Available online at www.sciencedirect.com

SCIENcE(CbnmecT- Electronic Notes in
Theoretical Computer

Science

B

Sy
ELSEVIER Electronic Notes in Theoretical Computer Science 157 (2006) 43-59
www.elsevier.com/locate/entcs

Application Security Models for Mobile Agent
Systems

J. Todd McDonald*

Department of Computer Science
Florida State University
Tallahassee, FL, USA

Alec Yasinsac?

Department of Computer Science
Florida State University
Tallahassee, FL, USA

Abstract

Mobile agents are a distributed computing paradigm based on mobile autonomous programs. Mo-
bile applications must balance security requirements with available security mechanisms in order to
meet application level security goals. We introduce a trust framework to reason about application
security requirements, trust expression, and agent protection mechanisms. We develop application
security models that capture initial trust relationships and consider their use for mobile agent
security.

Keywords: Mobile agents, trust, security, application requirements, software protection, models,
frameworks

! Email:mcdonald@cs.fsu.edu. The views expressed in this article are those of the author
and do not reflect the official policy or position of the United States Air Force, Department
of Defense, or the U.S. Government

2 Email: yasinsac@cs.fsu.edu This material is based upon work supported in part by
the U.S. Army Research Laboratory and the U.S. Army Research Office under grant number
DAADI19-02-1-0235

1571-0661 © 2006 Elsevier B.V. Open access under CC BY-NC-ND license.
doi:10.1016/j.entcs.2005.09.041

mailto:mcdonald@cs.fsu.edu
mailto:yasinsac@cs.fsu.edu
http://www.elsevier.com/locate/entcs
http://creativecommons.org/licenses/by-nc-nd/3.0/

44 J.T. McDonald, A. Yasinsac / Electronic Notes in Theoretical Computer Science 157 (2006) 43-59

1 Introduction

Mobile agents are autonomous programs with the capability of changing their
execution location through a series of migrations and corresponding state up-
dates. Mobile agent applications specify and enforce security requirements
based on the unique interactions of agent servers (hosts) with static and dy-
namic agent components.

Traditionally, mobile agent security has focused on two forms of protection:
keeping malicious parties from altering the agent and keeping malicious agents
from harming other parties including potential hosts. Several surveys [1,2,3]
categorize and describe attacks against agent systems along with mechanisms
for defense.

Trust formulation has been given considerable thought both in distributed
networking applications [4,5,6,7] and mobile agents [8,9,10,11,12]. Mobility
as an application feature complicates trust because the receiving execution
host must make distributed trust decisions in the face of little or no prior
knowledge. Likewise, user agents must evaluate trust with hosts in different
security contexts.

To date, other trust models for mobile agents have not addressed how to
link requirements with appropriate agent protection mechanisms. Other trust
models lack integration of generic security mechanisms or reasoning about
initial trust relationships (what we term an application security model). We
bridge this gap by posing a trust-based security framework for mobile agents
with three novel features:

» Ability to link application security requirements with mechanisms based on
trust

* Reasoning about trust properties for generic security mechanisms

e Application models for initial trust among principals in a mobile agent set-
ting

The rest of this paper describes our trust framework and is organized
as follows: section 2 discusses related works concerning trust and security
requirements in the mobile agent paradigm. Section 3 presents our framework
for expressing trust and security in mobile agent systems. Section 4 expounds
three different application-level security models and section 5 summarizes our
contributions.

J.T. McDonald, A. Yasinsac / Electronic Notes in Theoretical Computer Science 157 (2006) 43-59 45

2 Related Works

Our security framework novelly incorporates three notions: security require-
ments, agent security mechanisms, and trust. Security requirements are de-
fined as the desire to guarantee one or more canonical qualities: privacy,
integrity, availability, authentication, and non-repudiation. Security mecha-
nisms for mobile agents enforce requirements and are categorized as either
detecting or preventing malicious behavior.

Defining trust is as precarious as defining agent—and though researchers
do not agree on either term they do discern the importance of both concepts
in framing research. We define trust loosely in a previous work [7] as the
expectation of behavior among parties and classify several different trust in-
frastructures in dynamic networks. Gambetta [13] defines trust as a subjective
probability that is non-reflexive, changing, and context driven. Trust can be
transitive and therefore delegated [10] or can be acquired by direct observation
[14,15].

Trust management [5] is a framework for defining policies, actions, rela-
tionships, and credentials in terms of trust. Traditional trust management
systems delegate permissions using certificates (credentials) that reduce to
static decisions that do not scale well or allow change over time. Capra [15]
points out limitations of several trust management frameworks: they are de-
signed for centralized servers, have too high a computational overhead (for
mobile devices), lack dynamic trust evolution, lack details about local policy
usage, and lack subjective reasoning capabilities.

Early work in mobile agent security centered on policy management and
malicious code protection based on credentials [16]. Distributed policy tools
for mobile agents are developed in [10,17]. Trust cannot be hard-coded in
applications that require decentralized control in large scale heterogeneous
networks [6].

Mobile agents particularly need to separate application purpose from trust
management issues if they are to scale well. Research efforts to implement
trust expression in mobile applications include Lin et al. [11], SECURE [14],
hTrust [15], and MARISM-A [9]. Our trust architecture incorporates several
properties found in current work: derived and acquired trust (opinions from
third parties), delegated trust, linking trust with security decisions, temporal
considerations, and non-Boolean trust.

We fill in a key missing link in current models: the relationship between se-
curity requirements, trust, and agent protection mechanisms. Tan and Moreau
attempted one of the first models of trust and belief specifically for mobile
agent-based systems in [8]. This distributed authentication mechanism model

46 J.T. McDonald, A. Yasinsac / Electronic Notes in Theoretical Computer Science 157 (2006) 43-59

is limited because it only uses trust expression for their extended execution
tracing security mechanism. Conversely, our model gives the ability to account
for a wide range of mechanisms and requirements.

3 Trust Framework

To describe our framework, we first define the principals that can be assigned
trust properties, define next the nature of trust relationships between princi-
pals, and finally formulate what trust relationships can accomplish in mobile
applications settings.

3.1 Principals in Mobile Applications

Three distinct groups of principals are found in mobile agent systems: agents,
hosts, and entities (described in figure 1 in extended BNF?). We define an
agent as a composition of static software (code) and a set of dynamic states
(state) that represent the migratory results of the agent. Agents are described
by their migration path (itinerary), any unique identifiers (id), a log of agent
or host activity (log), and a security specification (policy) that includes any
historical trust information for other principals in the agent application.

Hosts provide an execution environment for the agent. They encompass
the underlying physical hardware, runtime services, and middleware neces-
sary for agent migration and execution. Agents see a host as a collection of
computational, communicational, informational, and management resources.
Hosts also have security policies that support the trust formation and decision
process.

Three classes of hosts are relevant to mobile computations: the dispatch-
ing host (DH) associated with the application owner that launches mobile
agents, the ezecuting host(E H) where mobile computations occur, and trusted
hosts(T H) which have ability to change trust relationships among other prin-
cipals based on services they offer.

Three entities have bearing on security relationships in mobile settings.
The creator of the static agent code is the code developer (C'D) while the code
user is the application owner (AO). The (CD) and (AO) may be the same.
The owner of a computer, the systems manager of a computer, and the user
of a computer can be the same person, or can be separate individuals with
different levels of trust.

For simplicity, we view the host owner, manager, and user as synonymous
and apply the term host manager (HM) to refer to all three responsible

3 ISO/IEC 14977:1996(E)

J.T. McDonald, A. Yasinsac / Electronic Notes in Theoretical Computer Science 157 (2006) 43-59 47

parties. In human terms, we trust machines (hosts) and software (agents) in
some cases because we trust the manager of the environment or the developer
of the software. We equate the trust that we have in the host manager as
the trust we have in any other host, realizing that the host manager for the
dispatching host, the code developer, and the application owner can all be
different entities.

<agent> = <code>, <state>+, <itinerary>, <id>, <log>, <policy>
<host> = <resource>+, <id>, <log, <policy>
<entity-type> = <code developer> | <application owner> | <host manager>

<entity> = <organization>, <entity-type>
<principal> = <agent>| <host> | <entity>
<trust> = <level> <foreknowledge>,<timeliness>
<application> = <principal>+ , (<principal> <principal>,<security requirements>+, <frust>)*

Fig. 1. Principals in Mobile Agent Systems

We define an application as the collection of all possible hosts that will
be involved in the agent task and the set of uniquely identifiable agents that
implement a user function. This intuition captures single agents and multiple
collaborating agents including those with the same static code and different
itineraries and those with different static code. We now define our notion of
trust relationships that are shared among principals in our model.

3.2 Trust Relationships

One security task is to rightfully attribute observed actions within the system
to a given party. The data state and code of a mobile agent is influenced by the
code developer, the dispatching host, and all visited hosts—making attribution
difficult. For simplicity, we equate the trust in the agent code with trust in
the code developer and we will equate trust we have in the dispatching host as
the trust we have in the application owner. In the spirit of [14,15], we define
a trust relationship 6 : P — P — S — (L, F, M) as a mapping J between
two principals (P, P,) and some number of security requirements (5) with
3 associated parameters: trust level (L), foreknowledge (F'), and timeliness
(M), depicted in figure 2.

We categorize trust levels (L) in a range from highly untrusted (HU/U)
to highly trusted (HT/T), where in some instances trust is not determined
(ND). Trust levels are non-Boolean and reflect a one-way subjective level of
belief that one party will behave towards another party at some perceived level
of malicious intent (HU,U, ND, T, HT). Trust can be discretely categorized
negatively and positively as ranges between [—1,1] : (HT,T) > 0;ND =
0; (U, HU) < 0 or as levels in the range [0, 1].

Foreknowledge (F') is a statement of prior interaction between principals.
Agents traveling in a dynamic free-roaming itinerary can encounter hosts that

48 J.T. McDonald, A. Yasinsac / Electronic Notes in Theoretical Computer Science 157 (2006) 43-59

are unknown. Likewise, hosts are likely to encounter agents with no prior
experience. Foreknowledge of a principle is described as either well-known
(WK), known (K), or unknown (UK). Well-known principals have estab-
lished histories while known principals are identified for possible interaction.

Timeliness (M) is categorized as expired, stale, or fresh. Timeliness
may be established by mechanisms such as timestamps [15] and freshness
can be used to make determinations on whether recommended or delegated
trust decisions are reliable. Given the same volume of interaction, trust is
higher when the interaction period is longer. When the elapsed time since
the last interaction is short, higher confidence can be placed in more recent
interactions.

<9> = <P, <P,>, <S>+, <L>, <F> <M>

<L>= <highly untrusted> | <untrusted> | <non-determined> |
<trusted> | <highly trusted>

<F>= <well known> | <known> | <unknown>

<M> = <expired> | <stale> | <fresh>

<S> = <CP>|<CI> | < CF> | <CA> | <IP> | <II> | <S> | <SP> | <AA> | <AZ> |
<AN> | <AV> | <AY> | <HA> | <HN> | <HP> | <HY> | <HV> | <HI>

Fig. 2. Trust Relationships

3.8 Defining Security Requirements

Figure 3 defines mobile agent requirements derived from the traditional CIA
model for describing security (confidentiality /integrity /availability). The list
provides a comprehensive set of security requirements based on taxonomies
found in [1,2,3]. Requirements dictate the security environment necessary for
agents to operate at the executing host and the level of protection which hosts
require from executing agents. To achieve a security requirement, a principal
must either have a degree of trust towards another principal in the system in
regards to a given security requirement or else a security mechanism must be
in place to enforce that particular requirement.

Trust level, foreknowledge, and timeliness bind trust from two principals
(an application owner, an executing host, a dispatching host, an agent, etc.)
with one or more security requirements (elaborated in figure 3). Though we
represent foreknowledge, trust level, and timeliness discretely, they can be
converted to continuous ranges ([—1, 1] or [0, 1] for example) to accommodate
different trust algorithms.

In our model, an application designer can specify varying levels of trust
for different security requirements—giving freedom for the application to trust
more in one security aspect but less in others. For example, principal A can
trust principal B in regards to agent code privacy (reverse engineering), but

J.T. McDonald, A. Yasinsac / Electronic Notes in Theoretical Computer Science 157 (2006) 43-59

CP | agentcode privacy hiding the algorithm or function of the agent code

Cl agent code integrity ensuring agent’s code remains unaltered

CF | agent code safety ensuring agent’s code is not malicious

CA | agent code authenticity ensuring identity of agent developer is correct

P agent itinerary privacy ensuring agent itinerary is secret (other than previous or next host |D)
n agent itinerary integrity ensuring agent itinerary is unchanged

] agent state integrity ensuring execution and resulting state of the agent is unaltered

SP | agent state privacy keeping parts of the agent data state safe from observation

AA | agentat i ensuring correct identity of agent, dispatching host, application owner
AZ | agentauthorization ensuring agent is authorized to host resources

AN | agentnon-repudiation ensuring agent commitments are kept

AV | agentavailability ensuring host does not deny agent service or proper transmission

AY | agentanonymity keeping the identity of the agent anonymous

HA | host authenticity ensuring correct identity of the (dispatching, executing, or trusted) host
HN | host nonsepudiation ensuring host commitments are kept

HP | host data privacy ensuring host input data is private

HY | host anonymity keeping the identity of the host anonymous

HV | host availability ensuring agent does not deny the host service

HI host integrity keeping server data free from unauthorized agent observation

49

Fig. 3. Agent/Host Security Requirements

not in regards to agent execution integrity (partial result alteration). We give
three models in section 4 that describe classes of applications with varying
levels of trust.

3.4 Defining Security Mechanisms

Security requirements formulate the desire to guarantee privacy, integrity,
availability, authentication, or non-repudiation. Security mechanisms are tar-
geted at enforcing one or more these requirements. Both application owners
and potential agent execution environments have vested interest in the mech-
anisms that are used to enforce security—whether they prevent or detect mali-
cious behavior and what aspect of protection they provide. No single security
mechanism can address every security requirement for a mobile agent system.
Some efforts have joined mechanisms and requirements at an application level
[18] so that several mechanisms together enforce desired security levels.

A large body of literature can be found that details proposed security
mechanisms for mobile agent systems. Though we are limited by space, thor-
ough analysis of agent security mechanisms can be found in [1,2,3,12]. Host-
based mechanisms protect a host from malicious agents and include sandbox-
ing, safe interpreters, code signatures, state appraisal, proof carrying code,
path histories, and policy management. Agent-based mechanisms protect the
agent from malicious activity outside of itself and several commonly referenced
mechanisms include encrypted functions, detection objects, replication with
voting, reference states, time-limited execution, digital signatures, phoning
home, anonymous routing, trusted third parties (TTP), secure multi-party
computation (SMC), multi-agent systems (MAS), intermediate data result
protection, undetachable signatures, environmental key generation, execution
tracing, and tamper-proof hardware (TPH).

Protection mechanisms can allow agent transactions in spite of unknown

50 J.T. McDonald, A. Yasinsac / Electronic Notes in Theoretical Computer Science 157 (2006) 43-59

or poor trust environments. Wilhelm et al. [19], for example, make a strong
argument that the presence of trusted hardware and appropriate execution
protocols can effectively shield private application data from observation on
untrusted remote servers and mitigate lack of trust. A principal can have
different trust levels for different requirements, e.g., Alice may trust Bob to
execute her agent without reverse engineering it (an expression of code pri-
vacy), but may not trust Bob to execute the agent without looking at previous
results from other hosts (an expression of state privacy). When the desired
trust level is not adequate between parties in the agent application, the pres-
ence of security mechanisms is used to enforce specific security requirements
so that agent-based tasks can be accomplished.

Sl state appraisal, encrypted functions, SMC, detection objects, executing tracing,
reference states, intermediate resuit protection, state transition verification, group
hosts, TPH, environmental key generation, undstachable signatures

SP TPH, SMC, encrypted functions, obfuscation, sliding encryption, phoning home, MAS
HV state appraisal, path histories, sandboxing, safe interpreters, policy management
AV time-limited black box, phoning home, cooperating agents, MAS

Hi path histories, sandboxing, safe interpreters, proof carrying code

CP TPH, SMC, encrypted functions, obfuscation, MAS

[¢] digital signatures, clons detection

CF sandboxing, proof carrying code, state appraisal

P anonymouslionion routing, bidirectional dispatch

] Itinerary recording, replication and voting
CAHAHN | digital signatures, TTP

AAAZ AN | digital signatures

HP SMC, TTP

AY HY TIP

Fig. 4. Agent Security Requirements and Mechanisms

Figure 4 lists various agent security mechanisms and the corresponding
requirements they are intended to enforce. Though not an all-inclusive list
of mechanisms, principals rely on such mechanisms to protect themselves.
Certain mechanisms are preventative in nature, not allowing malicious be-
havior a priori. Other mechanisms rely on a posteriori information to detect
whether unauthorized actions occurred to either the agent or the host. Some
mechanisms readily fit into both categories and the clear delineation is not
important. In general, preventative mechanisms are desired over detection
mechanisms when available because they are stronger, but may come with
more overhead or complication. Detection is normally a less stringent means
of security because protection has already been violated in some way—-but at
least is caught.

3.5 Linking Requirements and Mechanisms with Trust Enhanced Decisions

Trust decisions in pervasive scenarios are based on information from two pri-
mary sources: personal observations (previous interactions) and recommen-

J.T. McDonald, A. Yasinsac / Electronic Notes in Theoretical Computer Science 157 (2006) 43-59 51

dations from other parties (transitive or delegated trust). Spy agents [20] can
be used to build and maintain a trust profile by validating behavior in small
interactions. Trust-earning actions can build relationships which in turn are
used to decide which security mechanisms need to be used to achieve the level
of security desired by the application owner.

We use trust in the mobile agent environment to affect security mecha-
nism selection, agent itinerary, policy decisions, and code distribution. For
example, if the application owner (AO) has non-determined (N D) or low (U)
trust toward any of the prospective hosts, the owner may require detection
mechanisms to guarantee agent state integrity or agent state privacy. If no
trust (HU/U) exists at all, the AO may require more stringent preventative
mechanisms to enforce agent state integrity/privacy. If the AO has full trust
(T'/HT) in prospective hosts, no security mechanism may be required in order
for the agent to be dispatched and executed on those particular hosts.

To link agent security mechanisms with application requirements, initial,
recommended, and first-hand trust is processed and the framework renders
a mechanism-based decision that meets the security objectives of the prin-
cipals involved. Highly trusted and trusted principals will tend to yield no
requirement for security mechanisms. Non-determined trust will tend to re-
quire detection — oriented mechanisms while untrusted relationships will tend
to demand prevention — oriented mechanisms. Migration decisions may also
be determined based on trust level.

Figure 5 depicts the inputs and outputs to our trust determination pro-
cess for mobile applications with the outcome being selection of one or more
mechanisms that will meet bidirectional requirements between principals. An
appropriate (set) of host-based mechanisms and an appropriate (set) of agent-
based mechanisms is one of the outcomes of the trust algorithm. We propose
that the initial set of trust relationships can be generalized based on the ap-
plication environment of the mobile agent and represented by an application
model. The initial trust component of the trust-based decision seen in fig-
ure 5 is defined by a set of relationships (the application model) which is
context-dependent on the application.

Given our definition of principals, trust, and applications, we support a
framework to exercise security. Figure 6 pictorially summarizes the compo-
nents of our trust framework for mobile agent applications using standard
UML generalization and compositional notation. Trust is enforced or estab-
lished by security mechanisms; applications link the trust expectations of prin-
cipals through security requirements to a trust level, foreknowledge, and time-
liness. An application environment can be used to generalize the adversarial
nature that exists among principals: we call this generalization an applica-

52 J.T. McDonald, A. Yasinsac / Electronic Notes in Theoretical Computer Science 157 (2006) 43-59

First-Hand Trust u" H L—l - u—”‘ e d um - VAVV /
Observe Trust -
Reisted Actions ”
Requirements
"4
Recommended
Trust Trust
Delegated = r.———’ Determination
Trust Decision
Initial Trust J \
- Host Agent
Application Models Mechanisms Mechanisms

Fig. 5. Trust Decisions for Mobile Agent Security

tion level security model which describes an initial set of trust relationships
between application parties.

When considering the agent life cycle and the initial binding of trust at
various stages we formulate the following notions:

(i) creation and development of code bind trust to a code developer
) ownership of an agent binds trust to an application owner

(iii) dispatching an agent binds trust to a dispatching host,
)

execution of an agent binds trust to all prior hosts an agent has visited
plus its dispatcher

(v) migration binds trust to the next host in the agent itinerary

(vi) termination binds trust of the entire application to the entire set of exe-
cution hosts and the network environment

Our model allows trust to be earned or degraded based on actions observed
over time. Given a set of trust relationships that exist between principals, sev-
eral trust-based decisions are supported by the architecture: which agent/host
security mechanism to use, which hosts an agent can include in the itinerary,
which parts of the agent code are executed by the host, which agents are al-
lowed host resources, which principals can share policy information, whether
trust levels can increase (whether you are allowed to recover from negative
trust), and whether or not trust recommendations from other parties should
be given merit to include how much weight they are given.

Observable trust-related actions can change trust levels among mobile
agents and hosts. Trust relationships evolve from initial trust according to
a predefined set of rules—which represent a security policy. In our previous
work on trust in ad-hoc networks [7], four different categories of trust ac-
quisition are formulated which we apply in the mobile application context:

J.T. McDonald, A. Yasinsac / Electronic Notes in Theoretical Computer Science 157 (2006) 43-59 53

Neutral Services

=a

—
characterizes Application —
initial trus

X

T 1

1 L

Military
——

plication Owner

| Entity Manager-Owner I

i
—
——

I
N

enforced by

established by Dispatching

/
L 1

Executing

=
3
o
=
o
I
«
HE
o
<1
H}i
o
1]
o
c
a
o

Fig. 6. Trust Framework

trust-earning actions over time, trust-earning actions by count, trust-earning
actions by magnitude, and trust-defeating actions. We address the issue of
trust-based actions and the effects of trusted third parties on mobile agent
execution in [12].

4 Application Level Security Models

Models come in many shapes and sizes. In all cases, they are used to fo-
cus and detail a particular aspect of a problem. Security models help test
completeness of a security policy or can verify whether an implementation
fulfills a set of requirements. Application models for multiple agent systems
describe how agents accomplish tasks based on an underlying pattern such
as publish/subscribe, courier /broker, and supervisor/worker. The applica-
tion context determines security responsibilities of principals and limits trust
award to occurring only through specific interactions.

In our security framework we establish trust three ways: initial trust,
acquired trust, and recommended trust (see figure 5 and 6). Over time, trust
will change based on observed actions and delegated decisions-which we do
not cover for space limitations. Application scenarios dictate how principals
are derived and how they act towards each other. We can use scenarios to
set boundaries on whether trust can be acquired over time—whether we can
promote principals from untrusted (U) to non-determined (ND) or from non-
determined (ND) to trusted (T).

In this paper we introduce the notion that mobile agent applications can
have initial trust relationships (between agents and hosts for example) that are

54 J.T. McDonald, A. Yasinsac / Electronic Notes in Theoretical Computer Science 157 (2006) 43-59

based on a common trust environment. This initial trust is the starting point
for trust-enhanced security decisions. We provide three examples of real world
environments that reflect mobile agent applications that share common trust
assumptions. These initial trust relationships couple the security requirements
and trust levels of various participants. As a result, agents in an application
can initially determine which security mechanisms will be used and hosts can
initially specify a required set of security mechanisms.

4.1 The Military Model

The military model is based upon the notion that a wall or ”Maginot Line”
exists between friendly and adversarial entities. Within friendly borders, en-
tities are known to each other as authenticated, highly-trusted principals. At
some point, however, a given principal may be taken captive by an adversary.
This captured entity (whether a host or agent) may continue to function pas-
sively in order to discover information or leak secrets on behalf of the capturer.
Captured entities may become overtly malicious by delaying and denying ser-
vice, corrupting friendly communications, and attacking privacy and integrity
of group operations.

The military model formulates common application characteristics between
principals and helps focus security requirements. For instance, although hosts
might be ad-hoc or mobile, they are verified by a managerial entity within
the environment. Figure 7 illustrates how an initial set of trust relationships
capture this notion: every dispatching host/agent originator (DH/AO) has a
"known” and ”trusted” relationship with every executing host (E'H) to begin
with. This is indicated by ”"K/T” in the row for DH/AO that intersects
the EH column in figure 7. In the military model, trust relationships are
implicit as long as the identity of the principal can be verified. Principals are
commonly known beforehand, so more trust is granted for both authenticated
agents and hosts.

The military model fits requirements and trust relationships where the use
of trusted third parties, trusted hardware, group security operations, multiple
security levels, multiple trust levels, and distinct organizational structures
exist. This environment is found in many corporate infrastructures (as well as
the military itself) where a trusted computing base is financially possible or
mandated. Implicit trust among principals allows hosts to efficiently work in
cooperation with agents to provide mutual prevention and detection services.

The military model also suggests a common set of agent characteristics,
where agents are designed, developed, and deployed by a centralized author-
ity. In industry, development can be delegated to outsourced teams or an
information technology department with in-house programmers. The mili-

J.T. McDonald, A. Yasinsac / Electronic Notes in Theoretical Computer Science 157 (2006) 43-59 55

tary model reflects programming environments where only authorized mobile
agent applications are used and agents act as peers. Other initial trust models
can reflect agents that take on adversarial roles with one another. Of course
even corporate divisions have proprietary and sensitive information that may
require protection.

In the military model, agents may still have requirements for integrity and
privacy, but their identity, safety, authorization, and authentication can be
verified within a circle of trust. The military model also places less emphasis
on distinction between executing and dispatching hosts. Agent servers are
used interchangeably in some cases as the dispatcher and in other cases as
the execution host. Initial trust in this model is indicative of many real world
computing paradigms where agent-based applications accomplish group col-
laboration, systems management, and information gathering. The key feature
is that a centralized management domain exists.

Figure 7 summarizes the military model initial trust relationships and de-
scribes how ¢ is initialized. Two simplifying assumptions are illustrated: the
application owner (AO) and the dispatching host (DH) are equivalent for
trust purposes and the code developer (C'D) has equivalent trust to the agent
(A). The matrix also depicts, for example, the dispatching host (DH) / appli-
cation owner (AO) initially knows and trusts (K/T") all executing hosts (EH).
It also illustrates how the AO knows and trusts all agents (A/C'D) it will use.

Based on this initial trust relationship set, the trust algorithm dynami-
cally determines acquired or recommended trust. Acquired trust mechanisms
(the acquisition of negative trust) facilitate discovery of infiltrators. These
relationships also determine the security mechanisms required by each host or
agent. The underlying assumption of the military model is that some agents
or hosts will fall under "enemy” control. Two primary security-related tasks
consume the majority of time in the military model: 1) protecting insiders
from outsiders and 2) detecting whether or not an agent or host has been
compromised or captured.

The issue of the latter security task becomes detection of anomalous or
malicious behavior and removal of malicious parties from the circle of trust.
This scenario best represents application environments where there is a peer
(non-adversarial) relationship within the community of trust that applies to
both agents and hosts. As figure 7 illustrates, the initial trust relationships
among all principals in the system begin at a known and trusted level and
when trusted servers are used (T'H), they are "highly trusted” (HT).

The role of trusted third-parties and trusted hardware, as well as coalition
security mechanisms, becomes focused on identifying principals that have vio-
lated the circle of trust or are attempting to gain access to the circle of trust.

56 J.T. McDonald, A. Yasinsac / Electronic Notes in Theoretical Computer Science 157 (2006) 43-59

A strong military model may require that all executing hosts be equipped
with tamper-proof hardware. Other application scenarios are better suited
for expressing e-commerce interactions, discussed next.

4.2 The Trade Model

A second toy example we present is the trade model: it captures the intuition
of a competitive interaction among actors that are all bargaining for resources.
Such an environment could also be termed an economic model, a buy/sell
model, or a supply/demand model where economic benefits are in view. This
application scenario is indicative of the Internet model of computing where
e-commerce mobile agents might be deployed. It describes applications where
disjoint communities of mobile agent dispatchers want to use services or obtain
goods from a set of host commodity or service providers. Agent literature rou-
tinely represents such a model as an agent dispatched to find an airline ticket
among a group of airline reservation servers-accomplishing the transaction
autonomously while finding the best price within the user constraints.
Figure 7 illustrates the initial trust relationships for security requirements
in the trade model and depicts the adversarial relationship among principals.
In this scenario several trust facets are expressed: 1) buyers (application own-
ers) do not trust sellers (hosts) to deal honestly with them; 2) sellers do not
trust other sellers to work for their best interest; 3) buyers do not trust sell-
ers to act non-maliciously; and 4) buyers are in competitive relationships with
other buyers for the same goods and services. Initial relationships between dis-
patching hosts/application owners (DH/AQO) and executing hosts (EH) thus
have an implicit untrusted (U) relationship for parties that are known (K) and
an implicit highly untrusted (HU) relationship for parties that are unknown
(UK)-seen in the figure 7 matrix. Executing hosts in the matrix (EH) have
untrusted relationships (U/HU) with other executing hosts, whether known
(K) or unknown (UK). The buyer adversarial relationship is expressed by the
initial trust between agents/code developers (A/C'D) as being non-determined
(ND) or highly untrusted (UH) in the case of known/unknown parties.

Military Model Trade Model
DH EH TH A DH EH TH A
AO | ‘co AO co
DH KIHT KIT kI HT KIT DH KIHT KIU KIT kIND
A0 AD uk 1 HU uk IND uk U
EH kIT IPTA: P it = KIU kiU Tert P
uk /HU uk /HU uk IND uk /HU
™ k IHT TkrnT TrHT I ™ k/ND kIU TerT IND
uk/U uk /HU ‘uklND uk/U
A kIT KT kI HT KIT A KIT kIU KIT xIND
cD (=] uk /ND uk /HU uk /ND uk /HU

Fig. 7. Military and Trade Model Initial Trust Relations

J.T. McDonald, A. Yasinsac / Electronic Notes in Theoretical Computer Science 157 (2006) 43-59 57

The largest number of perceived mobile agent application possibilities typ-
ically fall into the trade model in terms of security requirements. In this
context, principals are not necessarily known before interaction takes place
and there is, in most cases, no trust or foreknowledge between users that
want to execute agents and hosts that would like to execute agents. This
model relies more on acquired or delegated trust decisions and reflects that
executing hosts are as equally distrusting of agents and other executing hosts.
Application owners see hosts as implicitly untrusted in the sense that there is
economic benefit to gain if hosts alter the execution integrity of their agents
or maliciously collude together.

4.8 The Neutral Services Model

As a third notion to capture application level security requirements, we define
the neutral services model with the intuition that a service (or set of informa-
tion) is acquired by one or more agents. Providers of services do not themselves
have an adversarial relationship, but they may be viewed as having disjoint
communities of trust. The primary difference in the neutral services model
and the trade model is that communities of hosts exist with no adversarial
relationship among themselves. These communities are essentially neutral in
terms of their commitments to each other—neither friendly nor hostile.

This model is suited for application environments designed around infor-
mation or database services. Information providers typically have no economic
gain from altering the results or influencing the itinerary of agents that they
service. Hosts provide services honestly in the sense that they would not alter
the path or intermediate data results of an agent or induce denial of service.
Service providers can and in most cases do charge a small fee for the use of
their service, however. What might be of interest to a dispatching application
owner in this model is whether or not its agent is billed correctly. In this
respect, if information providers charge for their service, it is to their benefit
to alter the execution integrity of an agent so that the agent is charged for
more than was legitimately received.

Adversarial relationships exist between agents from the ”client” commu-
nity and hosts in the ”server” community, but there is not necessarily a trust
or distrust of hosts within a given community. Neutral hosts see no benefit
from altering an agent that might be carrying results from other hosts or from
preventing them from visiting other hosts. Hosts in this realm are in essence
a "one-of-many” information provider. This paradigm may not fit a search
engine model where a mobile agent visits and collates search results from let’s
say Google, Yahoo, and Alta Vista. In that case, it may be of interest to one
of these engines (who get benefit from every agent hit since advertisers might

58 J.T. McDonald, A. Yasinsac / Electronic Notes in Theoretical Computer Science 157 (2006) 43-59

pay more for a more frequently visited search engine) to alter the itinerary
or search results of other hosts. It might also benefit a search engine in this
example to maliciously alter search results of other engines carried by the
agent to be "less useful” so that their results look better to the application
owner. For cases like this, the trade model would fit better in terms of security
requirements.

The type of protection that is needed in the neutral services model revolves
primarily around the execution integrity of the agent. To that effect, hosts that
bill customers for usage might be tempted to cheat and wrongly charge agents
for resources they did not use. Likewise, agents may want to falsely convince a
host that no service or information was gathered, when in fact it was. Trusted
relationships between neutral third parties are also more conducive in this
environment and trusted third parties may interact with various communities
of service providers themselves on behalf of other users.

5 Conclusions

When application development is in view, it is helpful to have methods that
help transform requirements into implementation. We present a trust model
to support mobile agent application development that links trust relationships
and expression with both security requirements and security mechanisms. We
further define the notion of an application security model that can seed our
mobile agents trust framework.

We give three examples of such models and characterize how initial trust
relationships can be generated based on the trust assumptions between par-
ties involved in mobile agent interactions. The usefulness of such models is
that developers and researchers can reason about security requirements and
mechanisms from an application level perspective and integrate trust-based
decisions into the mobile agent security architecture.

References

[1] Jansen, W., and T. Karygiannis, National Institute of Standards and Technology, Special
Publication 800-19-Mobile Agent Security, August 1999.

[2] Bierman E., and E. Cloete, Classification of malicious host threats in mobile agent computing,
Proc. of 2002 Annual Research Conf. of the S. African Inst. of Comp. Scientists (2002), Port
Elizabeth, 141-148.

[3] McDonald, J. T., A. Yasinsac, W. Thompson, Tazonomy for
Defining Mobile Agent Secumty7 submitted to ACM Computing Surveys, May 2005, URL:
http://www.cs.fsu.edu/research/reports/TR-050329.pdf.

[4] Yahalom, R., B. Klein, and T. Beth, Trust relationships in secure systems-A distributed

authentication perspective, Proc. of IEEE Symposium on Research in Security and Privacy
(1993), 150-164.

http://www.cs.fsu.edu/research/reports/TR-050329.pdf

J.T. McDonald, A. Yasinsac / Electronic Notes in Theoretical Computer Science 157 (2006) 43-59 59

[5] Blaze, M., J. Feigenbaum, and J. Lacy, Decentralized Trust Management, Proc. IEEE
Conference on Security and Privacy, Oakland, CA, May 1996.

[6] Grandison, T., and M. Sloman, A Survey of Trust in Internet Applications, IEEE Comm.
Surveys 4th Quarter (2000).

[7] Burmester, M., and A. Yasinsac, Trust Infrastructures for Wireless, Mobile Networks, WSEAS
Transactions on Telecommunications 3:1 (2004), 377-382.

[8] Tan, H. K., and L. Moreau, Trust Relationships in a Mobile Agent System, G. Picco (ed.),
5th IEEE Intl Conf. on Mobile Agents, LNCS 2240 (2001), Atlanta, Georgia, Springer-Verlag,
15-30.

[9] Robles, S., J. Mir, and J. Borrell, MARISMA-A: An Architecture for Mobile Agents with
Recursive Itinerary and Secure Migration, Fischer, K., and D. Hutter (eds.), Proc. of
SEMAS’02, Bologna, Italy, 2002.

[10] Kagal, L., T. Finin, and A. Joshi. Developing secure agent systems using delegation based trust
management, Fischer, K., and D. Hutter (eds.), Proc. of SEMAS’02, Bologna, Italy, 2002.

[11] Lin, C., et al., On the Design of a New Trust Model for Mobile Agent Security, 1st Intl Conf.
on Trust and Privacy, LNCS 3184 (2004), 60-69.

[12] McDonald, J. T., and A. Yasinsac, ”Trust in Mobile Agent Systems,” Technical report TR-
050330, Dept. of Comp. Science, Florida State University, 2005.

[13] Gambetta, D. Can We Trust Trust?, Gambetta, D. (ed.), Trust: Making and Breaking
Cooperative Relations (1990), Basil Blackwell, Oxford, 213-237.

[14] Cahill, V., et al., Using Trust for Secure Collaboration in Uncertain Environments, IEEE
Pervasive Computing 2:3 (2003), 52—61.

[15] Capra, L., Engineering Human Trust in Mobile System Collaborations, Proc. of the 12th Intl
Symposium on Foundations of Sftwre Eng., Nov. 2004.

[16] Bellavista, P., A. Corradi, C. Federici, R. Montanari, and D. Tibaldi, Security for Mobile
Agents: Issues and Challenges, chapter in ”Handbook of Mobile Computing” (2004).

[17] Antonopoulos, N., K. Koukoumpetsos, and K. Ahmad, A Distributed Access Control
Architecture for Mobile Agents, Proc. of Intl Network Conference, Plymouth, UK, July 2000.

[18] Claessens, J., B. Prenecel and J. Vandewalle, (How) can mobile agents do secure electronic
transactions on untrusted hosts?, ACM Transactions on Internet Technology (2003).

[19] Wilhelm, U., S. Staamann, and L. Buttyan, On the Problem of Trust in Mobile Agent Systems,
IEEE Network and Distributed Systems Security Symposium, San Diego, CA, 1999, 11-13.

[20] Kalogridis, G., C. J. Mitchell, and G. Clemo, Spy Agents: FEwvaluating Trust in Remote
Environments, Proc. Intl Conf on Security and Management, Las Vegas, NV, 2005.

[21] Esfandiari, B., and S. Chandrasekharan, On How Agents Make Friends: Mechanisms for Trust
Acquisition, Proc. 4th Wkshp on Deception, Fraud and Trust in Agent Societies (2001), 27-34.

	Introduction
	Related Works
	Trust Framework
	Principals in Mobile Applications
	Trust Relationships
	Defining Security Requirements
	Defining Security Mechanisms
	Linking Requirements and Mechanisms with Trust Enhanced Decisions

	Application Level Security Models
	The Military Model
	The Trade Model
	The Neutral Services Model

	Conclusions
	References

