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Abstract

We present a polynomial chaos based minimum variance formulation to solve inverse problems. The utility of the

proposed approach is evaluated by considering the ash transport problem arising due to volcanic eruption. Volcanic

ash advisory centers generally makes use of mathematical models for column eruption and advection and diffusion

of ash cloud in atmosphere. These models require input data on source conditions such as vent radius, vent velocity

and distribution of ash-particle size. The inputs are usually not well constrained, and estimates of the uncertainty in

the inputs is needed to make accurate predictions of cloud motion. The recent eruption of Eyjafjallajökull, Iceland

in April 2010 is considered as test example. For validation, the puff advection and diffusion model is used to

hindcast the motion of the ash cloud through time concentrating on the period 14-16 April 2010. Variability in

the height and loading of the eruption is introduced through the volcano column model bent. Output uncertainty

due to uncertain input parameters is determined with a polynomial chaos quadrature (PCQ)-based sampling of the

multidimensional puff input vector space. Furthermore, the posterior distribution for input parameters is obtained by

assimilating satellite imagery data with PCQ predictions using a minimum variance approach.
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1. Introduction

Across the world, ash clouds are produced by explosive eruptions from volcanoes. These clouds are a serious

hazard to aircraft, causing damage to the engines [1]. More recently, the eruption at Eyjafjallajökull, Iceland, has

wreaked havoc on European aviation after the eruption started on April 14, 2010. In this case, the closure of European

air-space resulted in more than $4 billion in economical losses and with more than 10 million stranded passengers[2].

With the growing fear of natural, accidental or deliberate release of toxic agents, there is tremendous interest in
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generating accurate hazard maps of toxic material dispersion and multi-hypothesis forecasting for appropriate disaster

management.

Volcanic Ash Advisory Centers (VAAC) routinely use both satellite data and numerical modeling to assist in their

planning for hazard response and mitigation. At present, examination of satellite data provides the best quantitative

method for detecting and analyzing ash clouds. However, satellite imagery data is limited in terms of the kind and

frequency of observations that can be taken and may only provide access to limited aspects of the dispersion of ash

cloud. For example, satellite images can only tell where the ash was. To predict the position and motion of ash

clouds, advection/dispersion models are solved numerically. For example, during the Eyjafjallajökulleruption, the

London VAAC used the NAME computational model [3] of ash advection and dispersion to make predictions of

the likely position of the ash cloud and issue advisories to the airline industry. Other VAACs use different but similar

computational models. These models may incorporate stochastic variability, such as a varying windfield that transports

ash particles. In addition, these models often require input data on source conditions such as eruption plume height

that is not well characterized. These factors cause overall accuracy to degrade as the model output evolve. The fusion

of observational (satellite) data with numerical simulation promises to provide greater understanding of physical

phenomenon than either approach alone can achieve. In other words, the optimal solution should be a weighted

mixture of model forecast and observation data.

Both the ENSEMBLE platform (http://ensemble2.jrc.ec.europa.eu/) and the Harmonisation initiative (http://harmo.org)

point to the importance of ensemble forecasting in numerical weather prediction and dispersion modeling. Work un-

der both ENSEMBLE and Harmonisation umbrellas has laid out many of the principles and pathways to ensemble

forecasting, and progress has been made on presenting the results of tens of model runs in a coherent fashion [4].

Nevertheless, rigorous sampling strategies that can be implemented in a reasonable time, and quantitative estimation

of central tendency in outputs together with error estimates, are still lacking. the main objective of this contribution is

to provide accurate estimates for volcano source parameters along with associated statistical bounds. This approach

had its birth with the development of the Kalman Filter [5].

Kalman Filter (KF) is the optimal Bayesian estimator for linear systems with initial condition and measurement

errors assumed to be Gaussian. However, the performance of the Kalman filter can deteriorate appreciably due to

model parameter uncertainty [6, 7]. The sensitivity of the KF to parametric modeling errors has led to the development

of several robust filtering approaches; robust in the sense that they attempt to limit, in certain ways, the effect of

parameter uncertainties on the overall filter performance. Alternatively, when the model parameters are uncertain, the

estimation is carried out through the simultaneous estimation of states and parameters (also viewed as states), which

results in a nonlinear filtering problem even for otherwise linear systems [8]. Methods like the extended Kalman

Filter (EKF) [6] or Unscented Kalman Filter (UKF) [9] have been used to estimate model parameters along with

state estimates. Although both the EKF and UKF based filters are very popular for simultaneous state and parameter

estimation problems, both methods are based upon very restrictive Gaussian error assumption for both parameter and

state uncertainty. Clearly, the Gaussian assumption can work well for moderately nonlinear systems but it might not

be appropriate at all for certain problems based upon the physical model. For example, Gaussian distribution is not

an ideal distribution to represent errors in the eruption column height which is a positive quantity. This necessitates

the need for filters which can incorporate the knowledge about non-Gaussian uncertainty. Various researches have

endeavored to exploit knowledge of statistics, dynamic systems and numerical analysis to develop nonlinear filtering

techniques [10–13] which cater to the various classes of state and parameter estimation problems. For low-order

nonlinear systems, the Particle Filter (PF) [12, 13] has been gaining increasing attention. However, Daum in his

seminal work[14] discusses that various factors like volume of state space in which conditional pdf is non-vanishing,
rate of decay of the conditional pdf in state space, stationarity of the problem, effective dimensionality of the problem,
etc. strongly affect the computational complexity and performance of the particle filter [14].

Recently, the polynomial chaos (PC) based estimation algorithms have garnered attention for parameter estimation

problem. The main principle of the PC approach is to expand random variables using polynomial basis functions that

are orthogonal with respect to the pdf of the parameters (Hermite polynomials for normally distributed parameters,

Legendre for uniformly distribution, etc.), and transform stochastic equations into deterministic equations in higher

dimensional projection space using Galerkin collocation. The polynomial chaos has been used in different ways for

parameter estimation problem also popular in literature as inverse problem. The PC approach has been successfully

used in conjunction with the Ensemble Kalman Filter (EnKF) for input parameter estimation [15]. Pence et al. [16]

have used the PC formulation to obtain maximum likelihood estimates for input parameters while Blanchard et al.
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[17] have used the PC formulation in a Bayesian framework to provide the a-posteriori estimates. In Refs. [18],

the PC based minimum variance estimator have been developed to provide estimates for posterior moments of both

parameters and system states. The main advantage of this approach is that it provides point estimates for both the

state and parameters along with statistical confidence bounds associated with these estimates described in terms of

the posterior moments. In this paper, we will utilize this minimum variance estimator to estimate posterior density

function for volcano source parameters.

2. Volcanic Plume Models

Particle transport models can be divided into two broad categories: those intended to calculate eruption column

characteristics based on tephra fall deposits, as in [19], and those intended to predict long-range atmospheric and

deposit distributions based on the scale of the eruption, as in [20]. Both types of models rely on the existence of an

explicit relationship between the eruption and atmospheric dynamics and the resulting fall deposit. This relationship

is complicated by a number of factors, including plume mechanics, variable weather conditions, and particle re-

entrainment. Our interest is in the movement of ash clouds, and not in tephra deposition. Therefore, we focus

attention on long-range modeling and consider a simple particle transport model, but one that nonetheless contains

several sources of uncertainty.

Tanaka [21] and Searcy et al. [22] developed puff, an ash tracking model for predicting the paths of young

volcanic clouds. puff simplifies the eruption plume to a vertical source, and uses a Lagrangian pseudo-particle

representation of the ash cloud in a detailed 3-D regional windfield to determine the trajectory of the cloud. puff and

other dispersion models have proven extremely useful in modeling the distal transport of ash for aviation safety [22].

During an eruption crisis, puff predictions have been used to estimate ash cloud movement critical to the assessment

of potential impacts – for example, on aircraft flight paths. puff has been validated against historic volcanic eruptions

such as the 1992 Crater Peak vent eruption at Mount Spurr and the 2006 eruption at Mount Augustine with reasonable

success [22, 23].

To initialize a puff simulation a collection of particles of different sizes must be specified as a function of altitude.

This distribution is often inferred from historical eruption and plume observations, and is not well constrained; see

[24–26]. It is important to remember that puff particles are not simple surrogates for ash concentration, but are

representatives of ejecta of a given size at some initial height. As such this number is a user-selected input, and affects

the simulation time and resolution of the output. In addition to particle distribution and windfield, other puff input

parameters include the coefficients of turbulent diffusion and particle fallout, both of which are estimated.

Instead of guessing the initial particle distribution as a function of height, we employ a volcanic eruption plume

model called bent to provide initial conditions; the essential features of this coupling are described in [26]. bent

solves a cross-sectionally averaged system of equations for continuity, momentum and energy balance [24–26], as a

function of the eruption vent radius and speed of the ejecta. bent assumes a distribution of pyroclasts of different

sizes, and the model equations then predict the height distribution of the various sized clasts. bent has been tested

against plume rise height data, and against dispersal data [24]; the discussion in that paper corroborates that the scaling

relationships derived in [27] between energy and plume rise height are valid for energetic volcanic plumes piercing

the tropopause.

Using bent to provide initial conditions for puff incorporates important plume physics into our cloud transport

simulations. On the one hand, physics guides our model coupling and largely determines for us how outputs from

bent feed into puff. On the other hand, this coupling can be thought of as substituting one set of uncertain parameters

(vent size, velocity, clast size distribution) for an uncertain function (initial particle height distribution). In this way,

inputs from the source, together with their variability, can be modeled and propagated through bent and puff. A

detailed sensitivity analysis could relate the variations in input parameters to characteristics of the cloud as output, but

this result is itself somehat incomplete. Instead we employ uncertainty analysis, which casts a much broader net in

terms of assessing confidence of predictions based on all available information.

3. Methodology

In the standard puff model, one tracks the position of representative particles as they are transported by wind and

turbulence, and the position of each parcel is assumed to be a deterministic quantity. Instead of solving for the point



1132    R. Madankan et al.  /  Procedia Computer Science   9  ( 2012 )  1129 – 1138 

position of the puff particles, we consider the particles representing a probability distribution. That is, the position of

a particle is assumed to be a random variable, xk, whose time evolution is given by a stochastic differential equation,

which should be thought of as generalizing the puff advection/diffusion equation, written generically as:

ẋ = f(t, x,Θ) (1)

In Eq. (1), Θ represents uncertain volcano source parameters such as the vent radius, vent velocity, mean grain size

and grain size variance. The total uncertainty associated with the state vector xk = x(tk) is characterized by the

probability distribution function (pdf) p(tk, xk). The index k denotes the discrete time-step in the evolution of p. That

is, we replace the time evolution of the state vector xk by the time evolution of the pdf p(tk, xk).

Several approximate techniques exist in the literature to approximate the state pdf evolution, the most popular

being Monte Carlo (MC) methods [28], Gaussian closure [29], and Equivalent Linearization [30]. All of these al-

gorithms except MC methods are similar in several respects, and are suitable only for linear or moderately nonlinear

systems, because the effect of higher order terms can lead to significant errors. Monte Carlo methods require extensive

computational resources and effort, and become increasingly infeasible for high-dimensional dynamic systems [14].

The next section discusses the Polynomial Chaos Quadrature (PCQ) method for solving the time evolution of state

pdf for systems that include initial condition and parametric uncertainty.

3.1. Polynomial Chaos Quadrature
The propagation of uncertainty due to time-invariant but uncertain input parameters can be approximated by a

generalization of polynomial chaos [31]. Generalized PC is an extension of the homogenous chaos idea of [32] and

involves a separation of random variables from deterministic ones in the solution algorithm for a stochastic differential

equation. The random variables are expanded in a polynomial expansion. Suitably chosen polynomials converge

rapidly to the assumed pdf for the input variables.

ẋ(t,Θ) = f(t,Θ, x), x(t0) = x0 (2)

where u(t) is the input of dynamic system at time t, x(t,Θ) = [x1(t,Θ), x2(t,Θ), · · · , xn(t,Θ)]T ∈ R
n represents the

stochastic system state vector, and uncertain parameter vector Θ = [Θ1,Θ2, · · · ,Θm]T ∈ R
m is assumed to be time

invariant and function of a random vector ξ = [ξ1, ξ2, · · · , ξm]T ∈ Rm defined by a pdf p(ξ) over the support Ω. Please

note that f(t,Θ, x) can be a nonlinear function in general. The PC expansion for the state vector x and uncertain

parameter Θ can be written as:

xi(t,Θ) =

N∑
k=0

xik (t)φk(ξ) = xT
i (t)Φ(ξ)⇒ x(t, ξ) = Xpc(t)Φ(ξ) (3)

θi(ξ) =
N∑

k=0

θikφk(ξ) = Θ
T
i Φ(ξ)⇒ Θ(t, ξ) = ΘpcΦ(ξ) (4)

where, Xpc and Θpc are matrices composed of coefficients of PC expansion for state x and parameter Θ, respectively.

Similar to the linear case, coefficients θik are obtained by making use of following normal equations:

θik =
〈θi(ξ), φk(ξ)〉
〈φk(ξ), φk(ξ)〉 (5)

Now, substitution of Eq. (3) and Eq. (4) into Eq. (2), leads to:

ei(Xpc, ξ) =
N∑

k=0

ẋik (t)φk(ξ) − fi(t,Xpc(t)Φ(ξ),ΘpcΦ(ξ)), i = 1, 2, · · · , n (6)

n(N + 1) time-varying coefficients xik can be obtained using the Galerkin process, i.e. projecting the error captured

in Eq. (6) onto space of basis functions φk(ξ). For polynomial or rational state nonlinearity, the Galerkin process

will lead to a set of n(N + 1) nonlinear deterministic differential equations. For non-polynomial nonlinearity such



1133  R. Madankan et al.  /  Procedia Computer Science   9  ( 2012 )  1129 – 1138 

as transcendental or exponential functions, difficulties may arise during the computation of projection integrals. To

manage the non-polynomial nonlinearity difficulties in polynomial chaos integration, Dalbey et al. have proposed a

formulation [33] known as Polynomial Chaos Quadrature (PCQ). PCQ replaces the projection step of the PC with

numerical quadrature. The resulting method can be viewed as a MC-like evaluation of system equations, but with

sample points selected by quadrature rules. To illustrate this, consider Eq. (2), which by substitution of Eq. (3) and

Eq. (4) can be written as:

N∑
k=0

ẋik (t)φk(ξ) − fi(t,Xpc(t)Φ(ξ),ΘpcΦ(ξ)) = 0, i = 1, · · · , n (7)

The projection step of PC yields:

N∑
k=0

〈φk(ξ), φ j(ξ)〉ẋik − 〈fi(t,Xpc(t)Φ(ξ),ΘpcΦ(ξ)), φ j(ξ)〉 = 0 i = 1, · · · , n, j = 0, · · · ,N (8)

In the case which f (t, x,Θ) is linear, it is possible to evaluate projection integrals of Eq. (8) analytically. More

generally, the starting point of PCQ methodology is to replace the exact integration with respect to ξ by numerical

integration. The familiar Gauss quadrature method is a suitable choice for most cases. This yields:

〈φi(ξ), φ j(ξ)〉 =
∫
φi(ξ)φ j(ξ)p(ξ)dξ �

M∑
q=1

wqφi(ξq)φ j(ξq) (9)

〈fi(.), φ j(ξ)〉 =
∫
fi(t,Xpc(t)Φ(ξ),ΘpcΦ(ξ))φ j(ξ)p(ξ)dξ �

M∑
q=1

wqfi(t,Xpc(t)Φ(ξq),ΘpcΦ(ξq))φ j(ξq) (10)

where M is the number of quadrature points used. Substitution of aforementioned approximation of stochastic integral

in Eq. (8) and interchanging summation and differentiation leads to

d
dt

M∑
q=1

N∑
k=0

wqφ j(ξq)φk(ξq)xik −
M∑

q=1

wqfi(t,Xpc(t)Φ(ξq),ΘpcΦ(ξq))φ j(ξq) = 0 (11)

which can be simplified as:

d
dt

M∑
q=1

φ j(ξq)xi(t, ξq)wq −
M∑

q=1

wqfi(t,Xpc(t)Φ(ξq),ΘpcΦ(ξq))φ j(ξq) = 0 (12)

Integrating with respect to time t yields:

M∑
q=1

(xi(t, ξq) − xi(t0, ξq))φ j(ξq)wq −
∫ t

t0

M∑
q=1

wqfi(t,Xpc(t)Φ(ξq),ΘpcΦ(ξq))φ j(ξq)dt = 0 (13)

Interchanging the order of time integration and quadrature summation leads to

M∑
q=1

{
xi(t, ξq) − xi(t0, ξq) −

∫ t

t0
fi(t,Xpc(t)Φ(ξq),ΘpcΦ(ξq))dt

}
φ j(ξq)wq = 0 i = 1, · · · , n (14)

Note that the integral expression in Eq. (14) can be evaluated by an integration of the model equation with a specific

instance of the random variable ξq. Thus the process of evaluating the statistics on the output of the system reduces to

sampling the chosen input points guided by quadrature method. Finally, the coefficients of the PC expansion can be

obtained as:

xik (t) =
1

d2
k

M∑
q=1

Xi(t0, t, ξq)φk(ξq)wq, k, j = 0, 1, · · · ,N, i = 1, 2, · · · , n (15)
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where

Xi(t0, t, ξq) = xi(t0, ξq) +

∫ t

t0
fi(t,Xpc(t)Φ(ξq),ΘpcΦ(ξq)), d2

k =

∫
Ω

φk(ξ)φk(ξ)p(ξ)dξ (16)

Hence, the resulting method can be viewed as a MC-like evaluation of system equations, but with sample points

selected by quadrature rules. PCQ approximates the moment of system state as:

E[xi(t)N] =

∫
Ω

(∫ t

t0
ẋidt
)N

dp(ξ) =

∫
Ω

(
xi(t0, ξ) +

∫ t

t0
fi(t, x,Θ)dt

)N
dp(ξ) i = 1, 2, · · · , n (17)

=
∑

q

wq

[
Xi(t0, t, ξq)

]N
i = 1, 2, · · · , n (18)

In other words, the output moments are approximated as a weighted sum of the output of simulations run at carefully

selected values of the uncertain input parameters (namely the quadrature points). The classic method of Gaussian

quadrature exactly integrates polynomials up to degree 2N + 1 with N + 1 quadrature points. The tensor product of

1–dimensional quadrature points is used to generate quadrature points in general n-dimension parameter space. As a

consequence, the number of quadrature points increases as (N + 1)n to integrate exactly an n-variate polynomial of

degree 2N + 1 as the number of input parameters increases.

PCQ can still suffer from underintegration error if an insufficient number of samples is used. This necessitates an

adaptive or nested quadrature scheme to successively refine the accuracy by increasing the number of sample points.

In a nested quadrature scheme, one can compare the solution computed at a given order with that of a quadrature

rule of lower order, which evaluates the integrand at a subset of the original N points, to minimize the integrand

evaluations. Gaussian quadrature rules are not naturally nested. Hence, we employ Clenshaw–Curtis quadrature

[34, 35] for numerical integration. The Clenshaw–Curtis scheme is based on an expansion of the integrand in terms

of Chebyshev polynomials and naturally leads to nested quadrature rules. Another advantage of Clenshaw–Curtis

quadrature is that the quadrature weights can be evaluated in order NlogN time by fast Fourier transform algorithms

as compared to order N2 for the Gaussian quadrature weights.

4. Fusion of Measurement Data and Process Model

In the previous section, the PCQ approach is discussed in detail as a tool to propagate the state and parameter

uncertainty through a VATD model coupled with column eruption model. The use of sensor data to correct and

refine the dynamical model forecast so as to reduce the associated uncertainty is a logical improvement over purely

model-based prediction. However, mathematical models for various sensors are generally based upon the “usefulness”

rather than the “truth” and do not provide all the information that one would like to know. Care must be taken when

assimilating the observational data. In this section, PCQ based minimum variance approach has been developed to

integrate multiple sources of complementary information with system dynamics to help reduce the uncertainty of the

output. The proposed approach make use of the PCQ methodology to evaluate the high fidelity prediction between

two measurement intervals and updates the PC series expansion based upon minimum variance formulation.

Using the PCQ uncertainty evolution as a forecasting tool , the joint state and parameter pdf can be updated using

the Bayes’ rule on the arrival of a measurement data:

p(Θ, x|Yk) =
p(Θ, x|Yk−1)p(y(tk)|Θ, x)

p(y(tk))
(19)

where Yk represents the measurement data up to time tk. p(Θ, x|Yk−1) is the joint prior pdf (solution of the PCQ

approach) of x and Θ at time tk given all observations up to time tk−1, p(yk |Θ, x) is the likelihood that we observe

yk given x and Θ at time tk and p(Θ, x|Yk) represents the joint posterior pdf of x and Θ at time tk given all previous

observations, including yk. Furthermore, p(yk) is the total probability of observation at time tk which can be evaluated

as follows:

p(yk) =

∫ ∫
p(Θ, x|Yk−1)p(yk |Θ, x)dΘdx (20)



1135  R. Madankan et al.  /  Procedia Computer Science   9  ( 2012 )  1129 – 1138 

As discussed in the previous section, the PCQ approach provides us a tool to determine equations of evolutions

for conditional moments for the prior joint pdf p(Θ, x|Yk−1). We now seek to develop equations of evolutions for

the posterior conditional moments. As a step towards this goal, let us consider a continuously differentiable scalar

function φ(Θ, x) and define posterior and prior conditional moments as:

φ̂+k = E
+[φ(Θ, x)] �

∫ ∫
φ(Θ, x)p(Θ, x|Yk)dΘdx (21)

φ̂−k = E
−[φ(Θ, x)] �

∫ ∫
φ(Θ, x)p(Θ, x|Yk−1)dΘdx (22)

Now, multiplying Eq. (19) with φ(Θ, x) and integrating over Θ and x, we get:

φ̂+k =
E−[φ(Θ, x)p(yk |Θ, x)]

p(yk)
(23)

Note that yk is fixed with respect to the expectation operator and thus, the right-hand side of Eq. (23) is a function of

yk only. Notice that Eq. (23) is not an ordinary difference equation and the evaluation of right-hand side of Eq. (23)

requires the knowledge of the prior density function. Although the PCQ process does not provide us a closed-form

expression for the state or parameter pdf but it can be used effectively in computing the expectation integrals. As

discussed in the previous section, all moments of random variables Θ and x are just function of their PC expansion

coefficients, i.e., Θpc and Xpc. Hence, one can just update the PC coefficients on the arrival of measurement data

based upon Eq. (23). So if we define Θ−pc and X−pc to be the prior PC coefficients and Θ+pc and X+pc to be posterior PC

coefficients, then we can evaluate φ̂−(Θ, x) and φ̂+(Θ, x) as:

φ̂−k = E
−[φ(Θ, x)] =

∫
φ(Θ−pcΦ(ξ),X−pc(t)Φ(ξ))p(ξ)dξ (24)

φ̂+k = E
+[φ(Θ, x)] =

∫
φ(Θ+pcΦ(ξ),X+pc(t)Φ(ξ))p(ξ)dξ (25)

Hence, prior and posterior mean for both state and parameter can be written as:

ẑ−k � E−[zk] =

[
X−pc1

(t)
Θ−pc1

]
, z(t, ξ) =

[
x(t, ξ)
Θ(ξ)

]
(26)

ẑ+k � E+[zk] =

[
X+pc1

(t)
Θ+pc1

]
(27)

Similarly, prior and posterior covariance matrices can be written as:

Σk
− � E−[(zk − ẑ−k )(zk − ẑ−k )T ] =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
N∑

i=1
X−2

pci

N∑
i=1
X−pci
Θ−pci

N∑
i=1
X−pci
Θ−pci

N∑
i=1
Θ−2

pci

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (28)

Σ+k � E+[(zk − ẑ−k )(zk − ẑ−k )T ] =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
N∑

i=1
X+2

pci

N∑
i=1
X+pci
Θ+pci

N∑
i=1
X+pci
Θ+pci

N∑
i=1
Θ+

2

pci

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (29)

where, X−pci
and Θ−pci

are the ith column of the PC expansion coefficient matrices X−pc and Θ−pc, respectively. Similarly,

X+pci
and Θ+pci

are the ith column of unknown PC expansion coefficient matrices X+pc and Θ+pc, respectively. According

to the minimum variance formulation, the posterior mean and covariance can be computed given an estimate of prior

mean and covariance [36]:

ẑ+k = ẑ
−
k +Kk[ỹk − E−[h(xk)]] (30)

Σ+k = Σ
−
k +KkΣzy (31)

Kk = −ΣT
zy

(
P−hh + Rk

)−1
(32)
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It should be noted that the minimum variance formulation is valid for any pdf although it makes use of only mean and

covariance information. ỹk denotes the sensor output at time tk while function h(x,Θ) provides a true model between

sensor output y and states, x. Rk denotes the measurement noise error covariance matrix. Kk is known as the Kalman

gain matrix and matrices Σzy and Σzz are defined as:

ĥ−k � E−[h(xk,Θ)] =

M∑
q=1

wq h(xk(ξq))︸����︷︷����︸
hq

, Σzy � E−[(zk − ẑk)(h(xk) − ĥ−k )T ] =

M∑
q=1

wq(zk(ξq) − ẑ−k )(hq − ĥ−k )T (33)

Σ−hh � E−[(h(xk) − ĥ−k )(h(xk) − ĥ−k )T ] =

M∑
q=1

wq(hq − ĥ−k )(hq − ĥ−k )T (34)

Notice that Eq. (27) and Eq. (30) provide a closed-form solution for Xpc+
1

and Θ+pc1
while one can solve for rest of the

posterior coefficients while making use of Eq. (29) and Eq. (31).

5. Numerical Experiments

For validation purposes, we consider the Eyjafjallajökulleruption scenario. The puff Lagrangian VATD model

was used to propagate ash parcels in a given wind field (NCEP Reanalysis) [22] through time concentrating on

the period 14–16 April 2010. puff takes into account dry deposition by particle fallout, as well as dispersion and

advection.Variability in the height and loading of the eruption is introduced through the volcano column model bent.

Table 1 lists all source variables together with their assumed uncertainties. Output uncertainty due to uncertain input

parameters is determined with a polynomial chaos quadrature-based sampling of the multidimensional puff input

vector space. Following runs of bent at the quadrature points, each bent output is then propagated through puff,

which was then run for a real-time period of two days. The outputs from puff were then combined to produce

the ensemble by applying the appropriate weight to each deterministic bent–puff run. For simulation purposes, a

random sample of source variable is used to create an artificial satellite imagery depicting ash top-height. The satellite

imagery data is assumed to be available every 6 hours during the two day simulation period.

Table 1: Eruption source parameters based on observations of Eyjafjallajökull volcano and information from other similar eruptions of the past.

Parameter Value range PDF Comment

Vent radius, b0, m) 65-150 Uniform, + definite Measured from IMO radar image of summit

vents on 14 April 2010

Vent velocity, w0, m/s) Range: 45-124 Uniform, + definite Measured by infrasound [37] 6-21 May, when

MER similar to 14-18 April

Mean grain size, Mdϕ, ϕ
units

2 boxcars: 1.5-2 and 3-5 Uniform, ∈ R [38], Table 1, vulcanian and phreatoplinian. A.

Hoskuldsson, Eyjafjallajökull Eruption Work-

shop, 09/2010, presentation, quote: ’vulcanian

with unusual production of fine ash’.

σϕ, ϕ units 2.0 − 6 Uniform, ∈ R [38], Table 1, vulcanian and phreatoplinian

For this set of simulations we compared the simulation outputs for 94 and 134 samples (quadrature points) and the

results indicate that 94 runs yields substantially the same results for mean and variance for ash top-height as 134 runs.

Similarly, the comparison of using 105 to 107 particles in the puff simulation also indicated that the choice of 4× 106

particles was adequate for our purposes, and consistent with the findings of others [39].

Fig. 1 shows probability of ash being present at a given geological location along with synthetic satellite observed

ash top-height data for 16th April, 2010. As expected, the PCQ generated ash cloud footprint is quite large due to large

uncertainty in prior source parameters. It should be noticed that most of the satellite data lies with in high probability

region. We mention that 4th order PC expansion is used to computed these probability contours as discussed in

Ref. [33]. Fig. 2 show the estimated source parameters along with 3σ bounds while making use of the PCQ based

minimum variance estimator as discussed in Section 4. The solid red line represents the assumed true value for source

parameters while green squares corresponds to estimated source parameters. Furthermore, blue asterisks represent

±3σ bounds. From these figures, it is clear that the uncertainty associated with source parameters decreases as the

number of observations increases. These preliminary results clearly illustrates the effectiveness of proposed ideas in

estimating the posterior distribution for source parameters.



1137  R. Madankan et al.  /  Procedia Computer Science   9  ( 2012 )  1129 – 1138 

(A) 0041-04-16 00:00:00Z

Model: probability, outer contour 0.2, inner 0.7

Data: ash top height, m

(a) April 16th, 0000 hrs

(C) 0041-04-16 00:00:00Z

Model: probability, outer contour 0.2, inner 0.7

Data: ash top height, m

(b) April 16th, 1200 hrs

Figure 1: Probability Contours and Satellite Image
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Figure 2: Estimated Source Parameters
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