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Abstract 

The eigenvalues of a graph are the eigenvalues of its adjacency matrix. This paper presents an 
algebraically defined invariant system of a graph. We get some bounds of the eigenvalues of graphs 

and propose a few open problems. 

1. Introduction 

Let G be a simple graph with vertex set (ul, u2, . . . . on}. Its adjacency matrix 

A(G) =(aij) is defined to be the n x n matrix (aij), where aij= 1 if Ui is adjacent to vj, and 

aij=O otherwise. It follows immediately that if G is a simple graph, then A(G) is 

a symmetric (0,l) matrix in which every diagonal entry is zero. We shall denote the 

characteristic polynomial of G by 

P(G)=det(xZ--A(G))= i aixn-‘. 
i=O 

Since .4(G) is a real symmetric matrix, its eigenvalues must be real, and may be 

ordered as 

Denote &(A(G)) simply by A,(G). The sequence of n eigenvalues is called the spectrum 

of G. Spectra of graphs have appeared frequently in the mathematical literature. We 

shall now point out some reasons why graph spectra are important. 

(1) Eigenvalues arise in a variety of applications, for example in quantum chemistry 

the skeletons of certain nonsaturated hydrocarbons are represented by graphs. The 

energy levels of the electrons in such a molecule are, in fact, the eigenvalues of 
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the corresponding graph. The stability of the molecule as well as other chemically 

relevant facts are closely connected with the graph spectrum and the corresponding 

eigenvalues. 

(2) Spectrum techniques are often used in the proofs of many theorems in graph 

theory and combinatorial theory, even though the statements of these theorems do not 

involve the spectra explicitly. One such example is the well-known ‘friendship theorem’. 

(3) The spectrum can be computed in polynomial time. This is regarded as an 

‘accessible’ property of G. Conversely, some properties of G, like its chromatic 

number, are thought of as ‘inaccessible’ because to date no one knows how to 

compute them in polynomial time. 

What kind of relationships might exist between the spectrum and the structure of G? 

We know that the structure of a graph is not completely determined by its spectra. 

The two graphs shown in Fig, 1 are cospectral but not isomorphic. 

There are many other examples of nonisomorphic cospectral graphs. For example, 

it is known that ‘almost all’ trees are cospectral. 

For a few special classes of graphs, including the complete graphs, cycles, paths and 

the complete bipartite graphs, the known spectra are given in Table 1. 

In general, eigenvalues of graphs are often difficult to evaluate for some classes of 

graphs, so it is sometimes useful to obtain bounds for them. 

A 
AS-4A3 

Fig. 1 

Table 1 

Spectra of some classes of graphs 

Cl . 

Graph Spectrum 

Complete graph K, 
Cycle C. 
Path P,, 

Complete bipartite graph K,, 

(a+b=n) 

n-l,-l....,-1 
2cos(27ri/n) (O<i<n-1) 

2cos(2ni/(n+l)) (l<i<n) 

&X,0,...,-Jab 



Bounds qf eigenvalues Of graphs 

2. The spectral radius of graphs 

67 

The largest eigenvalue A,(G) is often called the spectral radius of G. We now give 

some bounds for the spectral radius A,(G). 

Let G be a simple graph with n vertices and e edges. 

(1) (Collatz and Sinogowitz [6]). If G is a connected graph of order n, then 

The lower bound occurs only when G is the path P, and the upper bound occurs 

only when G is the complete graph K,. 

(2) (Collatz and Sinogowitz [6]). If G is a tree of order n, then 

The lower bound occurs only when G is the path P,,, and the upper bound occurs 

only when G is the star Ki,,_r. 

(3) (Hong [12]). If G is a connected unicyclic graph, then 

where C, denotes the cycle on n vertices and Sl denotes the graph obtained from the 

star Ki,,_i by joining the vertices of degree one. The lower bound occurs only when 

G is the cycle C,, and the upper bound occurs only when G is the graph S,“. 

(4) (Brualdi and Solheid [4]). Let G be a connected graph with n vertices and 

e edges having the largest possible spectral radius. Then G contains a star as 

a spanning tree. This fact can be used to determine the graphs with maximum spectral 

radius when e<n+ 5 and n is sufficiently large (see Fig. 2). 

Conjecture 2.1 (Brualdi and Solheid [4]). For e = n+ k, k # 2, the graph withe max- 

imum spectral radius is as follows (n is sufficiently large): 

-k +3 

e=n+k 
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Number of edges e 

e=n-1 

e=n 

e=n+l 

e=n+2 

e=nf3 

e=nf4 

e=n+5 

Graph 

2 

3 
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5 

6 

n 
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3 

4 
1 

w 

5 . 

7 
n 

9 

Fig. 2. 

The graph is obtained from the star kl,,_ 1 by adding the edges from vertex 2 to each 

of vertices 3,4, . . ., k + 3. 

(5) (Brualdi and Hoffman [3]). If e=(i), then 

&(G)<k- 1, 

where the equality holds iff G is a disjoint union of the complete graph Kk and some 

isolated vertices. 
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(6) (Stanley [19]) 
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where the equality occurs iff e=(i) and G is a disjoint union of the complete graph 

Kk and some isolated vertices. 

(7) (Hong [lS]). If G is a connected graph, then 

where the equality holds iff G is one of the following graphs: 

(a) the star K1,,_l; 

(b) the complete graph K,. 

Proof. Let Ai denote the ith row of A and di the ith row sum of A. Let 

X=(x1,x2, . . . , x,JT be an unit length eigenvector of A corresonding to the eigenvalue 

A,(A).Fori=l,2,... , n, let X(i) denote the vector obtained from X by replacing those 

components Xj by 0 such that Uij = 0. Since AX = 21 X, we have 

By the Cauchy-Schwartz inequality, for i = 1,2, . . . , n, we have 

Summing the above inequalities we obtain 

l,,(A)*<2e- i di 1 xf. 
i=l j: ai, = 0 

Now 

i$ldi j aF_Oxf=i$Odixf+ i di C x? 
I - i=l j: a,j=O j# i 

<idixf+i C xf 
i=O i=l j:ai,=O j#i 

=?I-I. 

Therefore, we have 

&(A&/-. 

(*I 

(**I 
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In order for equality to hold, all inequalities in 

equalities. In particular, from (*) we must have that 

the above argument must be 

&di 1 Xf= i C Xi" 
j:a,j=O i+j i= 1 j_a,j=O i# j 

Hence, either di = 1 or di = n - 1 (1~ i < n), which implies either 

(a) G is the star K1,,_l, or 

(b) G is the complete graph K,. 
Conversely, it is easy to verify that the equality is satisfied by the graphs K1,,_ 1 

and K,. 

Remark. Inequality (**) holds for all graphs without isolated vertices. Since e=(i) 

implies ( - 1 + J1+8e)/2 = k - 1 and e < (5) implies (dm < (- 1+ ,/m)/2, 

the upper bound in (7) is an improvement on the upper bound in (6) while the upper 

bound in (5) is a special case of the upper bound in (6). 

Now let D be a digraph, let d+(u) and d-(u) be the out-degree and in-degree, 

respectively, of the vertex v in D. A digraph is said to be ‘balanced’ if d+ (v) =d- (v) for 

every vertex v in D. An undirected graph G can be considered as a symmetric diagraph 

D = D(G), such that there are two arcs (u, u) in D for every edge (u, u) in G. 

Let D be a balanced strongly connected digraph with n vertices and m arcs. Let A be 

the adjacency matrix of D. Then the spectral radius n,(D) of A(D) satisfies 

with equality iff D is the star K1,,_l or the complete graph K,. 
We now give some open problems on the spectral radius of a graph. 

Problem 1: Let G be a connected planar graph with yt vertices. We already know 

[IS] that 

where G* is the maximum planar graph (a planar graph G* is called maximal planar 

graph if, for every pair of nonadjacent vertices u and v of G*, the graph G* +uu is 

nonplanar on n vertices. What is the spectral radius of a graph G*? 

Problem 2: Let G be a connected graph with n vertices and chromatic number k. We 

already know that 

k- 1 <&(G)<(k- l)n/k. 

what is the best possible lower bound? 

Problem 3: Let G be a simple connected nonregular graph with n vertices and 

e edges. We denote by 6(G) and A(G) the minimum and the maximum degree, 

respectively, of G. If G has the smallest possible spectral radius, is it true that A - 6 6 l? 
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Problem (proposed by Brualdi and Li [Z]): Let T, denote a tourament with 

n vertices and A(T,)=(aij), the adjacency matrix of T,, where Uij= 1 if there is an arc 

from Vi to Uj and 0 otherwise. IS it true that A1 ( Fn) < A1 (T,,) < 2, (T,) where 

A(Fn)= 

A@‘,)= 

0 1 0 0 

0 0 1 0 

1 0 0 1 0 

1 0 0 1 . 

. . . 

. . . . . 

. . . 0 

. . . 1 

1 1 0 0 

0 1 
001 

00 1 II 

0 . . . . . 1 

0 0 0 

10 

1 
10 
1 1 0 O0 

. . . . . . 
. . 0 

Il.. . 1 1 

oo... 0 
100.. 

100. . 

1 
. * . . 

. * 0 
1 1 0 

0 1 1 

001 
00 11 

. . 

0 
. . . 
. . 1 

0 0 0 

3. Some results on d,(G) 

(1) (Brigham and Dutton Cl]). 

- J(2e(i-l)/n(n-i+l))<li(G)<,/‘@&Z)JZ) (l<i<n). 

(2) (Constantine [7], Hong [14] and Powers [17]). Let G be a simple graph with 

n vertices. Then 

k”(G) 3 - &J/2) C(n I- 1Y2.1, 

where [x] denotes the largest integer not greater than x. The equality holds ilI G is the 

complete bipartite graph Kln/21 I(,,+ n/21. 
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Proof. Let X=(x1,x2,... , x,)~ be an unit length eigenvector of A(G), corresponding 

to the eigenvalue A,(G). Without loss of generality, we assume that x1, x2,. . . ,x, are 

positive and x,+ 1, . . . , x, are nonpositive. Let b =n--a, then E,,(G) is the smallest 

eigenvalue of A(G), and we have 

A,(G)= i i UijXiXj> 1 akIXkXI 
i=J j=l x*x, < 0 

3 ‘6d&b) 

2 ~nW[n/Zl [(n+ 1)/21) 

= -J[n/2].[(n+ 1)/2]. 

In order for the equality to hold, all inequalities in the above argument must be 

equalities. It follows that the equality holds if and only if G is the complete bipartite 

graph Ktn/21 Icn+ i),~]. 
(3) (Hong [13]). Let G be a tree, then 

0 G l,(G) ,< J[(n -2)/i] (2 < i d [~421), 

where [x] denotes the largest integer not greater than x. The upper bound is best 

possible for IZ E 1 (mod i). 

(4) (Godsil [ 111). Let F be a forest of order 2s with a perfect matching. Then 

A(F) 3 UP,,) 

with equality iff F gPzs, where Pz, is the path on 2s vertices. 

(5) (Hong [16]). Let F be a forest with n vertices, R(F) be the smallest positive 

eigenvalue of F, and t the largest integer not greater than n/2. Then 

l(F) 2 i,(Pz,) = 2 cos(tn/(2t + 1)) 

where Pzt is a path on 2t vertices. The equality holds iff a is even and F z P,,. 
Denote by S’J,- ’ (A <n-2) the tree with n vertices obtained from the star 

K 1, A- 1 and the path P,_ d by connecting a vertex of degree one on P,_ d with the 

vertex of degree A - 1 on Ki, d- 1. 

(6) (Hong [16]). Let Tbe a tree with n vertices which is neither the star K,,,_ 1 nor 

the tree Si_ Z. Then &(T) 3 1 

T be a tree of order n with the size of the maximum Conjecture (Hong [16]). Let 

matching 4. If k d q, then 

~k(T)~~k(S,2%+2) 

with equality iff TrS,2!;,2+2. 
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(7) (Chen and Cao [S]). Let F be a forest with edge-independence number q. Then 

for 1 < id [q/2] 

&+1pl+~(F)a2 cos(2ni/(4i+ 1)) for even q, 

/21(4+1),2,+i(F)32cos(2(i+l)n/(4i+3)) for odd q, 

where [x] denotes the largest integer not greater than x. 

(8) (Shao [lS]). Let G be a tree on n vertices. Then 

ii(G) < ,/[$I - 1 (2 d i d [n/2]), 

where [Ix] denotes the largest integer not greater than x. The upper bound is the best 

possible for n f O(mod i). 

(9) (Hong [14] and Powers [17]) 

-1 <&(G)<((n-2)/2. 

The lower bound occurs only when G is the complete graph K, and the upper bound 

occurs only when n is even and G 2 2K,,, . 
Let G be a simple connected graph with na2 vertices. Then 

- 1 G&(G) < - 1 --;In(K[n/z),[(n+1)/21 -e) 

<J/-4-1, 

where e is an edge of Kt,,;zl, CC,,+ n/27. 

Problem: Find the best possible lower and upper bounds for the kth eigenvalue of 

graphs with n vertices. 

For other results on the bounds of eigenvalues of graphs, see [8-lo]. 
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