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Abstract

Mediating heterogeneous data sources heavily relies on explicit domain knowledge expres
example, as ontologies and mapping rules. We discuss the use of logic representations for m
schema elements onto concepts expressed in a simplified ontology for cultural assets. Start
a logic representation of the ontology, criteria for a rule-based schema matching are exem
Special requirements are the handling of uncertain information and the processing of hiera
XML structures representing instances.
 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Integrating data from heterogeneous sources on the Web is an important topic of i
within the database community. Current approaches try to overcome limitations of th
structural oriented mediator generation by explicit modeling and usage of domain k
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edge in form of semantic meta data, i.e., a vocabulary, a taxonomy, a concept hie
or even an ontology. However, a special requirement from data integration is still to d
a mapping from the ontology layer to the source data, i.e., to specify how a data
supports a certain concept from the ontology both in a structural as well as in a se
way. This correspondence information is necessary for query rewriting and decomp
and has to be provided as part of the registration of a source.

There are several possible ways for specifying schema correspondences. In the
as-view approach (GAV) the global mediator schema is defined as view on the
schemas. In contrast, the local-as-view approach (LAV) starts with the global schem
defines the local schemas as views on it. Here, local sources are modeled always as
of the global schema as well as the class extensions. GAV results in simpler query p
ing because the query rewriting step requires only a view resolution—as long as no
integrity constraints have to be taken into account. Otherwise, query processing be
more complex as shown in[1].

On the other side, the LAV principle simplifies adding or removing sources bec
only correspondences between the global schema and the particular local schema
be considered. A detailed discussion of issues on LAV vs. GAV is given for example i[1].
In [2] the authors propose a GLAV approach—a combination of both approaches all
a more flexible mapping definition.

In any case, specifying the mapping by hand is an expensive and error-prone p
especially for complex schemas and/or ontologies. Schema matching approaches[3] try to
reduce the effort by comparing schemas of different sources and identify matchings
on structural correspondences and—to a certain degree—by exploiting information
the actual data.

In the paper, we argue that these approaches can be improved by using declarati
which are used during matching, even if correspondences are “hidden” due to di
names of classes and attributes and can deal with sub-class hierarchies which are of
for modeling ontologies. This leads to extensible matchers allowing to add user-sp
rules which could be even derived from already existing correspondences. In this
domain-specific rules for matching certain elements by exploiting background know
or for combining different matchers in a specific manner can be easily added without
ifying or bloating the matching tool.

We present the logic-based foundations of this approach, discuss several schema
ing rules and their composition for defining matches between the ontology level repr
ing the global mediator schema as well as the source schemas. Finally, we discuss
plication of this approach for specifying mappings for our ontology-based mediator s
YACOB. The approach presented here as well as the accompanying tool support a
rently still under development. Therefore, we focus in this paper on the presentation
basic ideas leaving details, such as considering instance level information, for future

2. Related work

Schema matching is an important subtask of data integration. The core of s
matching is the operatorMatchwhich takes two schemas as input and produces a map
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between the elements of these schemas based on semantic correspondences. Impl
this operator requires an internal representation to which imported schemas are tra
and which allows a generic solution. This can be further supported by using diction
thesauri and other kind of domain knowledge useful for identifying correspondences

In most cases, schema matching cannot be done fully automatically—often som
of user intervention or decision is required in order to accept, modify or reject matc
found by the system. Nevertheless, several approaches and tools were developed
porting schema matching in a semi-automatic way which combine techniques from s
translation, graph transformation, machine learning and knowledge representation.
survey of these approaches is given in[3]. Here, we briefly summarize this work and d
cuss it with regard to a rule-based approach.

In [3] the authors classify schema matching approaches into three classes:

• individual matcherscompute a mapping using only a single match criterion,
• hybrid matcherssupport multiple criteria by using a fixed combination of individu

matching techniques[4],
• composite matcherscombine the results of individual matchers depending on sch

characteristics, application domain or even results of previous steps, e.g., by ap
techniques from machine learning[5].

Individual matchers as building blocks for hybrid and composite matchers can be f
classified into:

• Schema vs. instance level: Schema-level matchers consider only schema informa
such as structures (data types, classes, attributes) as well as properties of sche
ments like name, type etc. In contrast, instance-level matchers consider data co
too. This allows a more detailed characterization of data, especially in cases w
complete or unknown schema information.

• Element vs. structure matching: Element matchers consider matching between ato
schema elements such as attributes whereas structure-level matchers can d
combinations of elements, e.g., by comparing sets of attributes of two classes.

• Language vs. constraints: Language-based matchers use textual information and
guistic techniques for matching. Examples are equality or similarity of element n
as well as a thesauri-based identification of synonyms and hypernyms. A s
approach is to consider constraints defined as part of the schema, e.g., data
cardinalities of relationships or key characteristics.

• Matching cardinality: Another kind of characterization is the cardinality of match
For example, an 1:1 match means that an attribute for one schema is mapped to
attribute of the second schema. An 1:n mapping means that a single attribute is map
to a set of other attributes, e.g., by computing a value from the other values
extension of one class is computed by combining the instances from severa
classes of the second schema.

• Auxiliary information: Often external information can be used to support the iden
cation of matches. This can be provided in the form of user input, results from pre
steps or by using thesauri, dictionaries, ontologies etc.
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In [3] several available systems are presented and compared based on the suppo
classification criteria described above. Other example systems are, e.g., Rondo[6] or
ToMAS [7]. However, only two of the seven systems considered in[3] are rule-based
and one of them requires to implement the rules in Java. Thus, extending or adapt
matcher requires often a high coding effort which could be reduced by providing
of built-in predicates representing individual matchers. Based on these predicates t
could define composite matchers in the form of rules which could be used for derivin
mapping information, too.

3. Problem statement

In this paper, we consider schema matching in the context of semantic integ
systems. Here, the matching has to be performed mostly between the global “sem
schema (the domain knowledge model or the ontology) and the local source sch
Therefore, matching between schema elements often cannot be expressed based
ple name or structural matching. Instead, domain knowledge in the form of const
relationships, thesauri etc. has to be taken into account. In order to provide a bet
derstanding of the specialities as well as the potential of (extensible) schema matc
ontology-based mediators we first introduce the integration model of our mediator s
YACOB [8] and present the mapping specifications necessary for registering new so

YACOB is a mediator system developed for the integration and querying of
databases on cultural assets that were lost or stolen during World War II, su
www.lostart.de. In order to capture semantically rich information, a two-level mode
used for integration:

• the meta or concept level describing the semantics of the data and their relatio
as well as

• the actual data or instance level representing the data provided by the sources.

The model layer for representing concepts is based on RDF Schema. The Resou
scription Framework (RDF) developed by the W3C describes a simple graph-based
consisting of nodes, which model resources (e.g., Web documents) and literals, and
representing properties of resources. RDF Schema (RDFS) extends this model
troducing primitives like classes and class relationships which are useful for spec
vocabularies or ontologies. RDFS is similar to traditional (object-oriented) database
els, but contains some special features, e.g., properties are defined independen
classes and are restricted in their association with classes only by specifying doma
range constraints.

In our integration model we treat classes as so-called concepts and add a second
class: categories. The difference between these two kinds of classes is as follows:
cept is a class for which extensions (data objects) are provided by the sources. In c
categories are abstract classes without extensions representing abstract property
They are used to capture terms represented in different sources by different value
thermore, RDFS properties correspond to concept properties in our model. Relatio

http://www.lostart.de
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Fig. 1. An example ontology.

between concepts are also modeled as properties where the domain and range are r
by concepts.

Fig. 1 shows an example of a concept schema modeled using these element
schema defines a hierarchy of concepts representing different kinds of cultural ass
this example only few properties are shown. An example of the usage of categories
property “portrays”. The domain of this property is the category “motif” for which ad
tional sub-categories exist. Even if these categories are represented by different p
values in the source systems, at the global level we can always refer to the globally d
terms. Another example is given for relational properties: the property “paintedBy” re
paintings and painters.

At the instance level data is represented in XML both inside the mediator (i.e
transformation and query processing) as well as during exchange between the media
the sources. For the sources, we assume they are able to export data (query results)
structured according to a (nearly) arbitrary DTD and can answer simple XPath quer
case of necessary transformation for XPath to the source’s query interface wrapp
required. Because we allow arbitrary DTDs for data exchange the transformation in
global schema (defined by the concept schema) is performed by the mediator.

We can now define a concept schema by sets of facts and rules as shown in the fo
example:

concept(CulturalAsset).
concept(FineArts).
sub-concept(CulturalAsset, FineArts).
property(CulturalAsset, Name).
...
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<results>
<paintings>
<title>Mary with the child</title>
<person>Gossaert, Jan</person>
<material>Eichenholz</material>
<url>http://www.lostart.de/recherche/einzelobjekt.php3?

lang=english&einzel_id=7049</url>
<image_url>

http://www.lostart.de/recherche/bild.php3?id=7836
</image_url>

</paintings>

</results>

Fig. 2. Sample data from a source.

sub-concept(x, z) :- sub-concept(x, y), sub-concept(y, z).

property(x, p) :- sub-concept(y, x), property(y, p).

In a similar way, we could represent data in a logic-based form. However, beca
this paper we focus on schema level matching, we do not consider this here. Alt
inside the mediator schemas and data are represented as RDF and XML data, t
always directly be converted into an equivalent logical representation. An example
XML data representation returned by a source query is shown inFig. 2.

Besides features for specifying schemas and representing data a mediator sys
quires a specification mechanism for mappings or correspondences. One appro
correspondence specification is the definition of views expressed in a query lan
Another approach which we have chosen is to represent correspondences in the
properties associated with elements of the concept schema. In this way, a mapping d
ing how a source provides data for a certain concept is defined by annotating conce
properties of the concept schema.

In our model, we distinguish between the following kinds of mappings:

• Concept mappings specify how the given global conceptc is supported by a give
source. A concept mapping comprises the following information:
– The source name for identifying the source from where the instances are to

trieved.
– The name of the local XML element used for representing instances in the so
– An optional filter predicate for further restricting the instance set, e.g., to ad

only instances satisfying a certain condition.

c �→ 〈src,path-to-elem,filter〉.
• A property mapping defines the correspondence between the propertyp of a concept

and an XML element or attribute of the source data. This can be represented by
the source name and a path expression to the XML element:

p �→ 〈src,path-to-elem〉.
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<yacob:ConceptMapping rdf:about="Lostart_Painting">
<yacob:sourceName>lostart.de</yacob:sourceName>
<yacob:localElement>/results/paintings</yacob:localElement>

</yacob:ConceptMapping>

<rdf:Description rdf:about="painting">
<yacob:providedBy rdf:about="Lostart_Painting">

</rdf:Description>

<yacob:PropertyMapping rdf:about="Lostart_name">
<yacob:sourceName>lostart.de</yacob:sourceName>
<yacob:pathToElement>/results/paintings/title</yacob:pathToElement>

</yacob:PropertyMapping>

Fig. 3. Sample mapping specification.

• Join mappings are required if a property represents inter-source relationships
paintedByin Fig. 1), i.e. where the related concepts are supported by different sou
In this case, a traversal of this relationship has to be translated into a join operati
tween the concept extensions. However, this kind of mapping affects only the co
level without referring to the actual source schemas. It is used for query rewriting
and has not be considered during schema matching. Therefore, we do not con
here.

• Value mappings are used for defining how a category term is mapped to a litera
in a source. For this purpose, the source name and the literal are required only:

v �→ 〈src, literal〉.

Based on these mappings correspondences are specified for each source separa
GLAV style: concept, property and value mappings are LAV, whereas join mapping
in fact global views which means a GAV approach. In this way, source mapping sp
cations are independently from each other and a matching is necessary only betwe
individual source and the global ontology.

Identifying matchings and defining mappings of these kinds are the main task of sc
mapping in the YACOB system. To each concept supported by a given source, app
ate concept mappings and the accompanying property and value mappings are a
However, due to the existence of specialization relationships between concepts no
concept has to be annotated. Instead, only concepts which represent a leaf in the h
with respect to a given source have to be considered. An example of a mapping
ification is given inFig. 3 whereprovidedBy associates the mapping to the conc
painting andsourceName corresponds tosrc andlocalElement to path-to-elem
in c �→ 〈src,path-to-elem,filter〉.

The mapping specifications are used both for result transformation as well as
translation. Query results are transformed by applying source-specific XSLT rules
can be automatically derived using the following rules:

(1) For a concept mapping toc �→ 〈src, lelem〉, the following XSLT template is gene
ated:
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<xsl:template match="lelem">
<c> <xsl:apply-templates /> </c>

</xsl:template>

(2) For a property mappingp �→ 〈src, lelem1/lelem2〉, a corresponding XSLT template
the following form is derived:

<xsl:template match="lelem1">
<p>
<xsl:value-of select="lelem2" />

</p>
</xsl:template>

(3) For a propertyp with a domain consisting of the hierarchy of categoriesk1, k2, . . . , km

with associated value mappingsv1 �→ 〈src,val1〉 . . .vm �→ 〈src,valm〉, the following
XSLT template for the property mapping is created:

<xsl:template match="elem1">
<p> <xsl:choose>
<xsl:when test="elem2/elem3= ’v1’">
<xsl:text>k1</xsl:text>

</xsl:when>
<xsl:when test="elem2/elem3=’v2’">
<xsl:text>k2</xsl:text>

</xsl:when>
...

</xsl:choose> </p>
</xsl:template>

Please note that we do not need an XSLT template for join mappings because such
ties are handled during query rewriting.

Query translation is performed by deriving an expression in an extended query a
which provides additional operators for dealing with concept level operations (e.g
operators, path traversal including transitive closure, etc.) as well as an operator ob
the extension of a given concept. In the next step, intersource relationships are sub
by join operations using the join mappings. Then, the query is processed by first eva
the concept-level operators. Here, several heuristics are applied taking constraints fr
ontology level (specialization relationships) into account. Finally, the remaining subqu
are translated into source queries on the basis of the concept and property mappin
further details on query rewriting and processing we refer to[8].

In the following sections we will discuss how the process of matching and map
derivation can be supported by existing schema matching approaches and how th
proaches can be improved towards an extensible approach.

4. Rule-based schema matching

Considering existing schema matching approaches (cf. Section2) we have a wide vari
ety on different matching criteria at hand leading to quite different schema matcher
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schema-based, instance-based, language-based,. . . ). Although there are already propos
for combining these schema matchers and building so-called hybrid matchers, suc
binations are typically static and rather inflexible.

Here, employing logical mechanisms promises significant benefits in particular
cerning flexibility in combining different schema matchers and expressing a large spe
of matching criteria within one framework. In the following we therefore discuss w
kinds of properties and criteria we want to express and present the logical concepts
ing a rule-based general framework for schema matching.

Such a logical framework offers several advantages like:

• extensible matchers;
• proper means to deal with semantically rich schemas (ontologies);
• (semi-)automated derivation/refinement of matching rules based on already m

sources (e.g., identifying synonyms, constraints, etc.)

In the following subsections we introduce rule-based concepts for schema matchin
by step. First we briefly discuss how uncertainty can be represented in logical lang
Then, we show how in general rules for elementary matchers, the property matcher
like. Thereafter, we investigate the combination of property matchers in order to o
rule sets for concept matching. Finally, we discuss the evaluation of matching rules s
on which basic principles the evaluation can be realized.

4.1. Representing uncertainty

First of all we need to represent uncertainty because even elementary schema m
algorithms (for individual matchers) often do not produce crisp results (cf.[9]). There is
in general an inherent uncertainty due to the assumptions the schema matching alg
relies on, due to missing semantic information, or due to the algorithm itself (e.g
algorithms based on statistic analysis techniques).

There are several approaches to incorporate uncertainty into logical languages. M
these approaches represent uncertainty as probabilities, e.g.[10,11]. For our purposes
probabilistic extension of Datalog as introduced in[11] (for which an algebraic semantic
was given in[12]) seems to be most appropriate. In fact, for this particular approach
is some first work on its usage for schema matching[13].

Adding probabilities (or uncertainty values) to a logical language can mainly be
on two levels:

• On the object level we can decorate facts with an information on their certain
uncertainty. In this way we are able to express that a fact is not necessarily t
false, but that there is, e.g., a certain probability for this fact to hold.

• On the rule level we can decorate rules with an information on their certainty o
certainty. Not only facts can be uncertain but also rules.

In the context of schema matching we usually have uncertain facts, e.g. expressing
object class in one source corresponds to an object class in another source with som
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tainty. But uncertain rules might occur as well. We can think of producing a set of mat
rules for a concrete application. These rules can then be used for matching conc
stances which is in particular useful and necessary if the databases (or sets of doc
are modified. Here, the schema matching is usually done once producing a set of m
rules for the data related to the schemas matched. Due to the fact that for schema
ing there is only a restricted amount of (semantic) information available the result w
general not be perfect, i.e. there will always be some uncertainty about the exact ma
on the instance level.

Using probabilities as representation for uncertainty has the advantage that the ru
computation with probabilities are well understood and easy to implement. Althoug
discussion about which model for representing uncertainty is most adequate is beyo
scope of this paper, we have to point out that other models could be used as well. Loo
data mining algorithms which might be used to produce some input for a schema ma
algorithm we have to face the fact that some algorithms yield probabilities while o
yield possibilities, support and confidence values, or other representations for unce
as result. At that level we obviously might run into another integration problem if we
to deal with heterogeneous representations of uncertainty.

For the purposes of this paper we do not need to care about the concrete repr
tion model for uncertainty. For simplicity, we use probabilities having in mind that o
representation models for uncertainty might need other rules for computation. For
menting a rule based schema matching within a concrete application scenario we the
to decide about the representation model.

4.2. Rules for property matching

As a starting point (in a bottom-up view of the matching process) we need mat
rules which allow to match with respect to specific properties. These rules may use
in predicates implementing such specific atomic matchers. For instance, simple ma
criteria like matching strings (on schema level identifiers for classes, attributes, etc.)
on common prefixes could be provided as built-in predicate. Looking at this exampl
prefix matcher, there is a built-in predicateprefix_match having (at least) three argu
ments: two arguments for the strings/identifiers to be matched and one argument
conf here) for a value expressing how good the match is:

match(p1, p2, conf) :- prefix_match(p1.name, p2.name, conf).

This rule simply expresses that two structured objects (e.g., XML documents) m
as well as a prefix match on their names. In the same style it is possible to use
property matchers, for instance a matcher using the edit distance (e.g., as built-in pr
edistance):

match(p1, p2, conf) :- edistance(p1.name, p2.name, dist),
conf = 1.0 - dist /

max(len(p1.name), len(p2.name)).
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For our example from Section3 (cf. Figs. 1 and 2) we could try to match, e.g., the nam
of the conceptpainting with the name of the XML elementpaintings which would
result in a rather high value forconf in thematch predicate. If we try to matchfurni-
ture with image_url this will produce a very small confidence value for this match

Furthermore, property matchers can be combined by checking several different fe
e.g., the edit distance and substring containment, and derive and matching similarity
simply the average):

match(p1, p2, conf) :- edistance(p1.name, p2.name, dist),
conf1 = 1.0 - dist /

max(len(p1.name), len(p2.name)),
substring(p1.name, p2.name, len),
conf2 = len /

min(len(p1.name), len(p2.name)),
conf = (conf1 + conf2) / 2.

Of course, there is no problem to also have crisp criteria for matchers like equality
assuming that the argumentconf may have values in the range from 0.0 to 1.0):

match(p1, p2, 1.0) :- equal(p1.name, p2.name).
match(p1, p2, 0.0) :- not-equal(p1.name, p2.name).

4.3. Rules for concept matching (combining property matchers)

In the previous section we introduced rules based on property matchers. Of c
property matchers used in isolation are in general not able to yield an adequate
The result of a single property match needs to be considered within the context
properties compared. For that, other classes and their properties in the direct neighb
need to be compared. As a general principle we can state that the larger the portion
neighborhood is which can be matched as well, the more adequate the match is.

For going into details we consider the ontology given inFig. 1and the XML fragment
depicted inFig. 2.

Property matchers can be employed for finding candidates representing the sa
mantic information in the ontology and in the XML document. Trying to match name
object classes or properties in the ontology with tag names in the XML document will
that for instancepainting (concept in the ontology) andpaintings (tag in the XML
document) are candidates to represent the same concept in the real world. Witho
additional information this does not really help. In other examples we might find se
conflicting pairs of such candidates. On the other hand, property matchers can of
detect the right candidates, for instance it is not probable that a simple property m
finds out thatperson andartist represent the same semantic concept. In this c
thesauri or dictionaries are helpful which can be incorporated by an appropriate rule

/* thesauri */
synonym(’person’, ’artist’).
...
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match(c1, c2, conf) :- edistance(c1.name, c2.name, dist),
conf1 = 1.0 - dist /

max(len(c1.name), len(c2.name)),
match_children(c1, c2, conf2),
conf = f(conf1, conf2).

match_children(c1, c2, cavg) :-
cavg = avg(conf, (child(c1, cc1),

child(c2, cc2),
best_match(cc1, cc2, conf)).

best_match(c1, c2, cmax) :- cmax = max(conf,
match(c1, c2, conf)).

Fig. 4. Rules for matching hierarchical structures (simplified version).

match(p1, p2, conf) :- synonym(p1.name, s),
equal(s, p2.name),...

Obviously, we should try to use several different property matchers and combine
results. In particular, using the graph (or tree) structures of the ontology and of the
document allows a semantics driven procedure to find adequate global matches. F
XML documents are taken as trees where a tag represents a node in the tree (the
labeled by that tag). Child nodes can directly be accessed from a node by using the

Now, having a concept in the ontology and a node (tag) in the XML document as
didates for representing the same semantic information, we can compare their pro
or sub-concepts and child nodes, respectively, to see whether they can be matched
This can and has to be done recursively along the graph or tree structure. Becaus
comparisons for finding matches in sub-structures are usually not equally importa
assessing the quality of a possible match, we can add weights. For instance, weig
be used to express that matches of direct sub-structures (properties and child nod
tribute more to the certainty of a specific match than matches of sub-structures with a
distance to the considered concept and/or XML node.

In a bottom-up evaluation we first have to find matching candidates for the leave
XML document tree (or of the concept graph). For this we can employ property mat
Then, we can combine their results for those leaves being child nodes of some inne
For that, we have to provide combination rules. The step of combining results of sub
has to be repeated until we reach the root of the document tree.Fig. 4depicts logical rules
which provide the principal structure for that (wheref stands for a function computing
weighted confidence).

Due to the fact that there are often several possible matches for a concept or no
have to eliminate unlikely matches. One possible solution is to simply choose th
match. For combining theconf values for all children we have to specify a correspond
function. Here, we decided to simply use the average. Clearly, applying such aggre
functions we go beyond the expressiveness of first order logic. As we explain in Secti4.4
this does not raise severe problems because a safe evaluation can be achieved.

Of course, these logical rules only represent a very simplified matching model.
are several aspects requiring more complicated matching rules here:
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• Thematch_children rule does not really provide a reasonable result. This is
to the fact that this rule as it is compares each child of c1 with each child o
determines a best match for this pair of children and then computes the averag
all pairs.
For a realistic usage we have to find for then children of c1 and them children of
c2 a (partial) mapping which tells us for which children of c1 there are correspon
children of c2. For these pairs of corresponding children we can then compute th
match before we combine all these values to one value for the match between
c2.
In our example (cf.Figs. 1 and 2) we may want to matchpainting (a concept in
the ontology) withpaintings (an element in the XML document).painting has
three properties:
– name (inherited fromcultural asset),
– artist (inherited fromfine arts), and
– painted by.
In the XML structurepaintings has five properties (i.e. sub-elements):
– title
– person
– material
– url
– image_url
Here, thematch_children rule would investigate all 15 combinations (differe
pairs consisting of one property ofpainting and one property ofpaintings),
find the best match confidence for each of the 15 pairs, and compute the averag
out of the 15 match confidence values. Comparing two concepts or elements
large number of properties having no counterpart (which should result in match v
equal or close to 0), the average value will be very low.
Ideally, properties or sub-concepts with no counterpart in a match should not con
to the final confidence value (or at most in a very limited way). In our example, fo
three properties ofpainting there should be at most three properties ofpaint-
ings as counterparts. It is clear, that at least two properties ofpaintings cannot
really provide to the confidence for the match ofpainting andpaintings.

• Another problem arising in the example is that sub-concepts or properties,
should be compared for coming out with a reasonable result, are not always
same level. For instance, for matchingpainting in the ontology withpaintings
in the XML structure the name of the painter is only an indirect property ofpainting
(via the relationship propertypaintedBy to the conceptpainter) whereas the
name of the painter is directly given by the direct sub-elementperson for paint-
ings.
Therefore, a more sophisticated matching model should take different “distance
possibly matching sub-concepts or sub-properties into account.

• Here, we treat all children of a node in the same way using the predefined pre
child. Having different kinds of child nodes we could use different predicate
distinguish them. For instance, for ontologies we may want to distinguish bet
properties of a concept and sub-concepts of that concept.
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Instead of the predicatechild we could introduce a set-valued function for returning
set of all child nodes. Set-valued or more general multi-valued functions (returning
bags, or lists of values or objects) could in addition be used for expressing aggrega
a much more simpler way.

4.4. Evaluation of matching rules

As a basis for our logical framework we could use first-order logic. The synta
used here for examples of rules has been adopted from Datalog[14]. Obviously, basic
(positive) Datalog is not sufficient. In the previous sections we pointed out a numb
further concepts like negation, complex objects (i.e., objects with sub-objects, set-
attributes, etc.), aggregation, etc. There is a whole bunch of work on extending Data
such concepts. For instance, LDL[15] adds sets and negation to Datalog. For reaso
about complex (structured) objects a number of rule-based approaches are availab
[16–18]).

Such extensions allow us to investigate the child nodes of a node (i.e., tag
closed within another tag) in such a logical framework by accessing the features (p
ties/attributes) of an object. All nodes (e.g., corresponding to elements in XML docum
are considered to be objects, the child relationship is expressed by properties of the
where the corresponding tags from the XML document provide to the names of the
erties.

As basic evaluation concept we employ stratification. Stratification is a com
bottom-up evaluation mechanism originally developed for capturing negation in d
tive languages (see for instance in[19]). The basic concept of stratification has then b
applied as an evaluation technique for quite a number of other additional concepts a
a deductive language. The deductive language StateLog which allows explicit refere
past states in the evaluation process[20] is a nice example for a sophisticated employm
of stratification.

For evaluating matching rules in our setting we particularly need to get a grasp of a
gation operations. For expressing different matching strategies we need for instanc
able to say that we are only interested in the best match (i.e., the match with the ma
matching confidence). To find the maximum we first have to compute all possible ma
with their matching confidence before we can continue with the best match. Obviou
stratified evaluation of the corresponding rules can solve this in a natural way (a de
discussion on aggregation in deductive languages can be found in[21]).

4.5. Process of rule-based matching

The integration of a new source requires to import the local source schema and to
the matching rules. Because in most cases an automatic matching is difficult we h
deal with several possible candidate matches. From this candidate set the schema in
can choose an appropriate match and derive the corresponding mapping specificatio
the mappings for all relevant elements from the local schema are specified and im
into the mediator the source can be queried and accessed from the global level.
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procedure find-matches (conceptc, concepte, confidenceconf, candidatescset)
evaluatebest-match (c, e, nconf)
if nconf� conf then

cset:= cset∪ (c,nconf)
foreach c′ ∈ subconcepts(c) do

find-matches (c′, e, nconf, cset)
od

else
/* no better matching possible—stop the evaluation */

fi
end

algorithm schema-match (schemas, concept hierarchyC)
c := root(C)

foreach schema elemente ∈ s do
cset:= ∅

find-matches (c, e, 0, cset)
clist := sortconf (cset)
outputclist

od
end

Fig. 5. Algorithm for rule-based schema matching.

In order to apply the matching rules it is necessary to represent the local sche
the same model as the concept schema. For our case of XML sources this is ac
by treating the elements of the XML DTD as concepts and attributes or sub-eleme
properties. If no DTD is available, it can be inferred from the actual XML data.

The next step is to process the matching rules. Here, a first possible approach is
logic-based bottom-up evaluation. Starting with the evaluation of property matching
this approach combines these matchers using the concept matching rules in order t
mine the best match. Depending on the strategy only the best match (i.e., with the h
confidence value) or a set of candidate matches (i.e., with a confidence value grea
a given threshold) are returned. However, this approach requires to check the m
each combination of source and global properties and therefore requires a high ef
addition, specialization relationships between concepts are not exploited.

An alternative approach is to evaluate the matching rules along the specializati
erarchy of the concept schema. This combines the bottom-up evaluation of rules
graph-based top-down approach. The algorithm as shown inFig. 5works as follows.

For each concepte representing a source schema element we start with the root
cept(s) of the ontologyC. Using the concept matching rules we check by bottom
evaluation if there exists a match, i.e. ifconf > 0. By proceeding downwards, i.e. fo
lowing the specialization relationships, and applying the matching rules again, we
if the match is improved, i.e., if the new confidence valuenconf� conf. In this case, we
can proceed recursively at the next level etc. If the confidence value decreases we c
the evaluation for the remaining sub-tree. This could arise, if for a sub-concept som
ditional properties are defined for which no corresponding properties exist in the s
schema concept. In this way, we can guarantee that we found a match for the most
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concept in the hierarchy without considering each concept of the schema. After the
chy traversal has been finished we collect a set of candidate matchescset. This set can be
ordered by the confidence value (clist) and presented to the user.

The final step is to derive the mapping information as introduced in Section3 re-
quired for transforming global queries as well as result data. Basically, these ma
are implicitly given by the predicates and variable substitutions used for evaluatin
matching rules. This means for example, if a match was chosen between the XML e
paintings (containing the sub-elementsartist_name andtitle) and the concep
painting (with propertiesartist andtitle) due to the following rule evaluation

match(c, xml, conf)
edistance("painting", "paintings", 1)
match_children(c, xml, conf2)
equal("title", "title")
prefix_match("artist", "artist_name", conf3)

...

we can directly derive the following mappings for a sourcesrc

painting �→ 〈src,paintings, true〉
artist �→ 〈src,paintings/artist_name〉

title �→ 〈src,paintings/title〉
One way to derive these mappings for a complete matching step is to use the eva

trace of the rule engine. If we are able to determine which predicates and rules wer
we can derive the mapping specification.

Another approach is to explicitly encode the mapping generation as part of the m
ing rules. This can be simply done by introducing an additional variable representin
mapping string which is completed in each property and concept matching rule as sk
in the following example:

match(c1, c2, conf, mapping) :-
edistance(c1.name, c2.name, dist),
concat(mapping, "c1 �→ 〈src,c2.name, true〉"),
...
match_children(c1, c2, conf2, mapping),
...

match(p1, p2, cname, conf, mapping) :-
edistance(p1.name, p2.name, dist),
concat(mapping, "p1 �→ 〈src,cname/p2.name〉"),
...

In this way, after the matching of a concept-level rule the whole mapping specific
is available.
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5. Conclusions

An important task of integrating data from heterogeneous sources is the probl
schema matching in order to be able to derive mapping information required for
rewriting and translation as well as result data transformation. Though several appr
were proposed aiming to support a (semi-)automatic matching, there is still a ne
extensible solutions allowing to add application-specific or domain-specific matchin
teria. In this paper, we have discussed a logic-based framework using rules for s
matching and offering a high degree of flexibility in combining different matchers
domain-specific way. We have further shown that such a logical representation is p
larly useful in scenarios where the global schema is represented in the form of an on
supporting the modeling of different kinds of relationships and in this way hiding sem
correspondences. In the first step, we have only addressed the problem of schem
matching but we are aware of the need to consider instance-level information, too.
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