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Abstract

Composition of systems out of autonomous subsystems pivots on coordination concerns that center on inter-
action. Interaction has been studied as an inseparable concern in concurrency theory. Curiously, however,
interaction has not been seriously considered as a first-class concept in constructive models of computation.
The coordination language Reo provides a powerful and expressive model for flexible composition of behav-
ior through interaction. Reo serves as a good example of a constructive model of computation that treats
interaction as a (in fact, the only) first-class concept. It uniquely focuses on the compositional construction
of connectors that enable and coordinate the interactions among the constituents in a concurrent system,
without their knowledge. We show how Reo allows complex behavior in a system to emerge as a composition
of primitive interactions.
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Coordination.

1 Introduction

The desire to compose running systems by gluing together existing pieces of soft-

ware and subsystems as reusable components, and to verify that the resulting sys-

tem behaves as expected sits at the core of component based software engineering.

Composition of web services makes this core concern even more challenging: service

oriented computing requires coordinated composition (also referred to as “choreog-

raphy” or “orchestration”) of the externally observable behavior of separate pieces

of software whose actual code cannot be composed and must remain within the

purview of independent autonomous organizations.
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Software composition has been a concern since the inception of programming.

Function calls, method invocation, remote procedure calls, and their variants com-

prise the mechanisms used to compose software in most contemporary models.

These mechanisms are very effective for composing algorithms. To tackle dynamic

composition of behavior by orchestrating the interactions among independent dis-

tributed subsystems or services, requires new models for software composition cen-

tered on interaction as a first-class concept. Various aspects of interaction protocols

have been studied in concurrency theory. Curiously, however, interaction has not

been seriously considered as a first-class concept in constructive models of compu-

tation.

Contemporary models of concurrency, such as CSP [22], CCS [25], the π-

calculus [26,29], process algebras [10,11,21], and the actor model [1], predominantly

treat interaction as a secondary or derived concept. Process calculi, for instance, are

models for constructing processes. They offer operators for composing atomic pro-

cesses or primitive actions into more complex processes. Interaction ensues only as

a consequence of the unfolding of the behavior of the processes involved in a concur-

rent system. For example, as a process p unfolds and performs its actions, one of its

primitive actions, such as a send, collides with a compatible primitive action, such

as a receive, performed by another process q. It is this collision of actions that forms

an interaction. Whether this collision occurs by dumb luck, divine intervention, or

intelligent design, is irrelevant. A split-second earlier or later, perhaps in a different

run, the same two actions could have collided with other actions of other processes,

yielding entirely different interactions. Actions and their composition have explicit

constructs used to define a system. Interaction is ephemeral and implicit, and plays

no structural role in the construction of a system. Other contemporary models for

software composition, such as the object oriented paradigm or the actor model, fair

no better than process calculi in this regard.

A constructive model of computation wherein interaction is a first-class concept

must offer (1) primitive interactions; and (2) rules of composition for combining

(primitive) interactions into more complex interactions, without the need to specify

(the actions of) the actors involved.

The coordination language Reo serves as a good example of a constructive model

of interaction. In this paper we briefly describe Reo and demonstrate that it pro-

vides a powerful and expressive model for flexible composition of behavior through

interaction. Reo uniquely focuses on the compositional construction of connectors

that enable and coordinate the interactions among the constituents in a concurrent

system, without their knowledge. Reo shows how complex behavior in a system can

emerge as a composition of primitive interactions.

2 Exogenous Coordination

Exogenous coordination [4] means coordination from outside and refers to the abil-

ity, in a model or language, to coordinate the behavior of black-box entities, without

their knowledge, from outside of those entities. This is an essential property for a
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component composition model to have because it allows building systems with very

different emergent behavior out of the exact same components, simply by compos-

ing them differently. A vivid example of the significance of exogenous coordination

appears in [6], with two instances of the classical dining philosophers problem. Dif-

ferent connectors can exogenously impose different coordination protocols on the

same components (e.g., philosophers and chopsticks) to yield different composed

systems that exhibit different emergent system behavior. In the case of the dining

philosophers, for instance, the possibility of deadlock as an emergent behavior can

be eliminated simply by composing the same components differently.

Unix pipes and filters serve as an example of how independent executable pieces

of software can be exogenously coordinated into a composed system. Alas, the lim-

ited flexibility of this model restricts its expressiveness to but the simplest forms

of (pipeline) composition. Classical dataflow models, dataflow-like networks and

calculi such as [14,15], [18], [24], Kahn networks [23], and Petri nets each incor-

porates specific coordination constructs that offer more flexibility. In the context

of software composition, these models have shortcomings in at least two significant

areas. First, they do not allow mixing synchrony and asynchrony in behavioral def-

initions. Second, they support, at best, only very rudimentary forms of exogenous

coordination.

As an example, suppose we have three components, C, D, and T , as in Figure 1.a.

They are all black-box components: we know nothing about what they are made of

or how they work internally. They may be made out of hardware, software, or some

combination of the two. We can make no assumptions about the language or model

used to construct these components. Specifically, they neither provide an interface

of methods to call, nor make any method calls to interact with their environment.

T

C

D

T

C

D

T

C

D

T

C

D?

(d)(c)(b)(a)

Fig. 1. Three components and their various compositions

The only thing we know about C is what we can externally observe of its be-

havior. It has a single port of interaction with its environment, through which it

periodically outputs some string of characters. Of course, for the output to take

place, (an entity in) the environment of C must be prepared to accept its output.

Assuming an ideally cooperative environment (i.e., always ready to take it when-

ever C attempts to output its string), C produces a string approximately every 15

seconds, with the tolerance margin of ε. The actual content of the strings produced

by C is the current time; so C is a clock.

The only thing we know about D is that it has a single input port, through

which it consumes strings and displays them on its accompanying monitor for ap-

proximately 30 seconds. The “processing time” of D is negligible for our purposes.

We observe that T behaves very much the same as C, except that its tolerance

margin is δ and the content of its output strings convey the current temperature.
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We can construct a few systems out of these components, the simplest ones

involving a direct connection, e.g., between C and D. Because we cannot alter any

of these components, we must make the connection from outside. The simplest

connector we can use to compose C and D is what we call a synchronous channel,

as in Figure 1.b. Like a buffer-less Unix pipe, a synchronous channel is a medium

of communication with two ends. Through one of its ends, it accepts input, and

through the other, it dispenses it. We call it “synchronous” because it synchronizes

the pair of input and output operations at its opposite ends: the two operations are

suspended as necessary to ensure that they succeed together atomically.

If we connect C to D using a synchronous channel whose transfer and syn-

chronization time is negligibly small (compared to the period of C), we obtain a

composed system that displays the current time, updated approximately every 30

seconds. Similarly, we can construct another system out of T and D connected by a

synchronous channel, as in Figure 1.c, to display the current temperature, updated

approximately every 30 seconds.

In order to build a system, similar to what one finds on the top of some bank

buildings, that alternately displays the current time and temperature, we have all

the functional elements that we need in C, D, and T . What we need is a connector to

compose them together as in Figure 1.d. This connector must have a more complex

behavior than that of a synchronous channel used in the previous compositions: not

only it must facilitate the data exchanges among these three components, but it also

needs to enforce the coordination protocol that implements the desired alternating

behavior. Because the internals of the components cannot be changed, such a

connector would have to impose its coordination protocol “from the outside” of the

components, which illustrates what we mean by exogenous coordination.

Obviously, such a connector, as well as other even more sophisticated ones,

can be developed as programs in any modern programming language; their Turing

completeness ensures that. However, it is interesting to ponder if there is a better,

higher-level alternative to programming such connectors from scratch. Synchroniza-

tion and coordination protocols are notoriously complex concurrent programs, and

adding provisions to enable them to cope with mobility in distributed environments

makes conventional programming models and languages grossly inadequate for their

development. There is enough commonality of purpose (facilitating data exchange

and exogenous coordination) among such connectors to warrant considering a spe-

cial connector specification model and a special language for their development. To

the extent that they merely connect and coordinate and lack application-specific

functionality, each such connector can be generically designed and reused to com-

pose widely different sets of components into entirely different systems.

What would a special purpose connector specification model look like? Can

connectors be reused not just to compose components into (sub)systems, but also

to compose more complex connectors? What composition operators are necessary

and sufficient to allow connector composition? Is there a set of primitive connectors

out of which “all interesting or useful” connectors can be constructed by those

connector composition operators? How can one characterize interesting and useful
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in this context?

In the rest of this paper, we address these questions in the context of a concrete

model, Reo, and show how it serves as a language for compositional construction of

reusable coordinating component connectors.

3 Reo

Reo is a channel-based exogenous coordination model wherein complex coordinators,

called connectors, are compositionally built out of simpler ones [5]. The simplest

connectors in Reo are a set of channels with well-defined behavior supplied by users.

The emphasis in Reo is on connectors, their behavior, and their composition, not on

the entities that connect, communicate, and cooperate through them. The behavior

of every connector in Reo imposes a specific coordination pattern on the entities

that perform normal I/O operations through that connector, without the knowledge

of those entities. This makes Reo a powerful “glue language” for compositional

construction of connectors to combine component instances into a software system

and exogenously orchestrate their mutual interactions. Each connector in Reo is, in

turn, constructed compositionally out of simpler connectors, which are ultimately

composed out of primitive channels.

Component instances, as well as channels, can be mobile in Reo. Logical mobility

of channel ends in Reo allows dynamic reconfiguration of connectors, even while they

are being used by component instances. In this respect, Reo resembles dynamically

reconfigurable generalized Kahn networks, as in IWIM [4] and Manifold [12].

Broy’s work on timed dataflow channels [14,15] is perhaps closest to Reo. Here,

components are functions that transform input data streams to output data streams,

which represent their interconnecting FIFO channels. The only notion of “time” in

this model arises out of sporadic “tick” marks intermixed with the data within the

same streams. In contrast to Reo, streams/channels cannot be directly connected

or composed together in this model: they can exist only between two components,

which use the tick marks to synchronize their various input and output streams.

This gives a functional (i.e., uni-directional transformation) flavor to the model. In

contrast, Reo circuits are relational (i.e., bi-directional constraints). Furthermore,

Reo has a more general notion of channels, allows inherently dynamic topologies,

and its notion of channel/connector composition allows, among other things, com-

positions involving an expressive mix of synchrony and asynchrony.

3.1 Components

Reo regards a component instance as a black-box entity. Reo assumes that every

component instance contains one or more active entities whose only means of com-

munication with other entities outside of that component instance is through regular

input/output of passive data. Specifically, I/O of passive data precludes transfer

of control, method invocation, and targeted messages. A component instance per-

forms its I/O operations following its own timing and logic, independently of the

others. However, for such an I/O operation to succeed, the environment of the
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component instance must offer a suitable matching I/O operation as well. Thus,

when a component instance attempts to write some data item, its output operation

blocks until its environment accepts to take that data item; when a component

instance attempts to read, its input operation blocks until its environment offers it

a data item. Of course, a component instance may specify a time-out for each I/O

operation that it attempts to perform, to allow it to retract its offered I/O, rather

than wait indefinitely for its environment to match it.

A Unix process, for instance, qualifies as a component instance: it contains

one or more threads of control which may even run in parallel on different physical

processors, and its file descriptors qualify as ports. A component instance may itself

consist of a collection of other component instances, perhaps running in a distributed

environment. Thus, by identifying their relevant ports through which they exchange

data with their environment, entire systems can be viewed and used as component

instances, abstracting away their internal details of operation, structure, geography,

and implementation.

This notion of component is different than what most other models consider as

their components. Our components are intrinsically active, do not issue, and do not

accept method calls. However, any abstraction, X, offered as a “component” by an

alternative contemporary model (e.g., ArchJava [3,2], JavaBeans [20], CORBA [17],

COM+ [16], etc.) can always be wrapped in a thin layer of adapter code to yield a

component in our model. This adapter layer (whose code can even be mechanically

generated) creates an active entity, if necessary, and acts as an intermediary that

converts the passive input/output messages exchanged between the component and

its environment, to the method calls expected and issued by its encapsulated X.

3.2 Channels

Reo defines a number of operations for components to (dynamically) compose, con-

nect to, and perform I/O through connectors. Atomic connectors are channels. The

notion of channel in Reo is far more general than its common interpretation.

Reo defines a channel as a primitive communication medium with its own unique

identity, that has exactly two ends together with a constraint that inter-relates the

timing and the content of the I/O operations through these ends. There are two

types of channel ends: source end through which data enters and sink end through

which data leaves a channel. A channel must support a certain set of primitive

operations, such as I/O, on its ends; beyond that, Reo places no restriction on the

behavior of a channel. Reo does not even insist that a channel must have one source

and one sink; it also admits channels with two sources or two sinks. This allows

an open-ended set of different channel types to be used simultaneously together in

Reo, each with its own policy for synchronization, buffering, ordering, computation,

data retention/loss, etc.

3.2.1 A Sample of Channels

Figure 2 shows a sample set of primitive channel types and the graphical symbols

we use to represent them.
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DFilter(P)

Lossy Synchronous

Synchronous

Asynchronous Drain

Synchronous Spout

Synchronous Drain

FIFO1(D)

FIFO1

FIFO

Fig. 2. A set of primitive channel types and their graphical symbols

A synchronous channel, Sync, graphically represented as a solid arrow, has a

source- and a sink-end. This channel synchronizes the success of the two I/O oper-

ations on its two ends. In other words, it blocks a write operation on its source end

or a take operation on its sink end, as necessary, to ensure that these two operations

succeed atomically.

SyncDrain is a synchronous channel with two source ends; it has no sink end.

This means no one can ever take any data out of this channel. Therefore, all data

entered into this channel are lost. SyncDrain is a synchronous channel in exactly

the same sense as a Sync channel: it synchronizes the two I/O operations on its

ends. In this case they must both be write operations, and SyncDrain blocks either

of the two, as necessary, to ensure that they succeed atomically.

FIFO is an asynchronous channel with a source end and a sink end with an

unbounded buffer to contain data. Its buffer is initially empty. With an unbounded

buffer, a write operation on its source end always succeeds, placing its data in the

buffer. With a non-empty buffer, a take on the sink end of this channel succeeds

and removes the oldest data item in the buffer. When the buffer is empty, a take

operation on the sink end of this channel blocks, waiting for the status of the buffer

to change.

LossySync is a synchronous channel with a behavior very similar to that of the

Sync channel. Just as for a Sync channel, a take operation on the sink end of a

LossySync blocks until a write is performed on its source end. Unlike the case of the

Sync channel, all write operations on the source end of a LossySync immediately

succeed: if there is a pending take on its sink end, then the written data item is

transferred; otherwise, the write operation succeeds, but the written data item is

lost.

A synchronous spout, SyncSpout, disposes data items out of its two ends only

synchronously. The actual values it produces through its ends are nondeterministic.

FIFO1 is an asynchronous channel with a source end and a sink end and a

bounded buffer with the capacity to contain at most 1 data item. Its buffer is

initially empty. With an empty buffer, a write operation on its source end succeeds

and fills the buffer. With a non-empty buffer, a take on the sink end of this channel

succeeds and removes the data. Otherwise, I/O operations block waiting for the

status of the buffer to change. FIFO1(D) is a variant of the FIFO1 channel whose

buffer initially contains the data item D.

A Filter(P) channel is a synchronous channel with a source and a sink end

that takes a pattern P as parameter upon its creation. It behaves like a Sync

channel, except that only those data items that match the pattern P can actually
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pass through it; others are always accepted by its source end, but are immediately

lost.

An asynchronous drain AsynchDrain is the dual of a SyncDrain: it allows the

two write operations on its two ends to succeed only one at a time, i.e., never

simultaneously together.

3.3 Nodes

A node is an important concept in Reo. Not to be confused with a location or a

component, a node is a logical construct representing the fundamental topological

property of coincidence of a set of channel ends, which has specific implications on

the flow of data among and through those channel ends.

a c d eb

Fig. 3. Sink, Source, and Mixed nodes

The set of channel ends coincident on a node A is disjointly partitioned into

the sets Src(A) and Snk(A), denoting the sets of source and sink channel ends

that coincide on A, respectively. A node A is called a source node if Src(A) �=
∅ ∧ Snk(A) = ∅. Analogously, A is called a sink node if Src(A) = ∅ ∧ Snk(A) �= ∅.
A node A is called a mixed node if Src(A) �= ∅ ∧ Snk(A) �= ∅. Figures 3.a

and b show sink nodes with, respectively, two and three coincident channel ends.

Figures 3.c and d show source nodes with, respectively, two and three coincident

channel ends. Figure 3.e shows a mixed node where three sink and two source

channel ends coincide.

The expressive power of Reo stems from the behavior of its nodes. Reo provides

operations that enable components to connect to and perform I/O on source and

sink nodes only; components cannot connect to, read from, or write to mixed nodes.

At most one component can be connected to a (source or sink) node at a time. A

component can write data items to a source node that it is connected to. The write

operation succeeds only if all (source) channel ends coincident on the node accept

the data item, in which case the data item is transparently written to every source

end coincident on the node. A source node, thus, acts as a replicator. A component

can obtain data items from a sink node that it is connected to through destructive

(take) and non-destructive (read) input operations. A take operation succeeds only

if at least one of the (sink) channel-ends coincident on the node offers a suitable

data item; if more than one coincident channel end offers suitable data items, one is

selected nondeterministically. A sink node, thus, acts as a nondeterministic merger.

A mixed node is a self-contained “pumping station” that combines the behavior of

a sink node (merger) and a source node (replicator) in an atomic iteration of an

endless loop: in every iteration a mixed node nondeterministically selects and takes

a suitable data item offered by one of its coincident sink channel ends and replicates

it into all of its coincident source channel ends. A data item is suitable for selection
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in an iteration, only if it can be accepted by all source channel ends that coincide

on the mixed node.

3.4 Connector

A connector is a set of channel ends organized in a graph of nodes and edges such

that:

(i) Zero or more channel ends coincide on every node.

(ii) Every channel end coincides on exactly one node.

(iii) There is an edge between two (not necessarily distinct) nodes if and only if

there is a channel one end of which coincides on each of those nodes.

It follows that every channel represents a (simple) connector with two nodes.

More complex connectors are constructed in Reo out of simpler ones using its join

operation. Joining two nodes destroys both nodes and produces a new node on

which all of their coincident channel ends coincide.

This single operation allows construction of arbitrarily complex connectors in-

volving any combination of channels picked from an open-ended assortment of user-

defined channel types. The semantics of a connector is defined as a composition

of the semantics of its (1) constituent channels, and (2) nodes. The semantics of

a channel is defined by the user who provides it. Reo defines the semantics of its

three types of nodes, as mentioned above.

4 Coordination by Connectors

In this section we show how coordinating connector circuits can be constructed in

Reo through channel composition. We start with a few simple examples, followed

by a number of non-trivial, generically useful connectors. We then consider a more

general version of the time-temperature-display example of Section 2 and build the

connector circuit for its coordination.

da b,e,c

f b

a c
a d

g j

b,e,c

h,f,i

a b dc

o
Sequencer

a

b c a

b c

Sequencer

a db c

e f g

Fig. 4. Examples of connector circuits in Reo
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4.1 Write-Cue Regulator

Consider the connector in Figure 4.a, composed out of the three channels ab, cd,

and ef. Channels ab and cd are of type Sync and ef is of type SyncDrain. This

connector shows one of the most basic forms of exogenous coordination: the number

of data items that flow from a to d is the same as the number of write operations

that succeed on f. A component instance connected to f can count and regulate

the flow of data between the two nodes a and d by the timing and the number of

write operations that it performs on f. The entity that regulates and/or counts the

number of data items through f need not know anything about the entities that

write to a and/or consume data items from b, nor that its write actions actually

regulate this flow. The two entities that communicate through a and d need not

know anything about the fact that they are communicating with each other, nor

that the volume of their communication is regulated and/or measured by a third

entity at f.

4.2 Barrier Synchronizers

We can build on our write-cue regulator to construct a barrier synchronization

connector, as in Figure 4.b. The four channels ab, cd, gh, and ij are all of type

Sync. The SyncDrain channel ef ensures that a data item passes from a to d only

simultaneously with the passing of a data item from g to j (and vice versa). This

simple barrier synchronization connector can be trivially extended to any number

of pairs, as shown in Figure 4.c.

4.3 Ordering

The connector in Figure 4.d consists of three channels: ab, ac, and bc. The channels

ab and ac are SyncDrain and Sync, respectively. The channel bc is of type FIFO1.

The behavior of this connector can be seen as imposing an order on the flow of the

data items written to a and b, through to c: the data items obtained by successive

read operations on c consist of the first data item written to a, followed by the first

data item written to b, followed by the second data item written to a, followed by

the second data item written to b, etc. The coordination pattern imposed by our

connector can be summarized as c = (ab)∗, meaning the sequence of values that

appear through c consist of zero or more repetitions of the pairs of values written

to a and b, in that order.

4.4 Sequencer

Consider the connector in Figure 4.e. The enclosing box represents the fact that

the details of this connector are abstracted away and it provides only the four nodes

of the channel ends a, b, c, and d for other entities (connectors and/or component

instances) to (in this case) read from. Inside this connector, we have four Sync,

an initialized FIFO1, and three FIFO1 channels connected together. The initialized

FIFO1 channel is the leftmost one and is initialized to have a data item in its buffer,
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as indicated by the presence of the symbol “o” in the box representing its buffer.

The actual value of this data item is irrelevant. The read operations on the nodes

(with channel ends) a, b, c, and d can succeed only in the strict left to right order.

This connector implements a generic sequencing protocol: we can parameterize this

connector to have as many nodes as we want, simply by inserting more (or fewer)

Sync and FIFO1 channel pairs, as required.

A

B C

(b)(a)

in

outo

Router
Exclusive

Fig. 5. An exclusive router and a shift-lossy FIFO1

4.5 Exclusive Router

Figure 5.a shows the Reo network for an exclusive router connector. A data item

arriving at the input port A flows through to only one of the output ports B or C,

depending on which one is ready to consume it. If both output ports are prepared

to consume a data item, then one is selected nondeterministically. The input data

is never replicated to more than one of the output ports. Figure 5.a shows that

the exclusive router is composed of two LossySync channels, a SyncDrain channel,

and five Sync channels. See [7] for a more formal treatment of the semantics of this

connector.

4.6 Shift Lossy FIFO1

Figure 5.b shows a Reo network for a connector that behaves as a lossy

FIFO1 channel with a shift loss-policy. This channel is called shift-lossy FIFO1

(ShiftLossyFIFO1). It behaves as a normal FIFO1 channel, except that if its buffer

is full then the arrival of a new data item deletes the existing data item in its buffer,

making room for the new arrival. As such, this channel implements a “shift loss-

policy” losing the oldest contents in its buffer in favor of the latest arrivals. The

connector in Figure 5.b is composed of an exclusive router (shown in Figure 5.a),

an initially full FIFO1 channel, two initially empty FIFO1 channels, and four Sync

channels. See [7] for a more formal treatment of the semantics of this connector.

The shift-lossy FIFO1 circuit in Figure 5.b is indeed so frequently useful as a

connector in construction of more complex circuits, that it makes sense to have a

special graphical symbol to designate it as a short-hand. Figure 6 shows a circuit
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that uses two instances of our shift-lossy FIFO1. The graphical symbol we use to

represent this circuit is intentionally similar to that of a regular FIFO1 channel, to

hint at the similarity of the behavior of these two connectors. As seen in Figure 6,

our graphical symbol for a shift-lossy FIFO1 “channel” has a half-dashed box instead

of the solid box of a regular FIFO1 channel: the sink-side half of the box representing

the buffer of this channel is dashed, to suggest that it loses the older values to make

room for new arrivals, i.e., it shifts to lose.

4.7 Variable

The Reo circuit in Figure 6 implements the behavior of a dataflow variable. It

uses two instances of the shift-lossy FIFO1 connector shown Figure 5.b, to build a

connector with a single input and a single output nodes. Initially, the buffers of its

shift-lossy FIFO1 channels are empty, so an initial take on its output node suspends

for data. Regardless of the status of its buffers, or whether or not data can be

dispensed through its output node, every write to its input node always succeeds

and resets both of its buffers to contain the new data item. Every time a value is

dispensed through its output node, a copy of this value is “cycled back” into its

left shift-lossy FIFO1 channel. This circuit “remembers” the last value it obtains

through its input node, and dispenses copies of this value through its output node

as frequently as necessary: i.e., it can be used as a dataflow variable.

out

in

Fig. 6. Dataflow variable

The variable circuit in Figure 6 is also very frequently useful as a connector in

construction of more complex circuits. Therefore, it makes sense to have a short-

hand graphical symbol to designate it as well. Figure 7 shows 3 instances of our

variable used in two connectors. Our symbol for a variable is similar to that for a

regular FIFO1 channel, except that we use a rounded box to represent its buffer: the

rounded box hints at the recycling behavior of the variable circuit, which implements

its remembering of the last data item that it obtained or dispensed.

4.8 Time and Temperature Display

Figure 7.a shows a system composed of two components connected via a variable

channel presented in Figure 6. The two components labeled Clock and Display

are generalizations of the C and D components in Figure 1. The Clock component

periodically produces a text string announcing the current time. The Display

component periodically reads and consumes a text string and displays it. Unlike
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with the C and D components of Figure 1, we make no assumptions about the

periods of Clock and Display, nor their ratio.

DisplayClock

Display

Clock

Thermo

Sequencer

(b)(a)

Fig. 7. A Time/Temperature Display system

The variable channel provides temporal decoupling of the clock and the display,

while facilitating their communication. Regardless of the state of the display, the

clock can always write its current time into the channel, which may lose its old

content, if any, to accommodate the new value. As frequently as it wishes, the

display can read the current content of the channel, if any, which will be not older

than the temporal resolution (i.e., the update cycle) of the clock. If the display’s

cycle is faster than that of the clock, the display will read the last value it read,

again. If the clock’s cycle is faster than that of the display, it may produce a new

value before an older one is consumed by the display. The variable channel allows

the new value to override the old. Thus, the system in Figure 7.a periodically

displays the current time.

Figure 7.b shows the time-temperature-display system of Figure 1.d, with its

proper Reo circuitry. The box labeled Thermo in this figure, is a thermometer.

Analogous to Clock, it is a generalization of the T component in Figure 1, with its

own arbitrary period. The two variable channels in their connector circuit support

communication and temporal decoupling of the clock and the thermometer compo-

nents from the rest of the system. The input to the display component is regulated

by a two-node version of the sequencer connector presented in Figure 4.e. Thus,

the system in Figure 7.b alternately displays current time and temperature.

The interesting point about this system is that none of the components involved

is aware of the function of the system or of its own collaboration in realizing this

“complex” coordinated behavior: the behaviors of the individual components are

composed and coordinated exogenously (i.e., from outside of the components) by the

Reo connectors to realize this collaborative behavior. Such “ignorant” components

are highly generic and reusable, precisely because they are oblivious to whether they

are used in a system like in Figure 7.a, or to build a system with a more complex

coordination scheme as in Figure 7.b.
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5 Expressiveness

Figure 4.f shows a simple example of the utility of our sequencer. The connector

in this figure consists of a two-node sequencer, plus a pair of Sync channels and a

SyncDrain channel connecting each of the nodes of the sequencer to the nodes a

and c, and b and c, respectively. The connector in Figure 4.f is another connector

for the coordination pattern c = (ab)∗, although there is a subtle difference between

the behavior of this connector and the one in Figure 4.d. See [5] for more detail.

It takes little effort to see that the connector in Figure 4.g corresponds to the

meta-regular expression c = (aab)∗. Figures 4.f and g show how easily we can

construct connectors that exogenously impose coordination patterns corresponding

to the Kleene-closure of any “meta-word” made up of atoms that stand for I/O

operations, using a sequencer of the appropriate size.

Channel composition in Reo is a very powerful mechanism for construction of

connectors. For instance, exogenous coordination patterns that can be expressed

as (meta-level) regular expressions over I/O operations performed by component

instances can be composed in Reo out of a small set of only five primitive channel

types 3 . A Turing machine consists of a finite state automaton for its control, and

an unbounded tape. Since an unbounded tape can be simulated by two unbounded

FIFO channels, adding FIFO to the above set of channel types makes channel com-

position in Reo Turing complete.

6 Abstract Behavior Types

The notion of Abstract Behavior Type (ABT) is introduced in [6] and proposed as

a proper foundation model for components and their composition. The ABT model

supports a much looser coupling than is possible with the operational interfaces of

Abstract Data Types (ADT), and is inherently amenable to exogenous coordina-

tion. Both of these are highly desirable, if not essential, properties for models of

component behavior and composition of interactions.

An ABT defines an abstract behavior as a constraint among the observable in-

put/output that occur through a set of “contact points” (e.g., ports of a component

instance) without specifying any detail about the operations that may be used to

implement such behavior, or the data types those operations may manipulate for

the realization of that behavior. This definition parallels that of an ADT, which

abstracts away from the instructions and the data structures that may be used to

implement the operational interface it defines for a data type. In contrast, an ABT

defines a behavior in terms of a constraint on the observable input/output of an

entity, without saying anything about how it can be realized.

There are several different ways to formalize the concept of ABT. For instance,

constraint automata [7] offer an operational model of ABTs. In principle, process

3 In fact, Reo more naturally models infinite behavior through infinite streams (see Section 6). As such,
composition of this set of primitive channels actually yields the equivalent of ω-regular expressions, rather
than (finite) regular expressions. Therefore, for instance, the behavior of the connector in Figure 4.g, more
accurately corresponds to the meta-regular expression c = (aab)ω , rather than c = (aab)∗.
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calculi, Petri nets, logic expressions, or labeled transition systems can also be used

to describe transformations of input to output sequences of observables. In order

to emphasize Reo’s perspective of regarding interaction as a constraint, we prefer

a formalization that treats an ABT as a relation/constraint, rather than a trans-

formation. The coalgebraic model of ABT based on stream calculus [28], described

below, is particularly suited for this purpose.

6.1 Relational View of ABT

The formalization presented in [6] defines an ABT as a (maximal) relation on a set

of timed data streams, which emphasizes the relational aspect of the ABT model

explicitly and abstracts away any hint of an underlying operational semantics of its

implementation. This helps to focus on behavior specifications and their composi-

tion, rather than on operations that may be used to implement entities that exhibit

such behavior and their interactions.

A stream (over A) is an infinite sequence of elements of some set A. The set of all

streams over A is denoted as Aω. Streams in DS = Dω over a set of (uninterpreted)

data items D are called data streams and are typically denoted as α, β, γ, etc.

Zero-based indices are used to denote the individual elements of a stream, e.g.,

α(0), α(1), α(2), ... denote the first, second, third, etc., elements of the stream α.

We use the infix “dot” as the stream constructor: x.α denotes a stream whose first

element is x and whose second, third, etc. elements are, respectively, the first and

its successive elements of the stream α.

Following the conventions of stream calculus [28], the well-known operations of

head and tail on streams are called initial value and derivative: the initial value of

a stream α (i.e., its head) is α(0), and its (first) derivative (i.e., its tail) is denoted

as α′. Relational operators on streams apply pairwise to their respective elements,

e.g., α ≥ β means α(0) ≥ β(0), α(1) ≥ β(1), α(2) ≥ β(2), ....

Constrained streams in TS = IRω
+ over positive real numbers representing mo-

ments in time are called time streams and are typically denoted as a, b, c, etc. To

qualify as a time stream, a stream of real numbers a must be (1) strictly increasing,

i.e., the constraint a < a′ must hold; and (2) progressive, i.e., for every N ≥ 0 there

must exist an index n ≥ 0 such that a(n) > N .

We use positive real numbers instead of natural numbers to represent time be-

cause, as observed in the world of temporal logic [9], real numbers induce the more

abstract sense of dense time instead of the notion of discrete time imposed by

natural numbers. Specifically, we sometimes need finitely many steps within any

bounded time interval for certain ABT equivalence proofs (see, e.g., [8]). This is

clearly not possible with a discrete model of time. The actual values of “time mo-

ments” are irrelevant in our ABT model; only their relative order is significant and

must be preserved. Using dense time allows us to locally break strict numerical

equality (i.e., simultaneity) arbitrarily while preserving the atomicity of events [6].

A Timed Data Stream is a twin pair of streams 〈α, a〉 in TDS = DS × TS con-

sisting of a data stream α ∈ DS and a time stream a ∈ TS, with the interpretation

that for all i ≥ 0, the input/output of data item α(i) occurs at “time moment” a(i).
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Two timed data streams 〈α, a〉 and 〈β, b〉 are equal if their respective elements are

equal, i.e. 〈α, a〉 = 〈β, b〉 ≡ α = β ∧ a = b.

Formalization of ABT in terms of timed data streams provides a simple yet

powerful framework for the formal semantics of Reo. Timed data streams are used

to model the flows of data through channel ends. 4 A channel itself is just a (bi-

nary) relation between the two timed data streams associated with its two ends. A

more complex connector is simply an n-ary relation among n timed data streams,

each representing the flow of data through one of the (non-hidden) n nodes of the

connector.

The simplest channel, Sync, is formally defined as the relation:

〈α, a〉 Sync 〈β, b〉 ≡ α = β ∧ a = b.

The equation states that every data item that goes into a Sync channel comes

out in the exact same order. Furthermore, the arrival and the departure times of

each data item are the same: there is no buffer in the channel for a data item to

linger on for any length of time.

An asynchronous FIFO channel is defined as the relation:

〈α, a〉 FIFO 〈β, b〉 ≡ α = β ∧ a < b.

As in a synchronous channel, every data item that goes in, comes out of a FIFO

channel in exactly the same order (α = β). However, the departure time of each data

item is necessarily after its arrival time (a < b): every data item must necessarily

spend some non-zero length of time in the buffer of a FIFO channel.

An asynchronous FIFO1 channel is similar to a FIFO:

〈α, a〉 FIFO1 〈β, b〉 ≡ α = β ∧ a < b < a′.

Again, everything that goes in comes out in the same order (α = β). But, for all

i ≥ 0, not only the departure time b(i) of every data item α(i) = β(i) is necessarily

after its arrival time (a(i) < b(i)), but since the channel can contain no more than

1 element, the arrival time a(i + 1) of the next data item α(i + 1) must be after the

departure time b(i) of its preceding element (a < b < a′ ≡ a(i) < b(i) < a(i + 1),

for i ≥ 0).

A FIFO1(D) represents an asynchronous channel with the bounded capacity of

1 filled to contain the data item D as its initial value. The behavior of a FIFO1(D)

channel is very similar to that of a FIFO1:

〈α, a〉 FIFO1(D) 〈β, b〉 ≡ β = D.α ∧ b < a < b′.

4 The infinity of streams naturally models the infinite behavior of perpetual systems. Finite behavior can
be modeled in at least three different ways. First, we can allow finite streams as well. Second, it can be
modeled as a special case of infinite behavior, e.g., where after a certain time moment, only the special
symbol ⊥ appears as values in all time streams. Although viable, we ignore both of these schemes because
they do not add conceptual novelty, yet dealing with the special cases that they involve requires a somewhat
more complex formalism. The third way to model finite behavior is to ensure that after a certain point in
time, the system has no observable behavior. This is possible with or without finite streams. See footnote 5
in Section 6.4.
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This channel produces an output data stream β = D.α consisting of the initial data

item D followed by the input data stream α of the ABT, and for i ≥ 0 performs

its ith input operation some time between its ith and i + 1st output operations

(b < a < b′).

A SyncDrain channel merely relates the timing of the operations on its two ends:

〈α, a〉 SyncDrain 〈β, b〉 ≡ a = b.

The replication that takes place at Reo nodes can be defined in terms of the

ternary relation Rpl:

Rpl(〈α, a〉; 〈β, b〉, 〈γ, c〉) ≡ β = α ∧ γ = α ∧ b = a ∧ c = a

The semicolon delimiter separates “input” and “output” arguments of the rela-

tion. The relation Rpl represents the replication of the single “input” timed data

stream 〈α, a〉 into two “output” timed data streams 〈β, b〉 and 〈γ, c〉.

The nondeterministic merge that happens at Reo nodes is defined in terms of

the ternary relation Mrg:

Mrg(〈α, a〉, 〈β, b〉; 〈γ, c〉) ≡⎧⎨
⎩

α(0) = γ(0) ∧ a(0) = c(0) ∧ Mrg(〈α′, a′〉, 〈β, b〉; 〈γ′ , c′〉) if a(0) < b(0)

β(0) = γ(0) ∧ b(0) = c(0) ∧ Mrg(〈α, a〉, 〈β′ , b′〉; 〈γ′, c′〉) if a(0) > b(0)

6.2 ABT Composition

Because an ABT is a relation, two ABTs can be composed to yield another

ABT through a relational composition similar to the join operation in relational

databases. This yields a simple, yet powerful formalism for specification of complex

behavior as a composition of simpler ones. Composition of simple interaction prim-

itives into non-trivial behavior, such as the Reo circuits in the above examples, can

be expressed as ABT composition [6].

The relational (as opposed to functional) nature of our formalism allows a com-

position of ABTs to mutually influence and constrain each other, yielding their

collective behavior, analogous to how a set of constraints in a constraint satisfac-

tion problem resolve into a solution. The use of coinduction as the main definition

and proof principle to reason about both data and time streams allows simple com-

positional construction of ABTs representing many different generic coordination

schemes involving combinations of various synchronous and asynchronous primitives

that are not present (and not even expressible) in most other models.

A simple example of how a composition of a set of components yields a system

that delivers more than the sum of its parts is the computation of the classical

Fibonacci series. To assemble an application to deliver this series we actually need

only one (instance of an) adder component plus a number of channels.
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AdderX
〈α, a〉

〈1.α, b〉

〈α, a〉
〈0.1.α, d〉

〈0.1.α, c〉

〈1.α, b〉

Fig. 8. Fibonacci series in Reo

Figure 8 shows a component (the outermost thick enclosing box) with only one

output port (the only exposed node on the right border of the box). This is our

application for computing the Fibonacci series. Peeking inside this component, we

see how it is made out of an instance of an adder (labeled AdderX), a FIFO1(1), a

FIFO1(0), a FIFO1, and five Sync channels. AdderX represents a simple adder that

repeatedly takes two input values, x and y, respectively through its input ports A

and B, and produces a result, z, through its output port C, which is the sum of x

and y.

In Section 6.3 we define a few ABTs that formalize some alternatives for the

observable behavior of such an adder. Semantically, we can use any one of the

adders we define in Section 6.3 in the composition in Figure 8. That is why the box

representing the adder in this figure is labeled AdderX. However, the extra-semantic

behavior of some of these adders makes them unsuitable for the specific circuit in

Figure 8. To understand how this circuit is expected to work, suppose AdderX

has a behavior “compatible” with the circuit. We consider other alternatives in

Section 6.4.

Intuitively, as long as the FIFO1(0) channel is full, nothing can happen: there is

no way for the value in FIFO1(1) to move out. At some point in time, the value in

FIFO1(0) moves into the FIFO1 channel. Thereafter, the FIFO1(0) channel becomes

empty and the two values in the FIFO1(1) and the FIFO1 channels become available

for AdderX to consume. The intake of the value in FIFO1(1) by AdderX inserts a

copy of the same value into the FIFO1(0) channel. When AdderX is ready to write

its computed value out, it suspends waiting for some entity in the environment to

accept this value. Transfer of this value to the entity in the environment also inserts

a copy of the same value into the now empty FIFO1(1) channel. At this point we

are back to the initial state, but with different values in the buffers of the FIFO1(1)

and the FIFO1(0) channels.

6.3 Adders

To illustrate the expressiveness of the ABT model and the utility of ABT composi-

tion, consider the adder component used in our Fibonacci example in Section 6.2.

We define a few of the alternative versions of the behavior for this adder, below,

each as a different ABT:
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Adder1(〈α, a〉, 〈β, b〉; 〈γ, c〉) ≡

γ(0) = α(0) + β(0) ∧

∃t : max(a(0), b(0)) < t < min(a(1), b(1)) ∧ c(0) = t ∧

Adder1(〈α′, a′〉, 〈β′, b′〉; 〈γ′, c′〉).

Adder1 defines the behavior of a component that repeatedly reads a pair of

input values from its two input ports, adds them up, and writes the result out on

its output port. As such, its output data stream is the pairwise sum of its two

input data streams. This component behaves asynchronously in the sense that it

can produce each of its output data items with some arbitrary delay after it has

read both of its corresponding input data items (c(0) = t ∧ t > max(a(0), b(0))).

However, it is obligated to produce each of its output data items before it reads in

its next input data item (t < min(a(1), b(1))).

Adder2(〈α, a〉, 〈β, b〉; 〈γ, c〉) ≡

γ(0) = α(0) + β(0) ∧

c(0) = max(a(0), b(0)) ∧

Adder2(〈α′, a′〉, 〈β′, b′〉; 〈γ′, c′〉).

Adder2 behaves very much like Adder1, except that it produces the sum of every

pair of input values atomically (i.e., synchronously) together with its consuming of

its second input value (c(0) = max(a(0), b(0))).

Adder3(〈α, a〉, 〈β, b〉; 〈γ, c〉) ≡

γ(0) = α(0) + β(0) ∧

a(0) < b(0) < c(0) < a(1) ∧

Adder3(〈α′, a′〉, 〈β′, b′〉; 〈γ′, c′〉).

Adder3 also behaves very much like Adder1, except that it always sequentially

consumes an element from α first, then it consumes an element from β, then it

produces their sum, before reading another element from α.

Adder4(〈α, a〉, 〈β, b〉; 〈γ, c〉) ≡

γ(0) = α(0) + β(0) ∧

a(0) = b(0) = c(0) ∧

Adder4(〈α′, a′〉, 〈β′, b′〉; 〈γ′, c′〉).

Adder4 behaves very much like Adder1, except that the consuming of every pair

of input values and the production of their sum is one single atomic (synchronous)

action.
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Adder5(〈α, a〉, 〈β, b〉; 〈γ, c〉) ≡

γ(0) = α(0) + β(0) ∧

c(0) = min(a(1), b(1)) ∧

Adder5(〈α′, a′〉, 〈β′, b′〉; 〈γ′, c′〉).

Adder5 behaves very much like Adder1, except that it produces the sum of every

pair atomically together with its reading of the first of its next pair of input values.

These examples show how the diluted notion of local time and its explicit repre-

sentation in timed data streams enable us to concisely define and distinguish subtle

differences in the behavior of various components that arise out of the delicate tem-

poral order of their observable actions. The ability to make such distinctions dif-

ferentiates otherwise equivalent behavior of similar components whose “equivalent

behavior” leads to the Brock-Ackerman anomalies [13] concerning the input-output

relation of components in nondeterministic dataflow models.

6.4 Analysis of ABT Compositions

Suppose we use Adder4 of Section 6.3 to construct our Fibonacci circuit of Figure 8.

Formally, the ABT models of the component Adder4, channels, and Reo nodes that

we presented earlier suffice for an analysis of the behavior of their composition in

this example. We briefly sketch such a formal analysis here to demonstrate the

utility of the ABT model.

Let 〈α, a〉 be the output of our system, as indicated in Figure 8. Form the ABT

definition of the replicator (Rpl) inherent in the mixed node immediately on the

left of this node, and the ABT definition of its three coincident Sync channels, we

easily conclude that the output of Adder4 and the input of FIFO1(1) are also the

same: 〈α, a〉.

From the ABT definition of the FIFO1(1) channel, we conclude that the sink end

of this channel is the timed data stream 〈1.α, b〉, where b < a < b′. From the ABT

definition of the replicator (Rpl) inherent in the mixed node at the output on this

channel and the ABT definition of its coincident Sync channels, we conclude that

the input to the FIFO1(0) channel and the lower-input to Adder4 are also the same

timed data stream.

From the ABT definition of the FIFO1(0) channel, we conclude that the output

of this channel is the timed data stream 〈0.1.α, c〉, where c < b < c′. Given this as

its input, the ABT definition of the FIFO1 channel yields 〈0.1.α, d〉 for its output,

where c < d < c′.

The ABT definitions of the behavior of all of the above adders invariably yield
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α = 0.1.α + 1.α, which is simply a short-hand for the series of equations:

α(0) = 0 + 1 = 1

α(1) = 1 + α(0) = 1 + 1 = 2

α(2) = α(0) + α(1) = 1 + 2 = 3

α(3) = α(1) + α(2) = 2 + 3 = 5
...

Thus, α indeed represents the Fibonacci series.

However, the ABT definition of the behavior of Adder4 requires a = b = d,

whereas the condition on the output of the FIFO1(1) channel, above, states that

b < a < b′. This leads to the contradiction of having both a = b and b < a. What

this contradiction tells us is that our composed system using Adder4 will produce

no output at all! 5

A closer examination reveals the reason: Adder4 is a synchronous component;

it must be able to consume both of its input values and produce its output, all in

one single atomic step (i.e., transaction). The atomic reading of its lower input

(b) together with the writing of its output (a) conflicts with the behavior of the

FIFO1(1) channel. To comply with the behavior of Adder4, the FIFO1(1) channel

must atomically both provide its output as the input to Adder4, and consume the

output of Adder4 as its own input. The ABT definition of the behavior of FIFO1(1)

simply does not allow this to happen.

The only way to use such a synchronous adder as Adder4 in this system, is to

break this conflict, e.g., by replacing the Sync channel that connects the output of

Adder4 to the input of the FIFO1(1) channel, with a FIFO1 channel.

On the other hand, our circuit in Figure 8 works perfectly if we use an adder with

a different behavior, e.g., Adder3. The two adders produce the same data streams

and the only difference between them is in their time streams. Using Adder3, we

have d < b < a < d′. Because this equation implies d < b, which implies d′ < b′,

we can expand this equation as d < b < a < d′ < b′, which complies with the

b < a < b′ condition on the output of the FIFO1(1) channel, above. The timing

conditions on the output of the FIFO1(0) channel (c < b < c′), and that of the FIFO1

channel (c < d < c′) conform with the temporal constraints of Adder3 as well. The

assumption of dense time allows an infinity of viable solutions to the resulting

system of equations. In the context of Adder3, what matters is that the FIFO1

channel produces its output after it obtains the contents of the FIFO1(0) channel

(c < d), but before the next input into the latter channel takes place (c′ < d′ and

c′ < b′). Whether this next input occurs before Adder3 writes it output (c′ < a),

5 This example shows that the composition of two ABTs may yield the empty relation, which simply
means the result has “no externally observable behavior.” Although “no externally observable behavior”
can be interpreted as deadlock, there is nothing inherently wrong with or undesirable about it, because it
can also be interpreted as normal termination. Thus, a composition that yields an empty ABT can be a
perfectly legitimate way to model finite behavior in an otherwise perpetual systems. An example of such
“desired deadlock” situations is presented in the inhibitor example in [5].
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simultaneously (c′ = a), or after (a < c′), is irrelevant.

Similarly, we can show that the behavior of Adder1 or Adder5 is also compatible

with the context of the circuit in Figure 8 for producing the Fibonacci series. On

the other hand, using Adder2 in this circuit may or may not work. The behavior

specification of Adder2 allows it to always consume its B input (from the FIFO1(1)

channel) first. In this case, the circuit indeed produces the Fibonacci series. But,

Adder2 is also allowed to take its A input first. If Adder2 always takes its A input

first, then the circuit hangs and produces nothing at all, due to the same timing

conflict as with Adder4. If Adder2 internally decides afresh each time which input to

take first, then the circuit will produce a finite sequence of the first n ≥ 0 Fibonacci

series, before it hangs and stops producing any further output.

Observe that all entities involved in this composed application are completely

generic and, of course, neither knows anything about the Fibonacci series, nor the

fact that it is “cooperating” with other entities to compute it. It is the specific glue

code of this application, made by composing 8 simple generic channels in a specific

topology in Reo, that coordinates the communication of the components (in this

case, only one) with one another (in this case, with itself) and the environment to

compute this series.

7 Petri Nets

Petri nets are frequently used to model interaction protocols and the behavior of

complex systems. In some respects, Reo circuits resemble Petri nets. However,

there are major differences between the two.

Petri nets are extensions of the finite state automata that incorporate a notion

of concurrency. There are many different types of Petri nets, each of which extends

the basic Petri net model with higher level concepts [27]. In this section, we consider

only the elementary Petri nets, or the E/N systems. However, because we focus on

the essential common features of all Petri nets, the distinctions we draw between

Reo and the E/N systems also apply (with small alterations) to other Petri nets.

Petri nets consist of places and transitions with interconnecting arcs. Places can

either be empty or hold tokens. In lower-level Petri nets, e.g., E/N systems, tokens

are not distinguishable from one another. In colored Petri nets, each token can

have a color that distinguishes it from the others. Multiple places can hold tokens

in a Petri net at the same time. In E/N systems, each place can hold at most one

token, but in higher-level Perti nets, a place can hold multiple tokens as well. The

well-formedness condition of Petri nets ensures that an arc emanating from a place

ends with a transition, and an arc emanating from a transition ends with a place.

Multiple arcs can emanate and/or end at the same place or transition. In graphical

models of Petri nets, transitions are often represented as solid rectangles; arcs as

arrows; and places as either (1) hollow circles, if they are empty, or otherwise (2)

circles that contain smaller (colored) solid circles representing their (colored) tokens.

Figure 10 shows an example of a Petri net.

The places, transitions and arcs in Petri nets form a fixed set of building blocks,
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each with a fixed behavior, for construction of Petri nets. In contrast, Reo defines a

fixed set of composition rules and allows an arbitrary set of channels as primitives

with arbitrary behavior, on which its composition rules can be applied to construct

connector circuits. This readily allows incorporation of arbitrary computational

entities into a composed Reo system. More importantly, it allows the harmonious

combinations of synchrony and asynchrony in the same model which is not possible

in Petri nets.

The similarity of the Petri net construction rules with Reo composition rules

allows a direct translation of Petri nets into Reo circuits. Although direct transla-

tions of higher-level Petri nets into Reo circuits are also possible, here we consider

only E/N systems.

Fig. 9. Reo circuit equivalents for Petri net constructs

Figure 9 shows the Reo equivalent constructs (the bottom row) for Petri net

building blocks (the top row). An empty place corresponds to a FIFO1 channel

(see Figure 2 in Section 3.2.1). A filled place containing a token • corresponds to

a FIFO1(•) 6 . An arc corresponds to a Sync channel. A transition with a single

incoming arc and n > 0 outgoing arcs corresponds to a node with one incoming

and n outgoing Sync channels. A transition with m > 1 incoming and n > 0

outgoing arcs corresponds to a degenerate barrier synchronizer (Figures 4.b and c

in Section 4.2) Reo sub-circuit with m−1 SyncDrain channels, m input nodes, and

a single output node, as shown in the bottom-right of Figure 9. All n Sync channels

that correspond to the outgoing arcs of this transition are connected to the single

output node of this sub-circuit.

Using Figure 9, it is straight-forward to directly translate a Petri net into a

Reo circuit. For example, applying this translation to the Petri net in Figure 10.a

yields the Reo circuit in Figure 10.b. (The gray box in Figure 10.b represents a

“degenerate barrier synchronizer” as shown in the lower-right corner of Figure 9.)

In this sense, every Petri net can be trivially considered to be a Reo circuit. The

inverse translation, however, is far from trivial.

In Reo, synchrony and exclusion constraints propagate through (the synchronous

sub-sections of) circuits. This is generally not the case in Petri nets, because their

transitions are local. What sets Petri nets apart from classical automata is their

6 In higher-level Petri nets a place can hold multiple tokens. Instead of (initialized or empty) FIFO1 channels,
bag channels [5] must be used as their equivalents in Reo circuits (in the left two columns of the bottom
row in Figure 9).
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Fig. 10. Translation of Petri nets into Reo circuits

transition nodes, which enable them to directly synchronize otherwise unrelated

events (it is no accident that a non-trivial Petri net transition node translates into

a barrier synchronizer in Reo). A Petri net transition node enforces synchronous

and of several arcs/events. However, Petri nets have no primitive for the dual

synchronous or of several arcs, and there can be no arc between two places, nor

between two transitions. The latter disallows nested ands of arcs. More signifi-

cantly, the or of several arcs/transitions is possible only if they emanate from or

end in the same place, which implies the commitment of moving a token from or

into that place. This means that arcs/events can be directly and-synchronized to

compose more complex synchronous transitions (i.e., one-step atomic transactions),

but a synchronous or of arcs/events is not possible, i.e., two transitions cannot be

connected together without an intervening place/commitment. This disallows a di-

rect modeling of composite atomic transactions in Petri nets and prevents arbitrary

combinations of synchrony and asynchrony.

The ability to construct arbitrarily complex synchronous sub-circuits (represent-

ing one-step atomic transactions) with asynchronous behavior in between, is unique

in Reo and simplifies expressions of complex behavior. For example, it is non-trivial

to construct the Petri net equivalents of the Reo circuits for barrier synchroniza-

tion in Figures 4.b and c. In the context of e-commerce, [30] and [19] show the

construction of non-trivial Reo circuits that implement negotiation protocols for

competition and collaboration in electronic auctions. The Petri net models of these

same protocols would be substantially more complex and elaborate, because they

would have to “simulate” all atomic transactions involved.

8 Conclusion

The vast majority of classical models and paradigms for construction and study of

complex systems use actions as their fundamental primitives. Examples include var-

ious object oriented programming models, the actor model [1], CSP [22], CCS [25],

the π-calculus [26,29], and process algebras [10,11,21]. Because an action is some-

thing that a single actor performs, system construction in these models espouses a

single-actor-at-a-time perspective. Complex global properties of a system involving

more than one actor become obscure and difficult or impossible to verify and study,
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because they cannot be expressed explicitly in these models.

Specification and study of global properties of complex systems become easier

in a model that allows direct and explicit representation of interaction. Interaction

can explicitly appear in the form of a relation that holds among a set of actors

and constrains every one of them to coordinate their collective behavior. Such

explicitly specified constraints can be composed together in various ways to yield

more complex constraints (i.e., interaction protocols), without the need to specify

the action sequences of any actors.

Reo is a good example of such a model. It offers (1) primitive interactions, in

the form of channels, as building blocks, plus (2) composition rules for combining

(primitive) interactions into more complex interactions (i.e., circuits), without the

need to specify (the actions of) the actors involved. Indeed, every channel in Reo

specifies a primitive interaction as a relational constraint that must hold between

the I/O actions performed on its two ends, without saying anything about those

actions or who performs them. These constraints specify the relative timing (i.e.,

synchrony/asynchrony) of (the success of) the I/O actions, and the desired data

dependencies between them (e.g., buffering, ordering, selection, conversion, filter-

ing, loss, and/or expiration of data). Reo’s compositional operators compose such

relations to produce the more complex constraints that constitute the behavior of

their resulting connectors.

Our current and future work include development of various tools for (semi)-

automatic reasoning, analysis, simulation, and animation of connector circuits,

within a visual programming environment for Reo. Constraint automata and tools

for their construction, composition, and model checking are an integral part of our

on-going work.
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