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Improved Stability and Stabilization Results for
Stochastic Synchronization of Continuous-Time
Semi-Markovian Jump Neural Networks with

Time-varying Delay
Yanling Wei, Member, IEEE, Ju H. Park, Member, IEEE, Hamid Reza Karimi, Senior Member, IEEE,

Yu-Chu Tian, Member, IEEE, and Hoyoul Jung

Abstract—Continuous-time semi-Markovian jump neural net-
works (semi-MJNNs) are those MJNNs whose transition states
(TRs) are not constant but depend on the random sojourn-time.
Addressing stochastic synchronization of semi-MJNNs with time-
varying delay, an improved stochastic stability criterion is derived
in this paper to guarantee stochastic synchronization of the
response systems with the drive systems. This is achieved through
constructing a semi-Markovian Lyapunov-Krasovskii functional
(LKF) together as well as making use of a novel integral
inequality and the characteristics of cumulative distribution
functions (CDFs). Then, with a linearization procedure, controller
synthesis is carried out for stochastic synchronization of the
drive-response systems. The desired state-feedback controller
gains can be determined by solving a linear matrix inequality
(LMI)-based optimization problem. Simulation studies are car-
ried out to demonstrate the effectiveness and less conservatism
of the presented approach.

Index Terms—Semi-Markovian jump neural networks,
Stochastic synchronization, Sojourn-time-dependent transition
rates, Time-varying delay.

I. INTRODUCTION

Neural networks (NNs) have been comprehensively inves-
tigated in recent decades in both mathematics and control
communities. Various mathematical models have been pre-
sented for NNs, e.g., local field NNs and static NNs. They
have been successful applied in a variety of areas, e.g.,
associative memory [1], pattern recognition [2], image and
signal processing [3] and affine invariant matching [4]. NNs
usually face the difficulty of keeping long-term dependencies
in the input stream. For example, the information latching
phenomenon usually occurs in NNs, and can be treated via
extracting finite-state representations (e.g., clusters, patterns or
modes) from trained networks [5], [6], [7], [8], [9]. Another
example is found in pathological states of the brain, i.e.,
epileptic seizures [10].
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In NNs, transitions from one state to another can be mod-
elled by using a stochastic process [11]. The stochastic process
relies on the duration between two successive transitions. This
duration is known as sojourn-time. It is a random variable fol-
lowing a probability distribution. In some cases, the distribu-
tion is an exponential distribution, and thus the transition states
(TRs) are constant according to the memoryless characteristic
of the exponential distribution. This implies that the switches
are only related with the latest state. Such a stochastic process
is a Markov process. With the advances in general Markovian
jump systems, progress has also been made in Markovan jump
NNs (MJNNs) [12], [13], [14], [15].

In practice, however, network mode transitions do not
always comply with the memoryless restriction. In other
words, the TRs are usually not constant but time-varying. A
continuous-time stochastic process with sojourn-time obey-
ing a non-exponential distribution is often addressed as a
semi-Markov process [16], [17], [18]. MJNNs whose mode
transitions obey a semi-Markov process are referred to as
semi-MJNNs. Semi-MJNNs model and describe a broader
class of practical stochastic systems. Traditional MJNNs are a
special case of semi-MJNNs. Therefore, investigation into the
analysis and synthesis of semi-MJNNs has a potential of wide
applications. This motivates our research in the present paper.

For NNs, time delays are often present in their dynamics due
to the finite transition speed as in amplifiers in electronic NNs
and finite signal propagation in biological networks [19], [20],
[21], [22], [23], [24], [25]. It is known that time delays may
cause degraded system performance, unexpected oscillations
and even system instability. Therefore, studies on analysis and
synthesis of NNs with time delay have become significant.
While theories have been established for maintenance of
the stability of NNs with time delay, a further reduction in
the conservatism of the stability criteria available from the
literature is still a significant issue.

Among various stability analysis methods, the direct Lya-
punov function approach is a powerful tool to deal with
systems with time delay. It relies on construction of LKFs
and employment of some tight techniques for manipulating
the time-derivative or difference of the LKFs [26], [27], [28],
[29], [30], [31]. A key step is to construct LKFs to involve
more useful information on time delay such that the inherent
conservatism can be reduced. Several attempts have been
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pursued with regard to the structure of the functional by
extending state-based LKFs [32], [33], discretized Lyapunov
functions or discontinuous Lyapunov functions [34], [35].
Then, by virtue of some more or less tight techniques to
bound the crossing terms of the derivative or difference of
the LKF, tractable stability analysis criteria can be established.
As an example, by using the Jensen’s inequality, the sampled-
data stochastic synchronization problem is solved for MJNNs
with time delays [36]; By employing the free-weighting matrix
approach, the stability analysis problem for Hopfield NNs with
Markovian jumping parameters and time delay has been inves-
tigated [6]. by adopting the reciprocally convex inequality, the
stochastic stability analysis problem is studies for generalized
NNs with Markovian jumping parameters and time-varying
delays [15]. Via the Wirtinger-based integral inequality, the
global asymptotic stability analysis problem is tackled for NNs
with interval time-varying delays [37]. All these examples
show that the choice of LKFs and over-bounding techniques
inevitably induce some degree of conservatism. Therefore,
there is a room to further reduce the conservatism of existing
approaches for stochastic synchronization of delayed semi-
MJNNs. This also motivates our work in the present paper.

This paper aims to improve the stability and stabilization
results for stochastic synchronization of continuous-time semi-
MJNNs with time-varying delay. More specifically, by con-
structing a semi-Markovian LKF, combined with carefully
exploring the characteristics of CDFs and the employment
of a new integral inequality, an improved stochastic stability
analysis criterion will be established for the error systems
of the semi-MJNNs. It guarantees that the response systems
are stochastically synchronized with the drive systems. Then,
by using a linearizition technique, the controller synthesis
problem is investigated for stochastic synchronization of the
drive-response systems. It will be shown that the desired
state-feedback controller gains can be derived from a convex
optimization scheme. Simulation results will be conducted to
demonstrate the effectiveness and less conservatism of the
proposed scheme. In comparison with existing literature, this
paper shows two unique features: 1) The considered NNs
with semi-Markovian jumping parameters, where the TRs are
sojourn-time dependent, can be employed to describe a broader
class of practical stochastic systems; 2) By introducing an
improved integral inequality, together with Projection lemma
and a linearization procedure, new delay-dependent stochastic
synchronization conditions are derived with less conservatism
for semi-MJNNs with time-varying delay; and 3) a new
method is presented for controller gains synthesis from the
derived stability conditions.

The paper is organized as follows. Section II presents
system modelling. Section III develops improved stability
analysis. This is followed by controller synthesis in Section
IV. Simulation studies are conducted in Section V. Finally,
Section VI concludes the paper.

Notations. R+ and Z+ denote the sets of non-negative real
numbers and non-negative integers, respectively. Sι represents
the set of ι× ι real symmetric and positive definite matrices.
Sym{A} := A+A⊤. E [·] means mathematical expectation.

II. MODEL DESCRIPTION

To formally define a semi-Markov process, we introduce the
following three stochastic processes:

1) Stochastic process {rn}n∈Z+ takes values in I :=
{1, 2, · · · , N}, where rn refers to the index of the system
mode at the nth transition;

2) Stochastic process {tn}n∈Z+ takes values in R+, where
tn represents the time at the nth transition; t0 = 0, and tn
increases monotonically with n; and

3) Stochastic process {hn}n∈Z+ takes values in R+, where
hn = tn − tn−1, ∀n ∈ Z≥1 represents the sojourn-time of
mode rn−1 between the (n−1)th and nth transitions; h0 = 0.

A possible evolution of the stochastic processes is shown
in Fig. 1.

1

2

3

Fig. 1. A possible evolution of stochastic processes rn, tn and hn for N = 3.

Consider a stochastic switched system:

Σ : ẋ(t) = A(r(t))x(t), tn ≤ t < tn+1, (1)

where x(0) = x0 ∈ ℜι is a constant vector; A(r(t)) ∈ ℜn×n,
r(t) ∈ I, are real matrices. Also assume that the initial
condition t0 = 0 and r(0) is a constant.

Definition 2.1 [16], [18]. We say that the stochastic process
r(t) := rn, t ∈ [tn, tn+1), is a homogeneous semi-Markov
process, and Σ is a continuous-time homogeneous semi-MJLS
if the following two conditions hold ∀i, j ∈ {1, · · · , N},
t0, t1, · · · , tn ≥ 0:
(i) It holds that

Pr(rn+1 = j, hn+1 ≤ h|rn, · · · , r0, tn, · · · , t0)
= Pr(rn+1 = j, hn+1 ≤ h|rn).

(2)

(ii) The probability

Pr(rn+1 = j, hn+1 ≤ h|rn = i) (3)

is independent of n.
Conditions (i) and (ii) show that the process {(rn, tn)}∞n=0

is a time-homogeneous Markov renewal process, and therefore
{rn}∞n=0 is a time-homogeneous Markov process. It is also
known from Definition 2.1 that the transition probabilities of
homogeneous semi-Markov process r(t) := rn, t ∈ [tn, tn+1),
n ∈ Z≥1, are merely dependent on the sojourn-time hn instead
of system-operation time t. Thus, the TRs of homogeneous
semi-Markov process are characterized by sojourn-time h only.

In this paper, we focus on the following continuous-time
semi-MJNNs with time-varying state delay:

⎧
⎨

⎩

ẋ(t) = −A(r(t))x(t) +B(r(t))ψ(x(t))
+Bd(r(t))ψ(x(t − d(t))) + V (t)

x(t) = φt, t ∈ [−d2, 0],
(4)



SUBMITTED TO IEEE TNNLS 3

where x(t) = [x⊤
1 (t), x

⊤
2 (t), · · · , x⊤

ι (t)]
⊤ ∈ ℜι refers to

the state vector associated with the ι neutrons; ψ(x(t)) =
[ψ⊤

1 (x1(t)),ψ⊤
2 (x2(t)), · · · ,ψ⊤

ι (xι(t))]⊤ ∈ ℜι is the neuron
activation function, where each activation function ψl(·) is
continuous and bounded, and satisfies

F−
l ≤ ψl(τ2)− ψl(τ1)

τ2 − τ1
≤ F+

l , l = 1, 2, · · · , ι (5)

where τ1, τ2 ∈ ℜ, and τ1 ̸= τ2; V (t) refers to an ex-
ternal input vector; and d(t) is a time-varying delay with
0 ≤ d1 ≤ d(t) ≤ d2 < ∞ and ḋ(t) ≤ µ < ∞,
{d1, d2} ∈ R+ represent the lower and upper delay bounds,
respectively. In (4), φt is a real-valued initial condition defined
on [−d2, 0]; {r(t), h}t≥0 := {rn, hn}n∈N≥1 is a continuous-
time and discrete-state homogeneous semi-Markov process
with right continuous trajectories and with values in a finite
set I := {1, · · · , N} with TR matrix Λ(h) := [λij(h)]N×N

characterized with [16]:
⎧
⎪⎪⎨

⎪⎪⎩

Pr{rn+1 = j, hn+1 ≤ h+ δ|rn = i, hn+1 > h}
= λij(h)δ + o(δ), i ̸= j

Pr{rn+1 = j, hn+1 > h+ δ|rn = i, hn+1 > h}
= 1 + λii(h)δ + o(δ), i = j

(6)

where δ > 0, limδ→0(o(δ)/δ) = 0, and λij(h) ≥ 0, for j ̸= i,
refers to the TR from mode i at time t to mode j at time
t+δ, and λii(h) = −

∑N
j=1,j ̸=i λij(h). Subsequently, for each

possible r(t) = i, i ∈ I, the system matrices of the i-th mode
are signified by (Ai, Bi, Bdi).

For stochastic stability, we give the following definition.
Definition 2.2 [16], [17], [18]. System (4) is stochastically

stable (SS) if there exists a finite positive constant T (x0, r0) to
make the subsequent inequality hold for any initial condition
(x0, r0):

E
[ ∫ ∞

0
∥x(t)∥2dt

∣∣∣∣(x0, r0)

]
≤ T (x0, r0).

In this paper, we address the delay-dependent stochastic
synchronization problem for continuous-time semi-MJNNs (4)
with time-varying delay. In particular, we take system (4) as
the drive system, and then from the drive-response concept, a
response system for (4) is obtained with the following state
equation:
⎧
⎨

⎩

˙̄x(t) = −A(r(t))x̄(t) +B(r(t))ψ(x̄(t))
+Bd(r(t))ψ(x̄(t− d(t))) + V (t) + u(t)

x̄(t) = ϕt, t ∈ [−d2, 0],
(7)

where x̄(t) = [x̄⊤
1 (t), x̄

⊤
2 (t), · · · , x̄⊤

ι (t)]
⊤ ∈ ℜι represents

the response state vector; A(r(t)), B(r(t)), and Bd(r(t)) are
matrices prescribed in (4), and u(t) ∈ ℜι is the appropriate
control input which will be synthesized in the sequel. The drive
system with state variable x(t) pushes the response system
having identical dynamical equations with state variable x̄(t).
Although the system parameters are the same, the initial
condition on the drive system is different from that of the
response system. In fact, even an infinitesimal differential
in the initial condition in (4) and (7) will lead to different
chaotic phenomena in those systems. By defining the syn-
chronization error vector e(t) = x̄(t) − x(t) with e(t) =

[e⊤1 (t), e
⊤
2 (t), · · · , e⊤ι (t)]⊤, the error dynamics between (4)

and (7) can be expressed by

ė(t) = −A(r(t))e(t) +B(r(t))g(e(t))

+Bd(r(t))g(e(t − d(t))) + u(t) (8)

where g(e(t)) := ψ(x̄(t)) − ψ(x(t)). From Assumption (5),
it is known that the functions gl are subject to the following
condition,

F−
l ≤ gl(τ)

τ
≤ F+

l , l = 1, 2, · · · , ι (9)

where τ ∈ ℜ and τ ̸= 0.
For dynamic error system (8), the control input u(t) is

suitably designed as:

u(t) = K(r(t))e(t), (10)

where K(r(t)) ∈ ℜι×ι, r(t) ∈ I are the controller gain
matrices to be synthesized.

With controller (10), the closed-loop dynamic error system
can be formulated as

ė(t) = −Ā(r(t))e(t) +B(r(t))g(e(t))

+Bd(r(t))g(e(t − d(t))). (11)

where Ā(r(t)) := A(r(t)) −K(r(t)).
This paper will determine the control input u(t) associated

with the state feedback for stochastic synchronization of the
drive-response semi-MJNNs with the same system parameters
but different initial conditions. It will search for a group of
state-feedback controller gain matrices Ki, i ∈ I such that
the dynamic error system (11) is SS.

For a reduction in the conservatism of delay-dependent
stability analysis for semi-MJNNs (11), we introduce a new
integral inequality as follows.

Proposition 2.1. Given a matrix Z ∈ Sn1 , for all continuous
function ω ∈ [a, b] → ℜn1 and any constant matrices
{W1,W2} ∈ ℜn1×n2 , the following inequality holds:

−
∫ b

a
ω⊤(s)Zω(s)ds ≤ ζ̄⊤(Sym{W⊤

1 Π1 +W⊤
2 Π2}

+(b− a)W̄⊤Z−1W̄ )ζ̄ (12)

where {Π1,Π2} ∈ ℜn1×n2 , the vector ζ̄ ∈ ℜn2 , and
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∫ b
a ω(s)ds = Π1ζ̄,

−
∫ b
a ω(s)ds+

2
b−a

∫ b
a

∫ s
a ω(α)dαds = Π2ζ̄,

W̄ :=
[
W⊤

1 W⊤
2

]⊤
,

Z := diag{Z, 3Z}.

(13)

Proof: Define
⎧
⎪⎨

⎪⎩

p(s) := 2s−b−a
b−a ,

W̄ :=
[
W⊤

1 W⊤
2

]⊤
,

η(s) :=
[
ζ̄⊤ p(s)ζ̄⊤

]⊤
.

(14)

For any matrix Z ∈ Sn1 , it is known from Schur complement
that [

Z ∗
W̄ W̄⊤Z−1W̄

]
≥ 0, (15)
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which directly leads to

[
ω(s)
η(s)

]⊤ [
Z ∗
W̄ W̄⊤Z−1W̄

] [
ω(s)
η(s)

]
≥ 0, (16)

or equivalently,

−2η⊤(s)W̄ω(s) ≤ η⊤(s)W̄⊤Z−1W̄η(s) + ω⊤(s)Zω(s).
(17)

Integrating both sides of the latter inequality from a to b yields

−2ζ̄⊤W1

∫ b

a
ω(s)ds− 2ζ̄⊤W2

∫ b

a
p(s)ω(s)ds

≤
∫ b

a
η⊤(s)W̄⊤Z−1W̄η(s)ds+

∫ b

a
ω⊤(s)Zω(s)ds. (18)

Then, with some mathematical manipulations, e.g., integration
by parts, we further obtain

−2ζ̄⊤W1

∫ b

a
ω(s)ds

−2ζ̄⊤W2

(∫ b

a
ω(s)ds− 2

b− a

∫ b

a

∫ s

a
ω(α)dαds

)

≤ (b − a)ζ̄⊤W⊤
1 Z−1W1ζ̄ +

b− a

3
ζ̄⊤W⊤

2 Z−1W2ζ̄

+

∫ b

a
ω⊤(s)Zω(s)ds, (19)

which renders the conclusion in (12).
Remark 2.1. Proposition 2.1 provides a new integral in-

equality for computing the upper bound of integral quadratic
terms in the form of −

∫ b
a ω

⊤(s)Zω(s)ds. Actually, depending
on the selection of parameters in Proposition 2.1, the proposed
integral inequalities can be extended to various cases. Firstly,
when

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ω(s) = ẋ(s),
n2 = 2n1,
W1 =

[
Z 0n1×n1

]
,

W2 =
[
0n1×n1 Z

]
,

ζ̄ :=
[
x⊤(b) x⊤(a)

]⊤
,

Π1 =
[
0n1×n1 −(b− a)I

]
,

Π2 =
[
0n1×n1

2
3 (b − a)I

]
,

(20)

the corresponding condition in Proposition 2.1 degenerates
into the traditional Jensen’s inequality. Secondly, when

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ω(s) = ẋ(s),
n2 = 3n1,
W1 = 1

b−a

[
−Z Z 0n1×n1

]
,

W2 = 3
b−a

[
−Z −Z 2Z

]
,

ζ̄ :=
[
x⊤(b) x⊤(a) 1

b−a

∫ b
a x⊤(s)ds

]⊤
,

Π1 =
[
I −I 0n1×n1

]
,

Π2 =
[
In1 I −2I

]
,

(21)

the underlying condition in Proposition 2.1 evolves to the
Wirtinger-based integral inequality (Corollary 4 in [38]).
Thirdly, when
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ω(s) = x(s),
n2 = 2n1,
W1 =

[
I 0n1×n1

]
,

W2 =
[
−In1 2In1

]
,

ζ̄ :=
[

1
b−a

∫ b
a x⊤(s)ds 1

b−a

∫ b
a

∫ s
a x⊤(α)dαds

]⊤
,

Π1 = − 1
b−aZW1,

Π2 = − 3
b−aZW2,

(22)
the condition in Proposition 2.1 is reduced to the free-matrix-
based integral inequality (Lemma 4 in [39]). Therefore, the in-
tegral inequality in (12) is more general to cover many existing
integral inequalities. Moreover, due to more slack parameters
in Proposition 2.1, it is also expected that applications of the
integral inequality (12) will lead to less conservatism for delay-
dependent stability analysis criteria of time-delay systems.

III. DELAY-DEPENDENT STOCHASTIC STABILITY
ANALYSIS

This section presents an improved stochastic stability con-
dition for closed-loop dynamic error system (11). This will be
achieved through constructing a new semi-Markovian LKF,
together with making use of the new integral inequality given
in Proposition 2.1. We have the following theorem.

Theorem 3.1. The system in (11) is SS if there exist matri-
ces Pi ∈ S3ι, {Q1i, Q2i, Q3i, R1, R2} ∈ Sι, {Z1, Z2} ∈ S2ι,
Wk ∈ ℜ13ι×4ι, k = 1, 2, 3, Yi ∈ ℜ13ι×ι, and diagonal
matrices {V1i, V2i} ∈ Sι, i ∈ I, such that the following matrix
inequalities hold,

Sym{Λ1PiΛ
⊤
2 (d(t)) + YiAi +W1Λ

⊤
5 +W2Λ

⊤
6 (d(t))

+W3Λ
⊤
7 (d(t))} + Λ2(d(t))

( N∑

j=1

λ̄ijPj

)
Λ⊤
2 (d(t))

+Λ3QiΛ
⊤
3 + E2RE⊤

2 + Λ4Z0Λ
⊤
4 + d1W1Z−1

1 W⊤
1

+(d(t)− d1)W2Z−1
2 W⊤

2 + (d2 − d(t))W3Z−1
2 W⊤

3

+Λ8V1iΛ
⊤
8 + Λ9V2iΛ

⊤
9 < 0, (23)

Qν :=
N∑

j=1

λ̄ijQνj−Rν ≤ 0, ν = 1, 2, (24)

Q3 :=
N∑

j=1

λ̄ij(Q2j +Q3j)−R2 ≤ 0, (25)

where i ∈ I, and
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Λ1 :=
[
E1 E2 − E4 E4 − E5

]
,

Λ2(d(t)) :=
[
E2 d1E8

(d(t)− d1)E9 + (d2 − d(t))E10

]
,

Λ3 :=
[
E2 E3 E4 E5

]
,

Λ4 :=
[
E1 E2

]
,

Λ5 :=
[
d1E8 E2 − E4 d1E8 − 2E11

E2 + E4 − 2E8

]
,
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Λ6(d(t)) :=
[
(d(t) − d1)E9 E4 − E3

(d(t)− d1)E9 − 2E12

E4 + E3 − 2E9

]
,

Λ7(d(t)) :=
[
(d2 − d(t))E10 E3 − E5

(d2 − d(t))E10 − 2E13

E3 + E5 − 2E10

]
,

Λ8 :=
[
E2 E6

]
,

Λ9 :=
[
E2 E7

]
,

Qi := diag{Q1i +Q2i +Q3i,−(1− µ)Q3i, Q1i, Q2i},
R := d1R1 + d2R2, Z0 := d1Z1 + dZ2,
Z1 := diag{Z1, 3Z1}, Z2 := diag{Z2, 3Z2},

V1i :=

[
−F1V1i F2V1i

∗ −V1i

]
,

V2i :=

[
−F1V2i F2V2i

∗ −V2i

]
,

F1 := diag{F−
1 F+

1 , F−
2 F+

2 , · · · , F−
ι F+

ι },
F2 := diag{F−

1 +F+
1

2 , F−
2 +F+

2
2 , · · · , F−

ι +F+
ι

2 },
Ai :=

[
−I Āi 0ι×3ι Bi Bdi 0ι×6ι

]
,

Eκ :=

[
0 · · · 0︸ ︷︷ ︸

κ−1

Iι 0 · · · 0︸ ︷︷ ︸
13−κ

]⊤
∈ ℜ13ι×ι,

κ = 1, · · · , 13.
(26)

Proof: Our proof is given in Appendix.
Remark 3.1. From the semi-Markovian LKF in (46),

together with the novel integral inequality given in
Proposition 2.1, an improved stability analysis criterion
for the semi-MJNNs in (11) is presented in Theorem 3.1.
Compared with existing results on the stability analysis of
time-delay systems, the originality of this improvement is on
the construction of Lyapunov functional V4(es(t), r(t), t) :=∫ 0
−d1

∫ t
t+s ẽ

⊤(α)Z1ẽ(α)dαds+
∫ −d1

−d2

∫ t
t+s ẽ

⊤(α)Z2ẽ(α)dαds,
where the term ẽ(α) :=

[
e⊤(α) ė⊤(α)

]⊤ is constructed
to contain more information about state delays (i.e., the
delayed states and their derivatives, and the integral of the
states/derivatives over the period of the delay). Meantime,
Proposition 2.1 is applied to deal with the crossing terms
generated by the derivative of V4(es(t), r(t), t). Especially,
the augmented terms 1

d1

∫ t
t−d1

e(s)ds, 1
d(t)−d1

∫ t−d1

t−d(t) e(s)ds,
1

d2−d(t)

∫ t−d(t)
t−d2

e(s)ds, 1
d1

∫ 0
−d1

∫ t+s
t−d1

e(α)dαds, 1
d(t)−d1∫ −d1

−d(t)

∫ t+s
t−d(t) e(α)dαds, and 1

d2−d(t)

∫ −d(t)
−d2

∫ t+s
t−d2

e(α)dαds,
together with some slack variables Wk ∈ ℜ13ι×4ι, k = 1, 2, 3,
are simultaneously introduced to offer a lower bound
of quadratic integral terms as in (60). In view of those
procedures, the resulting delay-dependent stability analysis
criterion for time-delay systems is expected to be less
conservative.

Remark 3.2. For stability analysis of semi-MJNNs within
the semi-Markovian-Lyapunov-functional framework, semi-
Markovian Lyapunov matrices Pi in (46) are introduced. As a
result, the stability analysis conditions in (23) are affine with
respect to the time-varying and nonlinear delay term d2(t), i.e.,

the quadratic term Λ2(d(t))

(
N∑
j=1

λ̄ijPj

)
Λ⊤
2 (d(t)) in (23).

This will cause difficulties in the numerical tractability of the
stability analysis problem. However, due to the non-positive
property of TRs λ̄ii, i ∈ I, Schur complement cannot be

directly applied to perform this decoupling. Alternatively, the
powerful Projection lemma [40] will be utilized. Thus, in the
sequel, a decoupling between the nonlinear time-varying delay
term will be initiated by introducing a free matrix variable.
This decoupling technique enables us to acquire a more readily
tractable condition for stability analysis.

Theorem 3.2. The system in (11) is SS if there exist matri-
ces Pi ∈ S3ι, {Q1i, Q2i, Q3i, R1, R2} ∈ Sι, {Z1, Z2} ∈ S2ι,
J ∈ ℜ3ι×13ι, Wk ∈ ℜ13ι×4ι, k = 1, 2, 3, Yi ∈ ℜ13ι×ι,
and diagonal matrices {V1i, V2i} ∈ Sι, i ∈ I, such that the
conditions (24), (25) and the following matrix inequalities
hold,

⎡

⎢⎢⎣

Ξ(ℓ)
i ∗ ∗ ∗

−J λ̄iiPi ∗ ∗
PiΠ⊤

i Λ
(ℓ)⊤
2 0 −Pi ∗

W(ℓ) 0 0 −Z

⎤

⎥⎥⎦ < 0, i ∈ I, ℓ = 1, 2,

(27)
where
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ξ(ℓ)
i := Sym{Λ1PiΛ

(ℓ)⊤
2 + Λ(ℓ)

2 J + YiAi +W1Λ⊤
5

+W2Λ
(ℓ)⊤
6 +W3Λ

(ℓ)⊤
7 }+ Λ3QiΛ⊤

3 + E2RE⊤
2

+ Λ4Z0Λ⊤
4 + Λ8V1iΛ⊤

8 + Λ9V2iΛ⊤
9 ,

Λ(1)
2 :=

[
E2 d1E8 dE9

]
,

Λ(2)
2 :=

[
E2 d1E8 dE10

]
,

Λ(1)
6 :=

[
0 E4 − E3 −2E12 E4 + E3 − 2E9

]
,

Λ(2)
6 :=

[
dE9 E4 − E3 dE9 − 2E12

E4 + E3 − 2E9

]
,

Λ(1)
7 :=

[
dE10 E3 − E5 dE10 − 2E13

E3 + E5 − 2E10

]
,

Λ(2)
7 :=

[
0 E3 − E5 −2E13 E3 + E5 − 2E10

]
,

W(1) :=
[
W⊤

1 W⊤
2

]⊤
,

W(2) :=
[
W⊤

1 W⊤
3

]⊤
,

Z := diag{ 1
d1
Z1,

3
d1
Z1,

1
dZ2,

3
dZ2},

Pi := diag{P1, · · · , Pi−1, Pi+1, · · · , PN},
Πi :=

[ √
λ̄i1I · · ·

√
λ̄i,i−1I√

λ̄i,i+1I · · ·
√
λ̄iN I

]
,

d := d2 − d1
(28)

and all other notations are defined the same as in (26).
Proof: Our proof is given in Appendix.

With the results given in Theorem 3.2 on a new delay-
dependent stability analysis criterion, we are ready to develop
a stochastic synchronization procedure in the next section.

IV. STOCHASTIC SYNCHRONIZATION

From Theorem 3.2, this section derives stochastic synchro-
nization conditions for the drive-response dynamic systems.
This is achieved through adopting a linerization technique for
a stochastic stabilization procedure.

Theorem 4.1. Consider semi-MJNNs (4). If there exist
matrices Pi ∈ S3ι, {Q1i, Q2i, Q3i, R1, R2} ∈ Sι, {Z1, Z2} ∈
S2ι, J ∈ ℜ3ι×13ι, Wk ∈ ℜ13ι×4ι, k = 1, 2, 3, {Yi, K̄i} ∈



SUBMITTED TO IEEE TNNLS 6

ℜι×ι, and diagonal matrices {V1i, V2i} ∈ Sι, i ∈ I, such that
the conditions in (24), (25) and the following LMIs hold,

⎡

⎢⎢⎣

Ξ̄(ℓ)
i ∗ ∗ ∗

−J λ̄iiPi ∗ ∗
PiΠ⊤

i Λ
(ℓ)⊤
2 0 −Pi ∗

W(ℓ) 0 0 −Z

⎤

⎥⎥⎦ < 0, i ∈ I, ℓ = 1, 2,

(29)
where

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ξ̄(ℓ)
i := Sym{Λ1PiΛ

(ℓ)⊤
2 + Λ(ℓ)

2 J + YiAi +HKi +W1Λ5

+W2Λ
(ℓ)⊤
6 +W3Λ

(ℓ)⊤
7 }+ Λ3QiΛ⊤

3 + E2RE⊤
2

+ Λ4Z0Λ⊤
4 + Λ8V1iΛ⊤

8 + Λ9V2iΛ⊤
9 ,

Yi :=
[
Y ⊤
i ρY ⊤

i 0ι×11ι

]⊤
,

Ai :=
[
−I Ai 0ι×3ι Bi Bdi 0ι×6ι

]
,

H :=
[
I δI 0ι×11ι

]⊤
,

Ki :=
[
0ι×ι K̄i 0ι×11ι

]
,

(30)
with the other notations defined the same as in (26) and (28),
then the closed-loop dynamic error system in (11) is SS.
Specifically, the desired controller gains can be obtained as

Ki = Y −1
i K̄i, i ∈ I. (31)

Proof: The result in this theorem follows the conditions
in (24), (25) and (27) given in Theorems 3.1 and 3.2. For
tractability of the controller synthesis procedure, and by in-
spection of the inner structure of system matrices in (11), we
prescribe the slack matrices Yi implicitly in (27) as

Yi :=
[
Y ⊤
i δY ⊤

i 0ι×11ι

]⊤
, i ∈ I, (32)

where Yi ∈ ℜι×ι. It follows that if we introduce

K̄i := YiKi, i ∈ I, (33)

the freedom variable Yi can be absorbed by the controller gain
variable Ki. Then, substituting matrices Yi defined in (32) into
(27) yields (29).

Moreover, the conditions in (29) result in −Yi − Y ⊤
i < 0,

implying that Yi is invertible. Thus, the controller gains can
be calculated from (31). This completes the proof.

The conditions presented in Theorem 4.1 are derived based
on the new integral inequality (12). For comparison, in the
sequel, we propose another stochastic stability analysis method
based on a similar LKF to (46), but with V4(es(t), r(t), t) :=∫ 0
−d1

∫ t
t+s ė

⊤(α)Ẑ1ė(α)dαds+
∫ −d1

−d2

∫ t
t+s ė

⊤(α)Ẑ2ė(α)dαds,
where {Ẑ1, Ẑ2} ∈ Sι. By applying the integral inequality (12)
with parameters given in (22), together with the utilization of
Projection lemma (Lemma A1), the corresponding stochastic
stability analysis result is elaborated in the following corollary.

Corollary 4.1. Consider the semi-MJNNs (4). If there exist
matrices Pi ∈ S3ι, {Q1i, Q2i, Q3i, R1, R2, Ẑ1, Ẑ2} ∈ Sι,
Ĵ ∈ ℜ3ι×10ι, Ŵk ∈ ℜ10ι×2ι, k = 1, 2, 3, Ŷi ∈ ℜ10ι×ι,
and diagonal matrices {V1i, V2i} ∈ Sι, i ∈ I, such that the

conditions (24), (25) and the following matrix inequalities
hold,
⎡

⎢⎢⎢⎣

Ξ̂(ℓ)
i ∗ ∗ ∗

−Ĵ λ̄iiPi ∗ ∗
PiΠ⊤

i Λ̂
(ℓ)⊤
2 0 −Pi ∗

Ŵ(ℓ) 0 0 −Ẑ

⎤

⎥⎥⎥⎦
< 0, i ∈ I, ℓ = 1, 2,

(34)
where
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ξ̂(ℓ)
i := Sym{Λ̂1PiΛ̂

(ℓ)⊤
2 + Λ̂(ℓ)

2 Ĵ + ŶiÂi + Λ̂5Ŵ1

+ Λ̂(ℓ)
6 Ŵ2 + Λ̂(ℓ)

7 Ŵ3}+ Λ̂3QiΛ̂⊤
3 + Ê2RÊ⊤

2

+ Λ̂4Ẑ0Λ̂⊤
4 + Λ̂8V1iΛ̂⊤

8 + Λ̂9V2iΛ̂⊤
9 ,

Λ̂1 :=
[
Ê1 Ê2 − Ê4 Ê4 − Ê5

]
,

Λ̂(1)
2 :=

[
Ê2 d1Ê8 dÊ9

]
,

Λ̂(2)
2 :=

[
Ê2 d1Ê8 dÊ10

]
,

Λ̂3 :=
[
Ê2 Ê3 Ê4 Ê5

]
,

Λ̂4 :=
[
Ê1 Ê2

]
,

Λ̂5 :=
[
d1Ê8 Ê2 − Ê4

]
,

Λ̂(1)
6 :=

[
0 Ê4 − Ê3

]
,

Λ̂(2)
6 :=

[
dÊ9 Ê4 − Ê3

]
,

Λ̂(1)
7 :=

[
dÊ10 Ê3 − Ê5

]
,

Λ̂(2)
7 :=

[
0 Ê3 − Ê5

]
,

Λ̂8 :=
[
Ê2 Ê6

]
,

Λ̂9 :=
[
Ê2 Ê7

]
,

Qi := diag{Q1i +Q2i +Q3i,−(1− µ)Q3i, Q1i, Q2i},
R := d1R1 + d2R2, Ẑ0 := d1Ẑ1 + dẐ2,
Ẑ1 := diag{Ẑ1, 3Ẑ1}, Ẑ2 := diag{Ẑ2, 3Ẑ2},
Ŵ(1) :=

[
Ŵ⊤

1 Ŵ⊤
2

]⊤
,

Ŵ(2) :=
[
Ŵ⊤

1 Ŵ⊤
3

]⊤
,

Ẑ := diag{ 1
d1
Ẑ1, 3

d1
Ẑ1, 1

d Ẑ2, 3
d Ẑ2},

Êκ :=

[
0 · · · 0︸ ︷︷ ︸

κ−1

Iι 0 · · · 0︸ ︷︷ ︸
10−κ

]⊤
∈ ℜ10ι×ι,

κ = 1, 2, · · · , 10.
(35)

Proof: To use the integral inequality in (12) with notations
defined in (22), which is indeed the free-matrix-based integral
inequality as proposed in [39], we reconstruct the semi-
Markovian LKF similar to (46) with some slight modifications.
Specifically, Vm(es(t), r(t), t), m = 1, 2, 3, are defined the
same as in (46), however,

V4(es(t), r(t), t) :=

∫ 0

−d1

∫ t

t+s
ė⊤(α)Ẑ1ė(α)dαds

+

∫ −d1

−d2

∫ t

t+s
ė⊤(α)Ẑ2ė(α)dαds, (36)

where {Ẑ1, Ẑ2} ∈ Sι.
Applying the weak infinitesimal generator in (49) gives

V1 = ζ̂⊤(t)

[
Sym{Λ̂1PiΛ̂2(d(t))}

+Λ̂2(d(t))

(
N∑

j=1

λ̄ijPj

)
Λ̂⊤
2 (d(t))

]
ζ̂(t), (37)
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(58) and (59), where
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ζ̂(t) :=
[
ė⊤(t) e⊤(t) e⊤(t− d(t)) e⊤(t− d1)

e⊤(t− d2) f⊤(e(t)) f⊤(e(t− d(t)))
1
d1

∫ t
t−d1

e⊤(s)ds 1
d(t)−d1

∫ t−d1

t−d(t) e
⊤(s)ds

1
d2−d(t)

∫ t−d(t)
t−d2

e⊤(s)ds
]⊤

,

Λ̂1 :=
[
Ê1 Ê2 − Ê4 Ê4 − Ê5

]
,

Λ̂2(d(t)) :=
[
Ê2 d1Ê8

(d(t)− d1)Ê9 + (d2 − d(t))Ê10

]
,

Êκ :=

[
0 · · · 0︸ ︷︷ ︸

κ−1

Iι 0 · · · 0︸ ︷︷ ︸
10−κ

]⊤
∈ ℜ10ι×ι,

κ = 1, 2, · · · , 10.
(38)

For the derivative of V4(es(t), r(t), t), we have

V4 = d1ė
⊤(t)Ẑ1ė(t)−

∫ t

t−d1

ė⊤(α)Ẑ1ė(α)dα

+dė⊤(t)Ẑ2ė(t)−
∫ t−d1

t−d(t)
ė⊤(α)Ẑ2ė(α)dα

−
∫ t−d(t)

t−d2

ė⊤(α)Ẑ2ė(α)dα. (39)

Using Proposition 2.1 to the second, fourth, and fifth term,
respectively, in the RHS of equation (39), we get

−
∫ t

t−d1

ė⊤(α)Ẑ1ė(α)dα ≤ ζ̂⊤(t)(Sym{Ŵ1Λ̂
⊤
5 }

+d1Ŵ1Ẑ1Ŵ
⊤
1 )ζ̂(t) (40)

−
∫ t−d1

t−d(t)
ė⊤(α)Ẑ2ė(α)dα ≤ ζ̂⊤(t)(Sym{Ŵ2Λ̂

⊤
6 (d(t))}

+(d(t)− d1)Ŵ2Ẑ2Ŵ
⊤
2 )ζ̂(t) (41)

−
∫ t−d(t)

t−d2

ė⊤(α)Ẑ2ė(α)dα ≤ ζ̂⊤(t)(Sym{Ŵ3Λ̂
⊤
7 (d(t))}

+(d2 − d(t))Ŵ3Ẑ2Ŵ
⊤
3 )ζ̂(t) (42)

for suitable matrices Ŵk, k = 1, 2, 3.
Then, we use the proof as in that for Theorems 3.1 and 3.2

to derive the final result. Taking the similar procedures as in
(64)-(69), and (71)-(77) yields the resultant stochastic stability
analysis condition in (34). This completes the proof.

Remark 4.1. On the basis of the integral inequality pre-
sented in [39], Corollary 4.1 offers another approach to
the stochastic synchronization problem for semi-MJNNs with
time-varying delay. It is noted that the integral inequality
in [39] can only be employed to deal with the quadratic
term in the form of

∫ t−b
t−a ė⊤(s)Zė(s)ds. Hence, the Lya-

punov functional V4(es(t), r(t), t) should be constructed as in
(36). Then, performing the time-derivative to V4(es(t), r(t), t),
together with the utilization of the integral inequality in
(12) with parameters given in (22), leads to conditions
(40)-(42), where only the augmented terms 1

d1

∫ t
t−d1

e(s)ds,
1

d(t)−d1

∫ t−d1

t−d(t) e(s)ds, and 1
d2−d(t)

∫ t−d(t)
t−d2

e(s)ds, together
with some free matrices Ŵk ∈ ℜ10ι×2ι, k = 1, 2, 3, are
utilized to evaluate the lower bound of the integral quadratic
terms in (39). Because more time-delay information is in-
volved in the Lyapunov functional in (46) than that in (36), it is

expected that application of the new integral inequality in (12)
will lead to a reduction in the resultant analysis conservatism.
This will be demonstrated later in simulation studies.

Remark 4.2. It is also worth mentioning that the conditions
developed in Theorems 3.1, 3.2, 4.1 and Corollary 4.1 rely on
the derivative of the time-varying delay with ḋ(t) ≤ µ <
∞. Nevertheless, for a delay-derivative-independent scenario,
these results can be easily extended by imposing Q3i = 0,
i ∈ I in Theorems 3.1, 3.2, 4.1 and Corollary 4.1 for the
underlying systems.

V. SIMULATION RESULTS

This section conducts simulations to demonstrate the effec-
tiveness and less conservatism of the presented conditions.

Example 4.1. Consider a three-mode continuous-time semi-
MJNN with time-varying delay (4)
⎡

⎣
A1 B1 Bd1

A2 B2 Bd2

A3 B3 Bd3

⎤

⎦

=

⎡

⎢⎢⎢⎢⎢⎢⎣

2.2 0 0.8 0.4 1.2 1
0 1.8 −0.2 0.1 −0.2 0.3
0.2 0 0.7 1.1 −2.4 −4.8
0 3.4 0.2 −0.05 −0.32 2
1 0 1 1 0.88 1
0 0.8 −1 −1 1 1

⎤

⎥⎥⎥⎥⎥⎥⎦
.

The activation functions are ψi(α), i = 1, 2, 3, which satisfy
the condition in (5) with parameters F−

l = 0 and F+
l =

0.4, l = 1, 2. Hence,

F1 =

[
0 0
0 0

]
, F2 =

[
0.2 0
0 0.2

]
.

Transitions among the three modes are determined by a
semi-Markov process with its TR matrix described as

Λ(h) =

⎡

⎣
λ11(h) λ12(h) λ13(h)
λ21(h) λ22(h) λ23(h)
λ31(h) λ32(h) λ33(h)

⎤

⎦

=

⎡

⎣
−2h h h
0.5h −h 0.5h
2
9h

2
9h − 4

9h

⎤

⎦ . (43)

Considering the properties of Weibull distribution, we con-
clude that the TR function in (43) can be termed as
an approximation in the context that the sojourn-time is
subject to Weibull distribution with its PDF f(h) =
β
αβ hβ−1exp

[
−
(
h
α

)β], h ≥ 0. In particular, when i = 1, the
TR function h can be characterized by Weibull distribution
with the scale parameter α = 1 and the shape parameter
β = 2, implying that f1(h) = 2he−h2

. For i = 2, the TR
function 0.5h can be modelled by Weibull distribution with
α = 2 and β = 2, giving f2(h) = 0.5he−0.25h2

. When i = 3,
the TR function 2

9h can be described by Weibull distribution
with α = 3 and β = 2, thus f3(h) = 2

9he− 1
9h

2
. Therefore,

the mathematical expectation of TR λ12(h) can be expressed
as E{λ12(h)} =

∫∞
0 hf1(h)dh =

∫∞
0 2h2e−h2

dh = 0.8862s.
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TABLE I
ALLOWABLE UPPER BOUND d2 OF DELAY UNDER VARIOUS VALUES OF LOWER DELAY BOUND d1 AND DELAY DERIVATIVE µ.

Method µ = 0.2 0.5 0.8 unknown µ value
d1 = 0.1 0.5 0.1 0.5 0.1 0.5 0.1 0.5

Theorem 3.2 d2 = 1.410 1.146 0.984 0.853 0.918 0.858 0.902 0.865
Corollary 4.1 d2 = 1.322 1.080 0.937 0.814 0.879 0.802 0.865 0.797

Taking the same vein for other elements in the TR matrix (43),
we have the mathematical expectation of the TR matrix as

E{Λ(h)} =

⎡

⎣
−1.7724 0.8862 0.8862
1.7725 −3.5450 1.7725
2.6587 2.6587 −5.3174

⎤

⎦ . (44)

To compare the delay-dependent stability analysis results
proposed in Theorem 3.2 and Corollary 4.1, some numerical
tests are carried out. The resulting maximum allowable upper
bounds d2 with various lower bounds d1 of time delay
and delay derivatives are shown in Table I. The scenario
of unknown µ value in Table I refers to delay-derivative-
independent stability analysis as discussed in Remark 4.2.

It is seen from Table I that under various scenarios, the
maximum allowable upper delay bound d2 values from The-
orem 3.2 are generally larger than those from Corollary 4.1.
This indicates the superiority of the proposed delay-dependent
stochastic stability conditions for semi-MJNNs with time-
varying delay.

The following example aims to demonstrate the effective-
ness of the delay-dependent stochastic synchronization algo-
rithm proposed in Theorem 4.1.

Example 4.2. Consider the drive system (4) and response
system (7) with the following parameters:
⎡

⎣
A1 B1 Bd1

A2 B2 Bd2

A3 B3 Bd3

⎤

⎦

=

⎡

⎢⎢⎢⎢⎢⎢⎣

1 0 2.7 −0.6 1.2 1
0 1 2.1 3 −0.2 0.3
1.1 0 2.8 −0.4 −2.7 −1.1
0 0.9 1.9 2.8 −0.7 −2.3
1.2 0 2.5 −0.5 −2.8 −1.2
0 1 2.2 2.6 −0.5 −2.1

⎤

⎥⎥⎥⎥⎥⎥⎦
.

The activation functions are

ψi(α) = tanh(α), i = 1, 2, 3,

which satisfy the condition in (5) with parameters F−
l = 0

and F+
l = 1, l = 1, 2. Hence,

F1 =

[
0 0
0 0

]
, F2 =

[
0.5 0
0 0.5

]
.

The TR matrix is the same as in (43), and thus the corre-
sponding mathematical expectation is expressed in (44). The
time-varying delay is assumed to be d(t) = 1 + 0.3 sin(2t).
This gives 0.7 ≤ d(t) ≤ 1.3 and ḋ(t) ≤ 0.6.

Our goal is to synthesize a state-feedback controller (10)
to synchronize the drive-response system with guaranteed
stochastic stability of the resultant closed-loop error system.

Adopting Theorem 3.3 with ρ = 5, we obtain the following
admissible state-feedback controller gains

K1 =

[
−13.0337 −4.0111
−5.2076 −12.3806

]
,

K2 =

[
−13.9123 −4.7402
−4.7882 −13.5715

]
,

K3 =

[
−15.0876 −5.0173
−4.9914 −14.6842

]
.

(45)

To verify the design procedure and the effectiveness of
the proposed results, simulations are conducted with the ini-
tial condition x(t) =

[
5e2t sin(3.14t) 0

]⊤ and x̄(t) =[
0.4e10t cos(0.01t) 2 sin(3.3t)

]⊤, t ∈ [−1.3, 0], and
V (t) = 0. For control input u(t) = 0, Fig. 2 shows the chaotic
behaviours of the drive system (upper plot) and response
system (lower plot). With the controller in (45), Fig. 3 depicts
the state responses of the closed-loop dynamic error system. It
is seen from Figure 3 that the state-feedback controller derived
from this paper synchronizes well the response system with
the drive system.

VI. CONCLUSION

The stability analysis and stabilization problems for delay-
dependent stochastic synchronization of continuous-time semi-
MJNNs with time-varying delay have been investigated in
this paper. By constructing a semi-Markovian LKF, combined
with a new integral inequality, an improved stochastic stability
analysis condition has been established for the semi-MJNN
error systems. With less conservatism than existing methods, it
guarantees that the response system is stochastically synchro-
nized with the response systems. From the stability analysis,
the stochastic synchronization controller has been synthesized
with a linearization technique. Simulation studies have been
carried out to demonstrate the effectiveness of the results
derived in this paper.
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APPENDIX

A. Proof of Theorem 3.1
Let C[−d2, 0] denote the space of continuous functions

evolving on [−d2, 0]. Define es(t) := e(t + s), es(t) ∈
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Fig. 2. The chaotic dynamics of the semi-MJNNs. Upper plot: drive system
(4); lower plot: response system (7).
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Fig. 3. Synchronization error dynamics (8) in Example 4.2.

C[−d2, 0], s ∈ [−d2, 0]. Then, {(es(t), r(t)), t ≥ 0} is a semi-
Markov process with initial state (φt−ϕt, r(0)). Construct the
following semi-Markovian LKF for the dynamic error system
in (11),

V (es(t), r(t)) :=
4∑

m=1

Vm(es(t), r(t)), (46)

where
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

V1(es(t), r(t)) := ē⊤(t)P (r(t))ē(t),

V2(es(t), r(t)) :=
∫ t
t−d(t) e

⊤(α)Q3(r(t))e(α)dα

+
2∑

ν=1

∫ t
t−dν

e⊤(α)Qν(r(t))e(α)dα,

V3(es(t), r(t)) :=
2∑

ν=1

∫ 0
−dν

∫ t
t+s e

⊤(α)Rνe(α)dαds,

V4(es(t), r(t)) :=
∫ 0
−d1

∫ t
t+s ẽ

⊤(α)Z1ẽ(α)dαds
+
∫ −d1

−d2

∫ t
t+s ẽ

⊤(α)Z2ẽ(α)dαds.
(47)

with ē(t) :=
[
e⊤(t)

∫ t
t−d1

e⊤(s)ds
∫ t−d1

t−d2
e⊤(s)ds

]⊤
,

ẽ(t) :=
[
e⊤(t) ė⊤(t)

]⊤, P (r(t)) ∈ S3ι, {Q1(r(t)),
Q2(r(t)), Q3(r(t)), R1, R2} ∈ Sι, and {Z1, Z2} ∈ S2ι.

With the semi-Markovian LKF defined in (46), the follow-
ing condition

D [V (es(t), r(t))] < 0, (48)

assures that the dynamic error system in (11) is SS [17], where
D refers to the weak infinitesimal generator. Considering the
definition of D [18], we have

D [V (es(t), r(t))] := lim
δ→0+

1

δ
[E{V (es(t+ δ), r(t+ δ))|

es(t), r(t) = i}− V (es(t), r(t))],

Vm := D [Vm(es(t), r(t))], m = 1, 2, 3, 4. (49)

For each r(t) = i ∈ I, adopting the law of total probability
and conditional expectation, we have

V1 := lim
δ→0+

1

δ

[
E
{

N∑

j=1,j ̸=i

Pr{rn+1 = j, hn+1 ≤ h+ δ|

rn = i, hn+1 > h}× ē⊤(t+ δ)Pj ē(t+ δ)

+Pr{rn+1 = i, hn+1 > h+ δ|rn = i,

hn+1 > h}ē⊤(t+ δ)Piē(t+ δ)

}
− ē⊤(t)Piē(t)

]

= lim
δ→0+

1

δ

[
E
{

N∑

j=1,j ̸=i

Pr{rn+1 = j, rn = i}
Pr{rn = i}

×Pr{h < hn+1 ≤ h+ δ|rn+1 = j, rn = i}
Pr{hn+1 > h|rn = i}

×ē⊤(t+ δ)Pj ē(t+ δ) +
Pr{hn+1 > h+ δ|rn = i}
Pr{hn+1 > h|rn = i}

×ē⊤(t+ δ)Piē(t+ δ)

}
− ē⊤(t)Piē(t)

]

= lim
δ→0+

1

δ

[
E
{

N∑

j=1,j ̸=i

qij(Gi(h+ δ)−Gi(h))

1−Gi(h)

×ē⊤(t+ δ)Pj ē(t+ δ) +
1−Gi(h+ δ)

1−Gi(h)

×ē⊤(t+ δ)Piē(t+ δ)

}
− ē⊤(t)Piē(t)

]
, (50)

where Gi(h) represents the CDF of the sojourn-time when
the system stays in mode i, and qij := Pr{rn+1=j,rn=i}

Pr{rn=i} =
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Pr{rn+1 = j|rn = i} refers to the probability intensity of the
system switching from mode i to mode j. With a small δ, the
first-order approximation of ē(t+ δ) is

ē(t+ δ) = ē(t) + δ ˙̄e(t) + o(δ)

= (δΛ1 + Λ2(d(t)))ζ(t) + o(δ), (51)

where
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ζ(t) :=
[
ė⊤(t) e⊤(t) e⊤(t− d(t)) e⊤(t− d1)
e⊤(t− d2) f⊤(e(t)) f⊤(e(t− d(t)))

1
d1

∫ t
t−d1

e⊤(s)ds 1
d(t)−d1

∫ t−d1

t−d(t) e
⊤(s)ds

1
d2−d(t)

∫ t−d(t)
t−d2

e⊤(s)ds
1
d1

∫ 0
−d1

∫ t+s
t−d1

e⊤(α)dαds
1

d(t)−d1

∫ −d1

−d(t)

∫ t+s
t−d(t) e

⊤(α)dαds
1

d2−d(t)

∫ −d(t)
−d2

∫ t+s
t−d2

e⊤(α)dαds
]⊤

,

Λ1 :=
[
E1 E2 − E4 E4 − E5

]
,

Λ2(d(t)) :=
[
E2 d1E8

(d(t)− d1)E9 + (d2 − d(t))E10

]
,

Eκ :=

[
0 · · · 0︸ ︷︷ ︸

κ−1

Iι 0 · · · 0︸ ︷︷ ︸
13−κ

]⊤
∈ ℜ13ι×ι,

κ = 1, 2, · · · , 13
(52)

From (50) - (52), we have

V1 = lim
δ→0+

1

δ

[
E
{

N∑

j=1,j ̸=i

qij(Gi(h+ δ)−Gi(h))

1−Gi(h)
ζ⊤(t)

× (δΛ1 + Λ2(d(t)))Pj(δΛ1 + Λ2(d(t)))
⊤ζ(t)

+
1−Gi(h+ δ)

1−Gi(h)
ζ⊤(t)(δΛ1 + Λ2(d(t)))

× Pi(δΛ1 + Λ2(d(t)))
⊤ζ(t)

}
− ē⊤(t)Piē(t)

]
.

From the condition that lim
δ→0+

Gi(h+δ)−Gi(h)
1−Gi(h)

= 0, it follows
that

V1 = ζ⊤(t)

[
E
{

lim
δ→0+

(
1−Gi(h+ δ)

1−Gi(h)
Sym{Λ1PiΛ

⊤
2 (d(t))}

+Λ2(d(t))PiΛ
⊤
2 (d(t))

)}]
ζ(t),

where

Pi =
N∑

j=1,j ̸=i

qij(Gi(h+ δ)−Gi(h))

δ(1 −Gi(h))
Pj

+
Gi(h)−Gi(h+ δ)

δ(1−Gi(h))
Pi.

In view of the characteristics of the CDF, we obtain

lim
δ→0+

1−Gi(h+ δ)

1−Gi(h)
= 1,

lim
δ→0+

Gi(h+ δ)−Gi(h)

δ(1−Gi(h))
= λi(h), (53)

where λi(h) stands for the TR of the system switching from
mode i.

Define

λij(h) := qijλi(h), i ̸= j

λii(h) := −
N∑

j=1,j ̸=i

λij(h).
(54)

Then, it follows that

V1 = ζ⊤(t)

[
Sym{Λ1PiΛ2(d(t))}

+Λ2(d(t))

(
N∑

j=1

λ̄ijPj

)
Λ⊤
2 (d(t))

]
ζ(t), (55)

with λ̄ij := E{λij(h)} =
∫∞
0 λij(h)fi(h)dh, where fi(h)

is the probability density function (PDF) of sojourn-time h
staying at mode i.

For the first term of V2(es(t), r(t)), we have

E
{∫ t+δ

t+δ−d(t+δ)
e⊤(α)Q3(r(t + δ))e(α)dα

}

= E
{∫ t+δ

t
e⊤(α)Q3(r(t + δ))e(α)dα

+

∫ t

t−d(t)
e⊤(α)Q3(r(t + δ))e(α)dα

+

∫ t−d(t)

t+δ−d(t+δ)
e⊤(α)Q3(r(t + δ))e(α)dα|e(t), r(t) = i

}

= E
{

N∑

j=1,j ̸=i

qij(Gi(h+ δ)−Gi(h))

1−Gi(h)

(
δe⊤(t)Q3je(t)

+

∫ t

t−d(t)
e⊤(α)Q3je(α)dα

− δ(1 − ḋ(t))e⊤(t− d(t))Q3je(t− d(t)) + o(δ)

)

+
1−Gi(h+ δ)

1−Gi(h)

(
δe⊤(t)Q3ie(t)

+

∫ t

t−d(t)
e⊤(α)Q3ie(α)dα

− δ(1 − ḋ(t))e⊤(t− d(t))Q3ie(t− d(t)) + o(δ)

)}
.(56)

Following a similar procedure to (56) for the second term of
V2(es(t), r(t)), we obtain

E
{ 2∑

ν=1

∫ t+δ

t+δ−dν

e⊤(α)Qν(r(t + δ))e(α)dα
}

=
2∑

ν=1

[
N∑

j=1,j ̸=i

E
{
qij(Gi(h+ δ)−Gi(h))

1−Gi(h)

}

×
(
δe⊤(t)Qνje(t) +

∫ t

t−dν

e⊤(α)Qνje(α)dα



SUBMITTED TO IEEE TNNLS 11

−δe⊤(t− dν)Qνje(t− dν) + o(δ)

)

+E
{
1−Gi(h+ δ)

1−Gi(h)

}(
δe⊤(t)Qνie(t)

+

∫ t

t−dν

e⊤(α)Qνie(α)dα

−δe⊤(t− dν)Qνie(t− dν) + o(δ)

)]
. (57)

From (49), (56) and (57), it follows that

V2 ≤ e⊤(t)Q3ie(t)− (1 − µ)e⊤(t− d(t))Q3ie(t− d(t))

+

∫ t

t−d(t)
e⊤(α)

(
N∑

j=1

λ̄ijQ3j

)
e(α)dα

+
2∑

ν=1

(
e⊤(t)Qνie(t)− e⊤(t− dν)Qνie(t− dν)

)

+

∫ t

t−d1

e⊤(α)

(
N∑

j=1

λ̄ijQ1j

)
e(α)dα

+

∫ t−d(t)

t−d2

e⊤(α)

(
N∑

j=1

λ̄ijQ2j

)
e(α)dα

+

∫ t

t−d(t)
e⊤(α)

(
N∑

j=1

λ̄ijQ2j

)
e(α)dα. (58)

In addition, we also have

V3 =
2∑

ν=1

dνe
⊤(t)Rνe(t)−

∫ t

t−d1

e⊤(α)R1e(α)dα

−
∫ t

t−d(t)
e⊤(α)R2e(α)dα

−
∫ t−d(t)

t−d2

e⊤(α)R2e(α)dα, (59)

V4 = d1ẽ
⊤(t)Z1ẽ(t)−

∫ t

t−d1

ẽ⊤(α)Z1ẽ(α)dα

+dẽ⊤(t)Z2ẽ(t)−
∫ t−d1

t−d(t)
ẽ⊤(α)Z2ẽ(α)dα

−
∫ t−d(t)

t−d2

ẽ⊤(α)Z2ẽ(α)dα. (60)

Applying Proposition 2.1 to the second, fourth, and fifth
term, respectively, on the right-hand side (RHS) of Equation
(60), we obtain

−
∫ t

t−d1

ẽ⊤(α)Z1ẽ(α)dα ≤ ζ⊤(t)(Sym{W1Λ
⊤
5 }

+d1W1Z−1
1 W⊤

1 )ζ(t) (61)

−
∫ t−d1

t−d(t)
ẽ⊤(α)Z2ẽ(α)dα ≤ ζ⊤(t)(Sym{W2Λ

⊤
6 (d(t))}

+(d(t)− d1)W2Z−1
2 W⊤

2 )ζ(t) (62)

−
∫ t−d(t)

t−d2

ẽ⊤(α)Z2ẽ(α)dα ≤ ζ⊤(t)(Sym{W3Λ
⊤
7 (d(t))}

+(d2 − d(t))W3Z−1
2 W⊤

3 )ζ(t) (63)

for suitable matrices Wk , k = 1, 2, 3.
Furthermore, by considering equation (11), for any appro-

priately dimensioned matrix Yi, we have

2ζ⊤(t)Yi[−ė(t)− Ā(r(t))e(t) +B(r(t))g(e(t))

+Bd(r(t))g(e(t − d(t)))] = 0. (64)

In addition, according to the condition in (9), we have

(gl(el(t)) − F−
l el(t))(gl(el(t)) − F+

l el(t)) ≤ 0, (65)

with l = 1, 2, · · · , ι, which is equivalent to
[

e(t)
f(e(t))

]⊤ [
F−
l F+

l χlχ⊤
l −F−

l +F+
l

2 χlχ⊤
l

∗ χlχ⊤
l

]
(∗) ≤ 0 (66)

where χl refers to the unit column vector with one element on
its lth row and zeros elsewhere. Thus, for any diagonal matrix
V1i > 0 of appropriate dimension, the following inequality
holds

[
e(t)

f(e(t))

]⊤ [ −F1V1i F2V1i

∗ −V1i

]
(∗) ≥ 0, (67)

where F1 := diag{F−
1 F+

1 , F−
2 F+

2 , · · · , F−
ι F+

ι } and F2 :=

diag{F−
1 +F+

1
2 , F−

2 +F+
2

2 , · · · , F−
ι +F+

ι
2 }. Similarly, for any diag-

onal matrix V2i > 0 of appropriate dimension, we obtain
[

e(t)
f(e(t− d(t)))

]⊤ [ −F1V2i F2V2i

∗ −V2i

]
(∗) ≥ 0. (68)

Now, adding the terms on the left-hand side (LHS) of
equation (64) and inequality (67) and (68) to the LHS of (48),
together with (55) and (58)-(63), we have

LHS(48) ≤ ζ⊤(t)(Sym{Λ1PiΛ
⊤
2 (d(t)) + YiAi +W1Λ

⊤
5

+W2Λ
⊤
6 (d(t)) +W3Λ

⊤
7 (d(t))}

+Λ2(d(t))

( N∑

j=1

λ̄ijPj

)
Λ⊤
2 (d(t))

+Λ3QiΛ
⊤
3 + E2RE⊤

2 + Λ4Z0Λ
⊤
4

+d1W1Z−1
1 W⊤

1 + (d(t)− d1)W2Z−1
2 W⊤

2

+(d2 − d(t))W3Z−1
2 W⊤

3

+Λ8V1iΛ
⊤
8 + Λ9V2iΛ

⊤
9 )ζ(t) + Q̄(t), (69)

where
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Q̄(t) :=
∫ t
t−d1

e⊤(α)Q1e(α)dα
+
∫ t−d(t)
t−d2

e⊤(α)Q2e(α)dα
+
∫ t
t−d(t) e

⊤(α)Q3e(α)dα,

Qν :=
N∑
j=1

λ̄ijQνj −Rν , ν = 1, 2,

Q3 :=
N∑
j=1

λ̄ij(Q2j +Q3j)−R2.

(70)

From (23)-(25), we have that LHS(48) < 0, which means
that the error system (11) is SS on the basis of Lyapunov
stability theory. This completes the proof. !
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B. Proof of Theorem 3.2
From Theorem 3.1, the system in (11) is SS if the conditions

in (23)-(25) hold.
Rewrite (23) as

Υ(d(t))ΘiΥ
⊤(d(t)) < 0, (71)

where {
Υ(d(t)) :=

[
I13ι Λ2(d(t))

]
,

Θi := diag{Θ⃗i, λ̄iiPi},
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Θ⃗i := Sym{Λ1PiΛ⊤
2 (d(t)) +W1Λ⊤

5 +W2Λ⊤
6 (d(t))

+W3Λ⊤
7 (d(t)) + YiAi}

+ Λ2(d(t))

(
N∑

j=1,j ̸=i
λ̄ijPj

)
Λ⊤
2 (d(t))

+ Λ3QiΛ⊤
3 + E2RE⊤

2 + Λ4Z0Λ⊤
4

+ d1W1Z−1
1 W⊤

1 + (d(t) − d1)W2Z−1
2 W⊤

2

+ (d2 − d(t))W3Z−1
2 W⊤

3

+ Λ8V1iΛ⊤
8 + Λ9V2iΛ⊤

9 .
(72)

By applying Projection lemma [40] to (71), the following
inequality implies (71):

Θi + Sym{Υ⊥(d(t))J̄ } < 0. (73)

Now, it follows from (73) that by introducing the free matrix
J̄ , the nonlinear coupling of time-delay d(t) in the quadratic
term Λ2(d(t))λ̄iiPiΛ⊤

2 (d(t)) has been eliminated. It is worth
mentioning that, however, the matrix J̄ is intrinsically with a
high dimension, which will incur heavy computational burden.
To balance the computational complexity and conservatism,
we specify J̄ :=

[
J 03ι×3ι

]
, where J ∈ ℜ3ι×13ι. Fur-

thermore, with respect to Schur complement, we can rewrite
the condition in (73) as,

⎡

⎣
Ξ̌i(d(t)) ∗ ∗
−J λ̄iiPi ∗

PiΠ⊤
i Λ

⊤
2 (d(t)) 0 −Pi

⎤

⎦ < 0, i ∈ I, (74)

where

Ξ̌i(d(t)) := Sym{Λ1PiΛ⊤
2 (d(t)) + Λ2(d(t))J + YiAi

+W1Λ⊤
5 +W2Λ⊤

6 (d(t)) +W3Λ⊤
7 (d(t))}

+ Λ3QiΛ⊤
3 + E2RE⊤

2 + Λ4Z0Λ⊤
4

+ d1W1Z−1
1 W⊤

1 + (d(t) − d1)W2Z−1
2 W⊤

2

+ (d2 − d(t))W3Z−1
2 W⊤

3

+ Λ8V1iΛ⊤
8 + Λ9V2iΛ⊤

9 .
(75)

Notice that the condition in (74) is affine with respect to the
time-varying delay d(t), which satisfies

d1 ≤ d(t) ≤ d2. (76)

This implies that d(t) may take any value in [d1, d2]. Then,
d(t) can be further expressed as a convex combination in the
following form,

d(t) = ηd1 + (1− η)d2, (77)

where 0 ≤ η ≤ 1. Since d(t) in (77) varies with respect
to η linearly, it is only required that (74) holds with η = 0
and η = 1, respectively. This leads to (27) after twice Schur
complements.

Hence, we conclude that the closed-loop error system in
(11) is SS if (24), (25) and (27) hold. This completes the
proof. !

REFERENCES

[1] K. S. Narendra and K. Parthasarathy, “Identification and control of
dynamical systems using neural networks,” IEEE Transactions on Neural
Networks, vol. 1, no. 1, pp. 4–27, Mar. 1990.

[2] D. Yue, Y. Zhang, E. Tian, and C. Peng, “Delay-distribution-dependent
exponential stability criteria for discrete-time recurrent neural networks
with stochastic delay,” IEEE Transactions on Neural Networks, vol. 19,
no. 7, pp. 1299–1306, Jul. 2008.

[3] D. Yue, Y. Zhang, and E. Tian, “Improved global robust delay-dependent
stability criteria for delayed cellular neural networks,” International
Journal of Computer Mathematics, vol. 85, no. 8, pp. 1265–1277, Aug.
2008.

[4] T. Huang, J. Cao, and C. Li, “Necessary and sufficient condition for the
absolute exponential stability of a class of neural networks with finite
delay,” Physics Letters A, vol. 352, no. 1, pp. 94–98, Mar. 2006.

[5] H. Bao, J.-H. Park, and J. Cao, “Exponential synchronization of coupled
stochastic memristor-based neural networks with time-varying proba-
bilistic delay coupling and impulsive delay,” IEEE Transactions on
Neural Networks and Learning Systems, vol. 27, no. 1, pp. 190–201,
Jan. 2016.

[6] H. Li, B. Chen, Q. Zhou, and W. Qian, “Robust stability for uncertain
delayed fuzzy Hopfield neural networks with Markovian jumping pa-
rameters,” IEEE Transactions on Systems, Man, and Cybernetics, Part
B: Cybernetics, vol. 39, no. 1, pp. 94–102, Feb. 2009.
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