
Electronic Notes in Theoretical Computer Science 80 (2003)
URL: http://www.elsevier.nl/locate/entcs/volume80.html 6 pages

Formal Methods Research at SICS and KTH:
An Overview

Mads Dam 1,2 Lars-Åke Fredlund 2

Swedish Institute of Computer Science
Box 1263, SE–164 29 Kista, Sweden

{mfd, fred}@sics.se

Dilian Gurov 2

LECS/IMIT , Royal Institute of Technology (KTH)
KTH Electrum 229, SE–164 40 Kista, Sweden

dilian@imit.kth.se

1 Introduction

The Formal Design Techniques (FDT) Lab at SICS 3 with associated members at
the Laboratory of Electronics and Computer Systems (LECS) at the Department of
Microelectronics and Information Technology, KTH 4 performs research on theo-
ries, tools, and applications of formal methods with particular emphasis on secu-
rity aspects of distributed systems. The overall focus is on automated and semi-
automated methods for program analysis and verification at source and byte code
levels, and on the formalisation of (security-related) requirements and policies to
which these methods apply. The activities of the lab falls in the following three
broad areas: (i) Source and byte code verification based on first-order µ-calculus
theorem proving; (ii) Verification of JavaCard applet interactions using call-graph
abstractions and compositional techniques; (iii) Formalisation and analysis of se-
curity properties, in the areas of information flow control, authorisation, and verifi-
cation of security protocols.

In this short paper we survey the activities of the groups in these areas.

1 Supported by the European Office of Aerospace Research and Development, Air Force Office of
Scientific Research, Air Force Research Laboratory, under Contract No. F61775-01-C0006.
2 Supported by the European IST project VerifiCard.
3 http://www.sics.se/fdt/
4 http://www.imit.kth.se/lecs/

c©2003 Published by Elsevier Science B. V.

267

CC BY-NC-ND license. Open access under

http://creativecommons.org/licenses/by-nc-nd/3.0/

Dam and Fredlund and Gurov

2 µ–calculus Based Program Verification

As the programming languages and applications we target in this area are complex,
dealing with topics such as concurrency and distribution, no completely automatic
verification methods can exist. Instead a semiautomatic approach is adopted, which
combines manual reasoning supported by a proof assistant tool with automatic rea-
soning (model checking). We have explored such an approach in the setting of
CCS [6], for the Erlang programming language [9,8], and for JavaCard applets (see
the following section). The components of the framework is an operational seman-
tics of the language under study, use of the µ–calculus temporal logic extended with
data to formulate correctness requirements, a Gentzen–style proof system for ex-
pressing program proofs, and a proof assistant tool to assist in proof development.

Taking the work on Erlang as an example, the basis of the proof system is the
standard Gentzen rules for first-order logic, which is extended with rules for fixed
point manipulation and the language semantics. The proof system contains a rather
complete implementation of a small–step operational semantics for Erlang (includ-
ing constructs to handle concurrency and error detection and recovery) embedded
as a fixed point definition.

Due to the concurrency and dynamism inherent in typical Erlang applications,
e.g. [1], a variety of (mutual) induction and co–induction schemes need to be avail-
able; at the same time it is often unlikely to foresee which of these might work. We
therefore employ symbolic program execution and instance checking to “discover”
induction schemes. Our machinery is based on fixed–point ordinal approxima-
tion and well–founded ordinal induction, and on a global discharge proof rule for
ensuring consistency of the mutual inductions present in a proof structure. The
relationship between the global induction discharge rule and standard local fixed
point induction rules is explored in Sprenger and Dam [14].

A crucial property of these proof system is the use of compositional reasoning
to reduce arguments about an component to arguments about properties of its sub-
components. In the case of CCS, for instance, it is common to apply a proof rule to
split a goal involving a parallel composition:

Γ � P1 : φ1, ∆

Γ � P2 : φ2, ∆

Γ, x : φ1, y : φ2 � x | y : φ, ∆

Γ � P1 | P2 : φ, ∆

The rule permits to replace the lower proof goal requiring to prove that P1 | P2

satisfies the µ–calculus formula φ with the three new proof goals. In the first two
goals the obligation is to prove that the agents P1 and P2 satisfies the new “cut-
formulas” φ1 and φ2, and the third obligation is to prove that if two arbitrary agents
x and y satisfy φ1 and φ2, then their parallel composition also satisfy φ. Such a
proof rule is directly derivable from the standard cut–rule of Gentzen–style proof
systems. This is a “weakening” rule that permits to abstract away from the syntax

268

Dam and Fredlund and Gurov

of the agent under study to consider instead its behavioural properties.
Further information, including downloadable prototype proof assistant tools

implementing the proof systems, can found on the world-wide web 5 .

3 Verification of Multi–Applet JavaCard Applications

Smart cards provide a secure means for storing and using authentication infor-
mation and other personal data. They are used in mobile telephony, electronic
banking, for keeping health care information, and in many other applications. The
growing number of such applications, and the desire to implement partnership pro-
grammes giving enhanced business opportunities has lead to the development of
multi–application smart cards running on open smart card platforms.

The JavaCard open smart card platform [12] offers, among other features, sup-
port for post–issuence loading of applets and inter–applet communication via method
calls along shareable interfaces. A firewall mechanism guarantees that only those
methods of an applet, which implement a shareable interface, are accessible from
outside the applet. This security scheme is not very flexible, since it is static in
nature: an applet either has access to an interface method or it hasn’t, indiscrimi-
nately of the current state. This creates the possibility for illicit applet interactions:
certain sequences of method invocations can lead to data flow at unexpected states,
resulting in unwanted leak of information to certain parties.

The FDT Lab at SICS is developing within the European VerifiCard project 6 ,
and in collaboration with project partner INRIA Sophia–Antipolis a control–flow
based verification technique for checking the absence of illicit applet interactions
specific to a given application [2,4]. The technique is based on the abstract notion
of control–flow graph, whose behaviour is given in terms of pushdown automata
which provide a natural execution model for programs with recursion, and a tem-
poral logic specification language for specifying sets of sequences of method invo-
cations which are deemed to be harmless for the given application. To deal with
post–issuence loading, we adopt a compositional approach to verification, allowing
global control–flow properties of the whole system to be reduced to local control–
flow properties of the individual applets. The latter are then checked using stan-
dard methods for model–checking temporal properties of pushdown systems [3].
The correctness of property decompositions is checked automatically following an
approach based on maximal models [11].

We are currently assembling a tool set supporting our verification technique.
Control–flow graphs are extracted with the help of a static analysis tool based on
the SOOT framework 7 . After a property decomposition scheme has been cho-
sen, its correctness is automatically checked through maximal model extraction.
Finally, local properties are checked by translating control–flow graphs to push-

5 http://www.sics.se/fdt/vericode/
6 http://verificard.org/
7 http://www.sable.mcgill.ca/soot/

269

Dam and Fredlund and Gurov

down automata, and using standard tools for temporal logic model–checking of
pushdown automata like Moped [7].

The technique and the tool set are being evaluated on several case studies. One
of these is a multi–applet electronic purse application called PACAP 8 supporting
loyalty programs, which was developed by Gemplus to provide a real case study
for researchers working on the JavaCard platform. The owner of such an electronic
purse smart card can decide on joining a loyalty program of some company, and
load the appropriate applet on her card. Loyalties can establish partnership rela-
tions for sharing bonus points. For efficiency reasons, the electronic purse keeps a
(circular) log table of bounded size of all credit and debit transactions, and the loy-
alty applets can request the information stored in this table. When the log table is
full, the following transactions will start overwriting already existing entries in the
table; to ensure that loyalties do not miss any of the logged transactions they can
subscribe (presumably for a fee) to a notification service signalling all subscribed
applets every time the log table gets full, so that these can update their local balance.
This creates the possibility for illicit applet interactions, since a subscribed loyalty
could invoke a non–subscribed partner loyalty – in order to compute an extended
balance for instance – giving the latter the possibility to circumvent subscribing to
the log–full service. It is the absence of this kind of scenaria which we specify and
verify in this case study.

4 Formalisation and Analysis of Security Properties

Within the specific security domain recent work has focused on information flow
control, authorisation and delegation, and security protocol analysis using epis-
temic logics. In this note we focus attention on the area of information flow control.

This problem has received quite some attention in the formal methods commu-
nity recently, in particular in the area of language-based security (cf. [13]). Most
work is based on the multi-level security model in which objects are assigned par-
tially ordered security labels, and for a secure program the task is to show that
information does not flow downward in this partial order, from higher security lev-
els to lower ones. Even if most research in the information flow area has been
based on the multi-level security model, the problem is that in many applications it
is not very useful. The fundamental issue is that many application actually involves
some form of intended information leakage. For instance, keys are used for sign-
ing and encryption, and pin codes and passwords are used to unlock functionality
the existence of which will often be observable to a low-level observer. Unfortu-
nately, these phenomena cause flow of information. Hopefully, the flow is harmless
(the design of the protocols, crypto primitives and api’s are relied upon to ensure
this), but it is flow nonetheless, causing the multi-level security model to break
down. Moreover, the problem is not so easily remedied, since the mere presence
of an observable high-to-low link can be used by a piece of malicious code to leak

8 http://www.gemplus.com/smart/r d/publications/case-study/

270

Dam and Fredlund and Gurov

information at will, using simple bit codings or delays.
To address this we have proposed a notion of admissible interference[5,10]

based, roughly, on the idea of non-interference up to a tightly controlled use of
interface actions which may depend on confidential information. Consider, as an
example, confidentiality of the private RSA exponent in a simple implementation
of the PKCS#11 cryptographic token standard. Such a token will implement a
non-trivial amount of functionality related to pin assignment and use, certificate
management, key generation or instantiation, and so on. For confidentiality of
the private exponent only a little part of this functionality is relevant, abstractly
described in terms of the following little automaton (for the case of off-token key
generation):

C = while true do begin
cmd := read(cmdChan) ;
case cmd of

assign private exponent:
pExp := read(adminChan) ;

sign:
begin mHash := read(userChan);
write(outChan,signature(mHash,pExp)) end

...: ...
end

end

This automaton describes the flow of information relevant to confidentiality of the
private exponent. Several issues without direct impact on this issue are ignored,
including, in particular, authentication. Observe, though, that authentication is im-
portant to protect against known ciphertext attacks.

The task of a confidentiality analysis using C as an information flow specifi-
cation is to ensure that the protocol implementation acts according to C and, in
particular, does not introduce information dependencies not already allowed by C
(for instance by embedding information in the signature). To guard against this we
may consider how behaviour of the protocol implementation changes according to
changes in the confidential input. In this example, arbitrary changes of input which
respects typing (not specified above) should be considered, but this is not always
the case. The idea, then, is to reduce confidentiality of a protocol P implementing
C, roughly, to a check that (1) the automation C is a correct abstraction of P , and
(2) that the behaviour of P is in a suitable sense invariant under reinterpretations f
of secret values. We refer to [10] for more details on the approach.

Currently we are working, in the context of the EU IST project VerifiCard 9 ,
on an instantiation of this idea to JavaCard byte code, including a reformulation
of the approach which demonstrates more clearly the link to existing security type
systems such as that of Volpano and Smith [15].

9 http://www.verificard.org/

271

Dam and Fredlund and Gurov

References

[1] Arts, T. and M. Dam, Verifying a distributed database lookup manager written in
Erlang, in: J. M. Wing, J. Woodcock and J. Davies, editors, FM’99—Formal Methods,
Volume I, Lecture Notes in Computer Science 1708(1999), pp. 682–700.

[2] Barthe, G., D. Gurov and M. Huisman, Compositional verification of secure applet
interactions, in: Proc. FASE’02, Lecture Notes in Computer Science 2306(2002), pp.
15–32.

[3] Burkart, O., D. Caucal, F. Moller and B. Steffen, Verification on infinite structures,
in: J. Bergstra, A. Ponse and S. Smolka, editors, Handbook of Process Algebra, North
Holland, 2000 pp. 545–623.

[4] Chugunov, G., L.-Å. Fredlund and D. Gurov, Model checking of multi-applet JavaCard
applications, in: Proc. CARDIS’02(2002), pp. 87–95.

[5] Dam, M. and P. Giambiagi, Confidentiality for mobile code: The case of a simple
payment protocol, in: 13th IEEE Computer Security Foundations Workshop, 2000, pp.
233–244.

[6] Dam, M. and D. Gurov, Compositional verification of CCS processes, In Proc. PSI’99,
Lecture Notes in Computer Science1755(2000), pp. 247–256.

[7] Esparza, J. and S. Schwoon, A BDD-based model checker for recursive programs, in:
Proc. of CAV’01, Lecture Notes in Computer Science 2102(2001), pp. 324–336.

[8] Fredlund, L., A Framework for Reasoning about Erlang Code, PhD thesis, Dept.
of Microelectronics and Information Technology, Royal Institute of Technology,
Stockholm, and Swedish Institute of Computer Science(2001).

[9] Fredlund, L., D. Gurov, T. Noll, M. Dam, T. Arts and G. Chugunov, A verification tool
for Erlang, Software Tools for Technology Transfer (2003), accepted for publication.

[10] Giambiagi, P. and M. Dam, On the Secure Implementation of Security Protocols
(2003), pp. 144–158.

[11] Grumberg, O. and D. E. Long, Model checking and modular verification, ACM
Transactions on Programming Languages and Systems 16 (1994), pp. 843–871.

[12] JavaCard 2.1.1 Documentation, Technical report, Sun Microsystems (2000),
http://java.sun.com/products/javacard/specs.html#211.

[13] Sabelfeld, A. and A. Myers, Language-based information-flow security, IEEE Journal
on Selected Areas in Communications 21 (2003), pp. 5–19.

[14] Sprenger, C. and M. Dam, On the structure of inductive reasoning: Circular and tree-
shaped proofs in the mu-calculus, To appear inproc. FOSSACS’03, Warsaw, Poland
(2003).

[15] Volpano, D., G. Smith and C. Irvine, A sound type system for secure flow analysis,
Journal of Computer Security 4 (1996), pp. 1–21.

272

