product

〈φ(x),qcj〉 =

∫
J

φ(x)(t)qcj(t)dt.

Hence, for all r ≥ 1, random vectors on Rr defined by
[φ(x)1, . . . , φ(x)r] are, conditionally on y = c, multivariate
normal vectors. In Rr, it is now possible to use the GMM
decision rule for class c [20]:

Dc

(
φ(xi)

)
=

r∑
j=1

[
〈φ(xi)− µc,qcj〉2

λcj
+ ln(λcj)

]
− 2 ln(πc) (1)

where λcj is the jth eigenvalue of Σc sorted in decreasing
order, qcj its associated eigenfunction and πc the prior prob-
ability of class c. The classification of xi is done to class c if
Dc

(
φ(xi)

)
< Dc′

(
φ(xi)

)
, ∀c′ ∈ 1, . . . , C [20].

If the Gaussian process is not degenerated (i.e., λcj 6=
0, ∀j), r has to be large to get a good approximation of
the Gaussian process. Unfortunately, only a part of the above
equation can be computed from a finite training sample set:

Dc(φ(xi)) =

rc∑
j=1

[
〈φ(xi)− µc,qcj〉2

λcj
+ ln(λcj)

]
− 2 ln(πc)︸ ︷︷ ︸

computable quantity

+

r∑
j=rc+1

[
〈φ(xi)− µc,qcj〉2

λcj
+ ln(λcj)

]
︸ ︷︷ ︸

non computable quantity

where rc = min(nc, r) and nc is the number of training
samples of class c. Consequently, the decision rule cannot be
computed in the feature space if r > nc, for c = 1, . . . , C.
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B. Parsimonious Gaussian process

To make the above computational problem tractable, it is
proposed to use a parsimonious Gaussian process model in
the feature space for each class. These models assume that
each class is located in a low-dimensional subspace of the
kernel feature space. In [18], it was assumed the noise level
is common to all classes (Definition 1). In this paper, these
models are extended to the situation where the noise level can
be dependent on the class (Definition 2).

Definition 1 (Parsimonious Gaussian process with common
noise): A parsimonious Gaussian process with common noise
is a Gaussian process φ(x) for which, conditionally to y = c,
the eigen-decomposition of its covariance operator Σc is such
that

A1. It exists a dimension r < +∞ such that λcj = 0 for
j ≥ r and for all c = 1, . . . , C.

A2. It exists a dimension pc < min(r, nc) such that
λcj = λ for pc < j < r and for all c = 1, . . . , C.

Definition 2 (Parsimonious Gaussian process with class
specific noise): A parsimonious Gaussian process with class
specific noise is a Gaussian process φ(x) for which, condi-
tionally to y = c, the eigen-decomposition of its covariance
operator Σc is such that

A3. It exists a dimension rc < r such that λcj = 0 for
all j > rc and for all c = 1, . . . , C. When r = +∞,
it is assumed that rc = nc − 1.

A4. It exists a dimension pc < rc such that λcj = λc for
j > pc and j ≤ rc, and for all c = 1, . . . , C.

Assumptions A1 and A3 are motivated by the quick decay
of the eigenvalues for a Gaussian kernel [21]. Hence, it is
possible to find r < +∞ (or rc) such as λcr ≈ 0. Assumptions
A2 and A4 express that the data of each class live in a specific
subspace of size pc, the signal subspace, of the feature space.
The variance in the signal subspace for class c is modeled
by parameters λc1, . . . , λcpc

and the variance in the noise
subspace is modeled by λ or λc. This model is referred to
by pGP0 for the common-noise assumption or npGP0 for the
class-specific noise assumption.

From these models, it is possible to derive several sub-
models. Table I lists the different sub-models that can be
built from pGP0 and npGP0. For models pGP1 and npGP1,
it is additionally assumed that data of each class share the
same intrinsic dimension, i.e., pc = p, ∀c ∈ {1, . . . , C}.
In models pGP2 and npGP2, variance in the signal sub-
space Fc is assumed to be equal for all eigenvectors, i.e.,
λcj = λc, ∀j ∈ {1, . . . , pc}. For models pGP4 and npGP4,
it is assumed that the intrinsic dimension is common to
every class and the variance is common between them, i.e.,
λcj = λc′j , ∀j ∈ {1, . . . , p} and c, c′ ∈ {1, . . . , C}. In term
of parsimony, pGP0 is the least parsimonious model while
pGP6 is the most parsimonious one for models with common
noise. pGP0 is also more parsimonious than npGP0. A visual
illustration of pPGP1 in R2 is shown in Fig. 1.

In the following, only model npGP0 is discussed. Similar
results can be obtained for other models and a discussion of
model pGP0 can be found in [18], [19].

F1

λ11

λ12

λ1

F2λ21

λ22

λ2

Fig. 1. Visual illustration of model npGP1. Dimension of Fc is common
to both classes, they have specific variance inside Fc and they have specific
noise level.

Proposition 1: Eq. (1) can be written for npGP0 as

Dc

(
φ(xi)

)
=

pc∑
j=1

(λc − λcj)
λcjλc

〈φ(xi)− µc,qcj〉2

+
‖φ(xi)− µc‖2

λc
+

pc∑
j=1

ln(λcj) + (rc − nc) ln(λc)

−2 ln(πc).

(2)

Computation of eq. (2) is now possible since pc < nc, ∀c ∈
{1, . . . , C}. In the following, it is shown that the estimation of
parameters and the computation of eq. (2) can be done using
only kernel evaluations, as in standard kernel methods.

C. Model inference

Centered Gaussian kernel function according to class c is
defined as k̄c(xi,xj) = k(xi,xj) + 1

n2
c

∑nc

l,l′=1
yl,y

′
l=c

k(xl,xl′)

− 1
nc

∑nc

l=1
yl=c

(
k(xi,xl) + k(xj ,xl)

)
. Its associated normalized

kernel matrix Kc of size nc × nc is defined by (Kc)l,l′ =
k̄c(xl,xl′)/nc. With these notations, the following results hold
for npGP0.

Proposition 2: For c = 1, . . . , C and under model npGP0,
eq. (2) can be computed with:

Dc

(
φ(xi)

)
=

1

nc

p̂c∑
j=1

λ̂c − λ̂cj
λ̂2cj λ̂c

( nc∑
l=1
yl=c

βcjlk̄c(xi,xl)

)2

+
k̄c(xi,xi)

λ̂c
+

p̂c∑
j=1

ln(λ̂cj) + (r̂c − p̂c) ln(λ̂c)− 2 ln(πc),

where

λ̂c =
(
trace

(
Kc

)
−

pc∑
j=1

λcj
)
/
(
rc − pc

)
.

Estimation of pc is done by looking at the cumulative
variance for sub-models pGP0,2,5. In practice, pc is estimated
such as the percentage of the cumulative variance is higher
than a given threshold t. For other sub-models, p̂ is a fixed
parameter given by user. Finally, all parameters can be inferred
from Kc.



4

D. Link with existing models

The associated of equal covariance matrices in [14] corre-
sponds to our model pGP4 with an additional equality con-
straint on the eigenfunction. By using parsimonious Gaussian
process, we are able to provide more flexibility in the feature
space by allowing covariance matrix of each class to be
different, and for the 5 new models, by allowing the noise in
each class to be different. Furthermore, the storage complexity
of [14] is O(n2), since it works on the full kernel matrix,
while the storage complexity of our models is O(n2c), usually
very much lower. Furthermore, the eigendecomposition of the
kernel matrix is of complexity O(n3) for [14], while it is
reduced to O(n3c) with our models.

Authors of [14] also implement a ridge regularization to
stabilize the generalized eigenvalue problem. Numerically, it
is equivalent to set small eigenvalues to a constant term, which
is similar to A2 and A4 in Definition 1 and Definition 2.
In the same way, KDC models proposed in [15] use ridge
regularization, but they are constructed for each class, i.e, each
class has a separate covariance matrix. The main difference
between ridge regularization and our models is that, with ridge
regularization, eigenvectors corresponding to very small values
are still computed and used in the decision function while
our models only use the pc first ones. Note that KDC was
also extended to indefinite kernel functions in [15] by using
Moore-Penrose inverse, i.e., eigenvalue thresholding.

Covariance regularization techniques proposed in [22] were
used in [16] and [17]. In addition to kernel hyperparameter,
two additional hyperparameters have to be tuned. In practice,
even for moderate size problem it can be very time consuming.
Our models only have two hyperparameters to tune, and one
can be computed for a moderate numerical cost, as it is
explained in II-E.

The model proposed in [16] is similar to npGP0. The
authors proposed to estimate the p first eigenvalues for each
class and set the noise term to the value of the (p + 1)th

eigenvalue. In our model, the noise term is estimated as the
mean value of the remaining eigenvalues. Additional flexibility
is provided by our models since the size of the signal subspace
can be class dependent.

E. Estimation of the hyperparameters

For each proposed model, there are two hyperparameters to
tune: the scale γ of the Gaussian kernel and the size pc of
Fc or the percentage of cumulative variance t. In this work,
the v-fold cross-validation (CV) strategy is employed. For the
last two parameters, it is possible to use a strategy that speed-
up the computing time. The most demanding part in terms of
processing time of the proposed models is the eigendecompo-
sition of Kc. But for a given value of γ and a given fold of the
CV, it is possible to compute the eigendecomposition of Kc

only once. From the decomposition, all the model parameters
for every values of pc or t are available at not cost since they
are derived from the eigenvectors and eigenvalues of Kc. It
allows efficient computation of the CV error estimate for pairs
of hyperparameters.

This fast computation of the CV error is possible because
the model parameters are obtained through an explicit formu-
lation, contrary to SVM for which a optimization procedure
is required and need to be restarted when a new set of
hyperparameters is tested.

III. EXPERIMENTAL RESULTS

A. Data sets and benchmarking methods

Three hyperspectral data sets have been used in these
experiments.

University of Pavia: The data set has been acquired
by the ROSIS sensor during a flight campaign over Pavia,
northern Italy. 103 spectral channels were recorded from 430
to 860 nm. 9 classes have been defined for a total of 42,776
referenced pixels.

Kennedy Space Center: The data set has been acquired
by the AVIRIS sensor during a flight campaign over the
Kennedy Space Center, Florida USA. 224 spectral channels
were recorded from 400 to 2500 nm. Because of water
absorption the final data set contains 176 spectral bands. 13
classes have been defined for a total of 4,561 referenced pixels.

Heves: The data set has been acquired by the AISA
Eagle sensor during a flight campaign over Heves, Hungary.
It contains 252 bands ranging from 395 to 975 nm. 16 classes
have been defined for a total of 360,953 referenced pixels.

For each data set, 50 training pixels per class were randomly
selected and the remaining referenced pixels were used for
validation. 20 repetitions were done for which a new training
set have been generated randomly. The range of each spectral
variable has been stretched between 0 and 1.

Reported results are the average Kappa coefficient and
the average processing time in seconds (including selection
of hyperparameters, training process and prediction process).
In order to test the statistical significance of the observed
differences, a Wilcoxon rank-sum test has been computed
between each pair of methods.

For comparison, SVM and RF classifiers have been tested
using the Scikit-learn Python package [23]. Furthermore, the
KDC of [14] has been implemented. The parsimonious models
have been implemented in Python, and codes can be download
here: https://github.com/mfauvel/PGPDA. All hyperparameters
of each method have been selected using a 5-fold cross
validation.

B. Discussion

Results are reported in Table II. In terms of accuracy, one of
the proposed parsimonious models performs the best for each
data set. SVM performs the best for two data sets and KDC
performs the best for one data set. In particular, for Heves data
set, (n)pGP1 provides the best results. For University of Pavia
and Kennedy Spectral Center data sets, SVM provides the best
results but the differences with (n)pGP1 are not statistically
significant.

RF usually provides lower accuracy. However, RF is the
fastest algorithm, by far. KDC performs the worst in terms of
processing time, because each class involves a n × n kernel

https://github.com/mfauvel/PGPDA
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TABLE II
EXPERIMENTAL RESULTS IN TERMS OF ACCURACY AND PROCESSING

TIME. THE VALUES REPORTED CORRESPOND TO THE AVERAGE RESULTS
OBTAINED ON 20 REPETITIONS. BOLDFACE RESULTS INDICATE BEST

RESULTS FOR A GIVEN DATA SET. MULTIPLE BOLDFACE RESULTS
INDICATE THAT DIFFERENCES BETWEEN THEM ARE NOT STATISTICALLY

SIGNIFICANT.

Kappa coefficient Processing time (s)

University KSC Heves University KSC Heves

pGP0 0.768 0.920 0.664 18 31 148
pGP1 0.793 0.922 0.671 18 33 151
pGP2 0.617 0.844 0.588 18 31 148
pGP3 0.603 0.842 0.594 19 33 152
pGP4 0.661 0.870 0.595 19 34 152
pGP5 0.567 0.820 0.582 18 32 148
pGP6 0.610 0.845 0.583 19 34 152

npGP0 0.730 0.911 0.640 17 31 148
npGP1 0.792 0.921 0.677 18 33 151
npGP2 0.599 0.838 0.573 18 31 148
npGP3 0.578 0.817 0.585 19 33 152
npGP4 0.578 0.817 0.585 19 33 152

KDC 0.786 0.924 0.666 98 253 695
RF 0.646 0.853 0.585 3 3 18

SVM 0.799 0.928 0.658 10 28 171

matrix. Parsimonious models perform on average as fast as
SVM and are much faster than KDC.

For the proposed models, best results are obtained by
(n)pPG1, which are the least parsimonious models. They
have free variance inside the signal subspace but common
dimension of subspaces. (n)pPG0 performs slightly worse
than SVM and KDC but better than RF. All the other models
are less accurate. There is no difference in terms of processing
time between parsimonious models, since they all rely on the
eigendecomposition of Kc.

IV. CONCLUSIONS

Parsimonious Gaussian process models have been proposed
in this letter. They allow the computation of a kernel quadratic
discriminant classifier with limited training samples. The main
assumption considered in this work is that relevant information
for the discrimination task is located in a smaller subspace of
the kernel feature space. Sub-models are derived by constrain-
ing some properties of the models to be common between
classes, thus enforcing the parsimony. Moreover, new models
have been discussed for which the noise level is specific to
the class.

The proposed models have been compared in terms of
classification accuracy and processing time with three other
classifiers, on three real hyperspectral data sets. Results show
that two proposed models ((n)pPG1) are very effective both in
terms of accuracy and in terms of processing time. However,
other proposed models do not provide as good classification
accuracy, and would not be appropriate for practical situations.
From our experimental results, pPG1 and npPG1 behave sim-
ilarly in terms of computation time or classification accuracy.

The comparison with KDC shows that (n)pPG1 models
are competitive, with better classification accuracy and smaller
processing time. They offer a good alternative to the conven-
tional KDC method.
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