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Analysis of multiclass Markovian polling systems with
feedback and composite scheduling algorithms

Tetsuji Hirayama

Abstract We consider multiclass Markovian polling systems with feedback and an-

alyze their average performance measures. Scheduling in polling systems has many

applications in computer and communication systems. We utilize the framework that

has been effectively used to analyze various composite scheduling algorithms in many

types of multiclass queues systematically in conjunction with the functional computa-

tion method (Hirayama, 2003, 2005, 2009a, 2010).

We define the conditional expected values of the performance measures such as the

sojourn times as functions of the system state and find their expressions by solving some

equations. Then from these expressions, we derive the average numbers of customers

and the average sojourn times for all service stages of customers circulating the system.

We consider their application to a packet scheduling problem where multiple categories

of packets share a resource.

Keywords Multiclass queues · Feedback · Markovian polling · Packet scheduling

1 Introduction

Multiclass queueing systems have been extensively studied to analyze packet schedul-

ing problems in computer communication networks (Kleinrock, 1976). These systems

have multiple classes of customers with various features in quantities such as arrival

rates, service times, feedback probabilities and service paths, and have many kinds of

scheduling algorithms such as priorities and server allocation policies. They are pow-

erful tools for performance evaluation because they can analyze detailed structures of

communication networks with many types of application packets and scheduling algo-

rithms. Our aim is to develop the method of analyzing full-scale multiclass queueing

models that can investigate real packet scheduling problems in detail.
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We consider a two level classification of customers where there are multiple groups

(stations) each of which comprises multiple classes of customers. A single server visits

a group at a time, and then some customers in the group are admitted into the service

facility and are served according to some service order that utilizes their classes. Hence

the scheduling algorithms for the multiclass queues are effectively prescribed by the

following items.

1. Selection (or visiting) orders of groups by the server.

2. Customer selection rules used when the server admits customers in each group into

the service facility.

3. Service orders of customers in the service facility.

Typical selection orders of groups are a priority order and a (cyclic) polling order. There

are many types of customer selection rules, e.g., gated, exhaustive and 1-limited. There

are also many service orders of customers, e.g., FCFS, priority, PS (processor sharing),

LAS (least attained service first), SJF (shortest job first), etc. The DRR (discriminatory

round robin) considered in (Hirayama, 2010) is another example. (Note that not all of

these combinations can be analyzed by our method.)

This framework for scheduling algorithms has been effectively used to analyze vari-

ous composite scheduling algorithms in many types of multiclass queues systematically

in conjunction with the functional computation method ((Hirayama, 2003, 2010) for

the multiclass priority systems with feedback, (Hirayama, 2005) for the multiclass

cyclic polling systems with feedback). We also use this framework to analyze multi-

class Markovian polling systems with feedback in this paper. A similar framework was

considered later in (Wierman et al., 2007; Boxma et al., 2009) to analyze scheduling

in polling systems. Because in our models we treat only the average values of the per-

formance measures, e.g., the average numbers of customers and the average sojourn

times, we often do not explicitly mention whether or not distributions of performance

measures were considered in the existing models taken up in this section.

Priority order is a major one of the selection orders of groups. Many researchers have

investigated multiclass queueing systems with priority. Kleinrock (1976) extensively

investigated the systems and their applications to packet scheduling problems. These

multiclass systems have been extended to the systems with feedback where customers

can receive multiple services by returning to the systems several times. The Bernoulli

feedback systems with multiple groups considered in (Choi et al., 2000; Doshi and

Kaufman, 1988) are these systems where service times, feedback probabilities, and the

other statistical quantities of customers in each group, respectively, are independent

and identically distributed at all of their service stages. In the systems (Jewkes and

Buzacott, 1991; Van den Berg et al., 1989), statistical quantities and priorities at all

service stages of customers can be different, but all customers essentially belong to a

single group.

The feedback systems in (Paterok et al., 1989; Simon, 1984) have multiple groups

with the 1-limited customer selection rule where statistical quantities and priorities

at all service stages of customers in every group can be different. These systems were

extended to the Markovian feedback system (Hirayama, 2003) that has multiple classes

in each group with the gated rule as a customer selection rule and with FCFS order

and priority order as service orders of customers in the service facility. In (Hirayama,

2010) the system was further extended to the system with mixtures of the 1-limited,

the gated, and the exhaustive customer selection rules.
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The other major selection order of groups is (cyclic) polling order. The cyclic polling

systems with a single class in each group were considered in many papers ((Cooper,

1970; Cooper and Murray, 1969) for the systems with zero switchover periods, (Eisen-

berg, 1972) for the system with nonzero switchover periods). Although these papers

utilized the buffer occupancy method (BOM), which has been the major method for

analyzing the polling systems, many other methods have also been investigated. The

station time method (STM) (Ferguson and Aminetzah, 1985), the functional compu-

tation method (FCM) (Hirayama et al., 2004), and the mean value analysis (MVA)

(Winands et al., 2006) have been developed. The descendant set method which is a

variation of BOM was considered in (Konheim et al., 1994), and was used to ana-

lyze polling systems with simultaneous batch arrivals in (Van der Mei, 2002). Another

method was also considered in (Sarkar and Zangwill, 1989). These variations and the

methods of analysis were surveyed in (Levy and Sidi, 1990; Takagi, 1986).

The cyclic polling systems have also been extended to the systems with feedback.

The symmetric polling system with Bernoulli feedback was analyzed by the stochastic

decomposition property in (Takine et al., 1991). The two-stage tandem system with

multiple customer groups discussed in (Katayama, 1992), which was analyzed by the

standard embedded Markov chain approach, is a variation of the cyclic polling system

with feedback. Sidi et al. (1992) analyzed by BOM the cyclic polling system with

Markovian feedback that has a single class in each group. Hirayama (2005) extended it

to the system that has multiple classes in each group with the gated or the exhaustive

rule as customer selection rules and with FCFS or priority order as service orders of

customers in the service facility, and analyzed the system by FCM.

Although the cyclic polling order is a typical selection order of groups by the

server, we can consider the other polling orders. A system with a general deterministic

order was investigated by STM in (Baker and Rubin, 1987). A system with a random

order (Kleinrock and Levy, 1988), and a system with a general probabilistic order

(Srinivasan, 1991) were analyzed by BOM. Hirayama (2009a) investigated a system

with a Markovian order by FCM, and calculated its computational complexity. In this

paper we further extend it to the system with Markovian feedback that has multiple

classes in each group with the gated or the exhaustive rule as a customer selection

rule and with FCFS or priority order as a service order in the service facility. Such

general polling orders can give preferential treatments to some groups of customers

by appropriately arranging the frequencies that the server visits them. In Section 7,

we give such examples in a packet scheduling problem. To the best of our knowledge,

this Markovian polling system with feedback and with the two level classification of

customers has not been investigated.

Concerning customer selection rules, the gated rule and the exhaustive rule have

commonly been used in many of the papers. One of the other rules, the 1-limited rule,

is fairly difficult to analyze except for some special cases (Levy and Sidi, 1990). The

symmetric polling system with the 1-limited rule and Bernoulli feedback was analyzed

in (Takine et al., 1991). The other (analyzable) variations, the binomial gated rule

and the globally gated rule, were investigated by BOM in (Levy, 1991) and by the

cycle time analysis in (Boxma et al., 1992), respectively. Strictly speaking, because the

globally gated rule is outside the above framework, we somewhat need to modify it in

order to treat the rule.

The only service order of customers (in the service facility) in the polling systems

has been FCFS for a long time, because there has been a single class in each group.

Recently several service orders in each group with multiple classes of customers have
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been considered. The mean sojourn times in the cyclic polling system with the gated

and the exhaustive groups that have several service orders including priority, PS and

SJF were analyzed by MVA in (Wierman et al., 2007). The LSTs of the sojourn time

distributions in the cyclic polling system with either the gated or the globally gated rule

and with several service orders including PS and SJF were obtained in (Boxma et al.,

2009) by combining the method developed by Resing (1993) for branching type selection

rules and the cycle time analysis. Further the LSTs of the sojourn time distributions

in the cyclic polling system with either the gated, the exhaustive or the globally gated

rule in which customers in each group are served in a priority order were obtained in

(Boon et al., 2010) by combining the above Resing’s method, the cycle time analysis

and the decomposition property. The average sojourn times in the cyclic polling system

with feedback that has the gated and the exhaustive rules and has FCFS and priority

service orders were obtained in (Hirayama, 2005) by FCM. In this paper we extend it

to Markovian polling systems.

PS and LAS are “infinitesimal quanta algorithms” where all relevant customers are

served simultaneously by dividing their service times into infinite numbers of infinites-

imal service quanta. In contrast to these algorithms, we can consider “positive quanta

algorithms” where a service time of each customer is divided into a finite number of

positive service quanta and where all relevant customers receive their quanta one af-

ter another until they complete their services. We can model these positive quanta

algorithms by the feedback systems. DRR considered in (Hirayama, 2010) is a positive

quanta version of DPS (discriminatory processor sharing) (Altman et al., 2006) which

is a multiclass extension of PS. DPS is used to approximate the actual packet schedul-

ing algorithms like WFQ (weighted fair queue) (Aalto et al., 2007). In (Hirayama,

2010) DRR was combined with the priority selection order to approximate the actual

scheduling algorithms like LLQ (low latency queue) and IP-RTP priority that combine

WFQ with PQ (priority queue). We can also combine DRR with the polling selection

orders.

From the perspective of the mathematical analysis, we use the functional compu-

tation method (FCM) which has been developed in order to analyze performance of

many M/G/1 type multiclass queues and various scheduling algorithms. This method

was used to analyze the polling system (Hirayama et al., 2004) and its extension to

the multiclass polling system with feedback (Hirayama, 2005). Further it was used to

analyze the multiclass feedback queue with priority order and the gated selection rule

(Hirayama, 2003) and its extension to the system with mixtures of the 1-limited, the

gated and the exhaustive selection rules (Hirayama, 2010).

The main differences between the classical methods (e.g. BOM and STM) and

FCM are as follows. These classical methods analyze evolution of the system states

along time and derive the equations satisfied by their moments (or transforms of their

distributions). The system states of BOM are numbers of customers at polling instants,

and those of STM are terminal service times each of which consists of a service period

and a switchover period. Then the average waiting times can be derived by relating

them to these moments of the system states. On the other hand, the analysis of FCM

is accomplished as follows. By observing any one of customers, its expected sojourn

times conditioned on its arrival epochs (or its related polling instants) are derived step-

by-step (often by solving equations). Then the average sojourn times are derived by

averaging those conditional expected sojourn times of all customers, and the average

number of customers are derived by the Little’s formula and the PASTA property. The

relationship between BOM and FCM was given in (Hirayama et al., 2004; Hirayama,
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2005). The other difference is their ranges of analysis. These classical methods can

only analyze polling systems while FCM can analyze not only polling systems but also

priority systems and feedback systems (as described above).

The whole analysis of a queueing system by FCM is carried out by adequately

combining analysis common to various systems and analysis intrinsic to the individual

system. First the states of the system are defined, and then its performance measures

such as the conditional expected sojourn times are defined as functions of the states.

The performance measures and their components are related by some equations (e.g.

the feedback equations and the polling equations). Expressions for these components

are derived by analyses intrinsic to the system, whereas expressions for the performance

measures are derived from these equations whose solution methods are common to

various systems. Further steady state values of the performance measures are obtained

from these expressions by applying some common limiting procedures, the Little’s

theorem and the PASTA property.

These common parts of the analysis give the excellent characteristics that our

method can analyze various systems. But when we investigate any individual system,

we should use its individual structures in order to give its concrete model description

such as the system states and the performance measures, and in order to obtain their

expressions and their steady state values in detail. For example, the analysis of busy

periods and delay cycles is used to analyze the priority systems (Hirayama, 2003, 2010),

whereas the analysis of numbers of customers at polling instants is used to analyze the

polling systems (Hirayama, 2005; Hirayama et al., 2004). It is the linear functional

expressions that closely link the common parts with the individual parts.

To see these excellent characteristics, we can compare the expressions in equations

(5.12) and (5.13) in (Hirayama, 2005) with the expressions in equations (60) and (61) in

(Hirayama, 2010). These expressions are essentially the same except for those related to

the switchover periods (k ∈ Πs in (5.12)) despite the considerable structural differences

between the former polling system and the latter priority system. However the deriva-

tion procedures of the expressions for their coefficients (φi,α(·),wi,α(·), wi,α(·), etc.)
in these two systems are of course fairly different. Another advantage of the method is

that similar analysis can be applied to both of the systems with switchover times and

without switchover times.

The paper is organized as follows. In Section 2 we describe our model of the mul-

ticlass Markovian polling systems with feedback. We define the system structures and

the scheduling algorithms in detail along the framework given above. Then we define

the system states and the conditional expectations of the performance measures. In

Section 3 we analyze service periods of every station for all scheduling algorithms.

In Section 4 the components of the expected performance measures and their related

quantities at every service stage of a tagged customer are analyzed. In Section 5 we

obtain the linear functional expressions for the conditional expectations of the per-

formance measures. Then we consider their steady state average values in Section 6.

We consider an application to a packet scheduling problem where three categories of

packets share a resource in Section 7. We construct the four scheduling algorithms and

compare their performance. The algorithm for calculating the performance measures

and its computational complexity are given in the appendices.
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2 Model Description

In this section, we describe our model of the multiclass queues.

2.1 The system structures and the parameters

There are J groups of customers and Li classes of customers in group i. (i, α)-customers

(belonging to class α in group i) arrive at station i from outside the system according

to a Poisson process with rate λi,α. Let S = {(i, α) : i = 1, . . . , J and α = 1, . . . , Li},
Jc =

∑J
i=1 Li, and λ =

∑J
i=1

∑Li

α=1 λi,α. All customers, whose arrival rate is λ, are

numbered in order of arrival where ce and τe0,0 denote the eth arriving customer itself

and its arrival epoch, respectively (e = 1, 2, . . .). (We use τel,ℓ (l, ℓ = 0, 1, 2, . . .) to

denote the typical time epochs related to ce, whose definitions are given below. Also

see Fig.1.)

Each arriving customer receives service many times while changing its group and

class. A service stage is a time period from when a customer arrives at a station until

it completes a service at the station. Let Si,α be a service time an (i, α)-customer

receives during a service stage whose mean and second moment are E[Si,α] > 0 and

s2i,α, respectively. After completing a service, an (i, α)-customer either returns to the

system as a (j, β)-customer with probability pi,α,j,β or departs from the system. The

feedback probability matrix is given by P = (pi,α,j,β : (i, α), (j, β) ∈ S). We assume

that Pn → O as n → ∞. Then let Ti,α be a total amount of service times received by

a customer from when it becomes an (i, α)-customer until it departs from the system.

Its expected value T i,α satisfies the following equation.

T i,α = E[Si,α] +

J∑
k=1

Lk∑
γ=1

pi,α,k,γT k,γ , (i, α) ∈ S. (1)

Then, let ρ =
∑J

i=1

∑Li

α=1 λi,αT i,α < 1 be the resource utilization of the system.

A single server visits these stations according to a Markovian polling order. That

is, for any i = 1, . . . , J , when the server completes necessary services of customers at

station i (defined below as a period i), one of the following two cases occurs:

– If the system is not empty, the server selects station j with probability p̂ij and then

visits it immediately (j = 1, . . . , J). If the visiting station j is not empty, the server

begins services of its customers; while if it is empty, the server again selects station

k immediately according to the probability p̂jk and then visits it (k = 1, . . . , J),

and so on. This process continues until the server reaches a non-empty station.

– If the system is empty, the server becomes idle. At the next time a customer arrives,

the server immediately starts its service.

All switchover times spent when the server moves between stations are assumed to

be 0. The server cannot be idle whenever the system is not empty. Let P̂ = (p̂ij :

i, j = 1, . . . , J) be the switching probability matrix. We assume that the Markov chain

generated by the transition probability matrix P̂ is irreducible.

The system is separated into two parts, which are called the “service facility” and

the “waiting room.” There is a gate at each station between the set of its queues in

the waiting room and the set of its queues in the service facility, which intercepts the
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migration of customers between them. Each customer arriving at each station from

outside the system or by feedback enters its queue in the service facility when its gate

is opened; otherwise, it enters its queue in the waiting room.

The server visits one of the stations at a time, and then opens its gate in order

to admit some customers at the station to its queues in the service facility. Then, the

server serves the customers in the service facility until the server empties it, and then

visits another station and opens its gate. Since the gates of the stations that are not

visited by the server are closed, all customers at such stations must wait for service

in the waiting room. Once a customer begins a service, it is not interrupted by other

customers (that is, each service in each service stage is non-preemptive).

Each time interval from when the server visits a station until the first time the

server empties the service facility is called a “service period.” Each time interval when

the server is idle is called an “idle period.” We use an abbreviated term “period k”

to denote a service period during which the server visits station k if k ̸= 0 or an idle

period if k = 0. Let Π = {1, . . . , J} be the set of indices of the service periods.

2.2 The scheduling algorithms

Customers in the system are served according to a predetermined scheduling algorithm.

As we explained in Introduction, it is prescribed by (1) selection orders of the groups

(stations) by the server, which is the Markovian polling as described before; (2) cus-

tomer selection rules in each group, which is either the gated or the exhaustive; (3)

service orders of customers in the service facility, which is either the FCFS, or the fixed

priority (FP). He, HeF and HeP denotes the set of the groups with the exhaustive rule

(the exhaustive groups), the set of this groups with the FCFS order (the exhaustive

FCFS groups) and the set of this groups with the FP order (the exhaustive priority

groups), respectively. Hg,HgF ,HgP are similarly defined for the groups with the gated

rule.

For any gated group, the gate is opened just when the server polls the group,

and all customers staying in the group at this polling instant are admitted into the

service facility, and then the gate is closed immediately. For any exhaustive group,

the gate is opened just when the server polls the group, and it remains open and all

customers staying in the group are admitted into the service facility until it is cleared of

customers. For the FCFS service order, both of exogenous arrival epochs and feedback

arrival epochs are considered to be the “coming” epochs which are used to decide its

service order. That is, every customer arriving (exogenously or by feedback) at any

group with the FCFS order joins the tail of its queue. For the FP order, customers in

each group have the local nonpreemptive priority order where class α customers have

priority over class β customers if α < β and the order is effective only within the group.

2.3 The system states

Let us consider the system operating under a specified scheduling algorithm. For a

while, we give attention to ce arriving at τe0,0 (e = 1, 2, . . .). Then let τel,0 be the time

just when, after completing its lth service stage, it arrives (by a feedback) at one of the

stations or departs from the system (l = 1, 2, . . .). Further let {τel,ℓ : ℓ = 1, 2, . . .} be

a sequence of all polling instants (i.e., service period beginning epochs) of all stations
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Fig. 1 Arrival epochs and polling instants related to ce

which occur after the ce’s arrival epoch τel,0 (see Fig.1). We assume that τel,0 ≤ τel,1 ≤
τel,2 ≤ · · ·. At ce’s arrival epoch τel,0, if the system is empty (when l = 0) or a service

period ends (when l > 0), then a polling instant occurs immediately and τel,0 = τel,1.

The stochastic process with state space E is defined by

Q = {Y(t) = (κ(t), a(t), r(t),g(t),n(t), L(t)) : t ≥ 0} (2)

where

– (κ(t), a(t)) ∈ S ∪{(0, 0)} is the status of the server at time t, that is, a (κ(t), a(t))-

customer is being served if κ(t) ∈ Π, or the server is idle if κ(t) = 0,

– r(t) is the remaining service time at time t of a customer being served if κ(t) ∈ Π,

or is equal to 0 if κ(t) = 0,

– g(t) = (gi,α(t) : (i, α) ∈ S) ∈ R1×Jc where gi,α(t) is the number of (i, α)-customers

in the service facility at time t (who are not being served),

– n(t) = (ni,α(t) : (i, α) ∈ S) ∈ R1×Jc where ni,α(t) is the number of (i, α)-

customers in the waiting room at time t,

– L(t) is the other information of the system.

Let Xe
S(t) denote the two-dimensional value of (group, class) of ce at time t, or Xe

S(t) =

(0, 0) if it does not stay in the system at time t. We use the term “the system state at

time τel,ℓ” to denote Y(τel,ℓ) if ℓ > 0 or denote Y(τel,0−) if ℓ = 0. For simplicity, we use

the notation (j, β,Y)el,ℓ to denote the status (Xe
S(τ

e
l,ℓ) = (j, β),Y(τel,ℓ) = Y) if ℓ > 0,

or the status (Xe
S(τ

e
l,0) = (j, β),Y(τel,0−) = Y) if ℓ = 0.

We use the notation (g,n) ∈ R1×2Jc to denote a generic value of the vector of the

numbers of customers at any time epoch (g = (gi,α : (i, α) ∈ S),n = (ni,α : (i, α) ∈
S)). Further we often use the notations 1(r) = 1{r > 0} and 1i,α(j, β) = 1{(i, α) =

(j, β)} where 1{·} ∈ R is an indicator function and r denotes a generic value of the

remaining service time of a customer being served currently.

Note. We assume that at any polling instant τel,ℓ (ℓ > 0), all gates are closed and all

customers are in the waiting room, and then immediately after the instant, the gate

of the station visited by the server is opened and its customers are admitted into the

service facility.

2.4 The performance measures

We define two types of the system performance measures of customer ce (e = 1, 2, . . .).

First type of them are related to the waiting times of customer ce in the waiting room.
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We define

Ce
Wi,α(t) =

{
1, if ce stays in the waiting room as an (i, α)-customer at time t,

0, otherwise,

for any t ≥ 0 and (i, α) ∈ S. Then we define

He
i,α(k) =

∫ ∞

0

Ce
Wi,α(t)1{κ(t) = k}dt, (i, α) ∈ S, k ∈ Π, (3)

W e
i,α =

J∑
k=1

He
i,α(k) =

∫ ∞

0

Ce
Wi,α(t)dt, (i, α) ∈ S, (4)

where 1{·} is an indicator function. He
i,α(k) is the waiting time that ce spends in the

waiting room as an (i, α)-customer while the system is in period k. W e
i,α is the waiting

time that ce spends in the waiting room as an (i, α)-customer.

We would like to obtain the following expected waiting times conditioned on the

state of the system at time τel,0.

Hi,α(j, β,Y, e, l, k) = E

[∫ ∞

τe
l,0

Ce
Wi,α(t)1{κ(t) = k}dt (j, β,Y)el,0

]
, (5)

for (i, α), (j, β) ∈ S; Y ∈ E ; l = 0, 1, 2, . . .; k ∈ Π. (For convenience, we define

Hi,α(0, 0,Y, e, l, k) = 0.) Further we define the following related conditional expected

waiting times.

H1
j,β(Y, e, l, ℓ, k) = E

[∫ τe
l+1,0

τe
l,ℓ

Ce
Wj,β(t)1{κ(t) = k}dt (j, β,Y)el,ℓ

τel,ℓ < τel+1,0

]
, (6)

H0
j,β(Y, e, l, ℓ, k) = E

[∫ τe
l,ℓ+1

τe
l,ℓ

Ce
Wj,β(t)1{κ(t) = k}dt (j, β,Y)el,ℓ

τel,ℓ < τel+1,0

]
, (7)

for (j, β) ∈ S; Y ∈ E ; l, ℓ = 0, 1, 2, . . .; k ∈ Π. The condition τel,ℓ < τel+1,0 denotes

that during [τel,0, τ
e
l,ℓ], c

e has not been served and its group and class have not been

changed. H1
j,β(Y, e, l, ℓ, k) is the expected waiting time ce spends during [τel,ℓ, τ

e
l+1,0)

in a service stage and H0
j,β(Y, e, l, ℓ, k) is the expected waiting time ce spends during

a service period [τel,ℓ, τ
e
l,ℓ+1) (while the system is in period k). Then the following

equations hold.

Feedback equation.

Hi,α(j, β,Y, e, l, k)

=


H1

j,β(Y, e, l, 0, k)

+E[Hi,α(X
e
S(τ

e
l+1,0),Y(τel+1,0−), e, l + 1, k)|(j, β,Y)el,0], (i, α) = (j, β),

E[Hi,α(X
e
S(τ

e
l+1,0),Y(τel+1,0−), e, l + 1, k)|(j, β,Y)el,0], (i, α) ̸= (j, β),

(8)

for Y = (κ0, a0, r,g,n, L) ∈ E ; (i, α), (j, β) ∈ S; l = 0, 1, 2, . . . and k ∈ Π.
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Polling equation.

H1
j,β(Y, e, l, ℓ, k)

=


H0

j,β(Y, e, l, ℓ, k)

+E[H1
j,β(Y(τel,ℓ+1), e, l, ℓ+ 1, k)|(j, β,Y)el,ℓ, τ

e
l,ℓ < τel+1,0],

if (κ0 ̸= j, κ0 ∈ Π) or (κ0 = j ∈ Hg, ℓ = 0),

0, if (κ0 = j ∈ He) or (κ0 = j ∈ Hg, ℓ > 0) or (κ0 = 0, l = 0, ℓ = 0),

(9)

for Y = (κ0, a0, r,g,n, L) ∈ E ; (j, β) ∈ S; l, ℓ = 0, 1, 2, . . . and k ∈ Π.

The second type of the performance measures are related to the sojourn times of

customer ce in the service facility. We define for any t ≥ 0 and (i, α) ∈ S,

Ce
Fi,α(t) =

 1, if ce stays in the service facility or receives

a service as an (i, α)-customer at time t,

0, otherwise.

The sojourn time (i.e., the waiting time plus the service time) that ce spends in the

service facility as an (i, α)-customer is defined by

F e
i,α =

∫ ∞

0

Ce
Fi,α(t)dt, (i, α) ∈ S. (10)

The expected sojourn time in the service facility conditioned on the state of the

system at time τel,0 is defined by

Fi,α(j, β,Y, e, l) = E

[∫ ∞

τe
l,0

Ce
Fi,α(t)dt (j, β,Y)el,0

]
, (11)

F 1
j,β(Y, e, l) = E

[∫ τe
l+1,0

τe
l,0

Ce
Fj,β(t)dt (j, β,Y)el,0

]
, (12)

for Y ∈ E , (i, α), (j, β) ∈ S. (For convenience, we define Fi,α(0, 0,Y, e, l) = 0.) Then

the feedback equation for Fi,α(·) similar to equation (8) holds. (For this type of the

performance measures, we do not explicitly set up a polling equation.)

3 Analysis of Service Periods of Stations

In this section we obtain the conditional expected waiting times H0
j,β(·, e, l, ℓ, ·) of the

customer ce assuming that it is a (j, β)-customer at epoch τel,ℓ (e = 1, 2, . . . ; (j, β) ∈
S; l, ℓ = 0, 1, 2, . . .). We also consider the expected numbers of customers at the next

polling instant τel,ℓ+1.

Now let us consider an (i, α)-customer staying at station i ((i, α) ∈ S). Let T δ
i,α be

the total amount of service times the customer receives until the first time it departs

from the set of classes (i, 1), . . . , (i, δ) at station i after at least receiving its initial

service time as an (i, α)-customer (δ = 0, 1, . . . , Li). Let T
δ
i,α be its expected value and
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T
δ
i,α(r) be its expected value conditioned on its initial remaining service time r as an

(i, α)-customer. They satisfy the following equations.

T
δ
i,α = E[Si,α] +

∑δ
β=1 pi,α,i,βT

δ
i,β ;

T
δ
i,α(r) = r +

∑δ
β=1 pi,α,i,βT

δ
i,β ;

(13)

for (i, α) ∈ S and δ = 0, 1, . . . , Li. (The empty sum which arises when δ = 0 is equal

to 0.) Then let ϱ+i,δ =
∑δ

α=1 λi,αT
δ
i,α.

Let Ni,α,k,γ be the number of (k, γ)-customers who arrive during a service period of

station i starting with an (i, α)-customer, and who still stay at station k at the service

period completion epoch. Then its expected value and its expected value conditioned

on the remaining service time r of the initial (i, α)-customer respectively are denoted

by N i,α,k,γ and N i,α,k,γ(r). They satisfy the following equations.

N i,α,k,γ =


λk,γE[Si,α] + pi,α,k,γ , i ∈ Hg,

λk,γE[Si,α] + pi,α,k,γ

+
∑Li

β=1(λi,βE[Si,α] + pi,α,i,β)N i,β,k,γ , k ̸= i ∈ He,

0, k = i ∈ He,

(14)

N i,α,k,γ(r) =


λk,γr + pi,α,k,γ , i ∈ Hg,

λk,γr + pi,α,k,γ
+
∑Li

β=1(λi,βr + pi,α,i,β)N i,β,k,γ , k ̸= i ∈ He,

0, k = i ∈ He.

(15)

Finally we define the notion related to busy periods, which will be used in Section

4. For j ∈ HeP and δ = 0, 1, . . . , Lj , let a “(j, δ)-busy period” denote a period during a

service period of station j completed at the first time when all customers belonging to

classes (j, 1), . . . , (j, δ) clear. We assume that a (j, α)-customer can initiate a (j, δ)-busy

period even if α > δ. (Of course, all customers belonging to (j, δ+1), . . . , (j, Lj) other

than the initial customer do not receive any service during the (j, δ)-busy period.) In

particular, a (j, 0)-busy period is completed at the first time when a group j customer

being served currently completes its service, and a service period of station j is a

(j, Lj)-busy period. Then the expected length of a (j, δ)-busy period initiated with a

(j, α)-customer is given by T
δ
j,α/(1− ϱ+j,δ), (α = 1, . . . , Lj and δ = 0, 1, . . . , Lj).

3.1 Expressions for H0
j,β(·)

Let l, ℓ = 0, 1, 2, . . . and let Y = (κ0, a0, r,g,n, L) ∈ E be the system state at time

τel,ℓ where g = (gi,α : (i, α) ∈ S) and n = (ni,α : (i, α) ∈ S). We assume that ce is

a (j, β)-customer at this time, i.e., Xe
S(τ

e
l,ℓ) = (j, β). For κ0 ∈ Hg, since we need the

value only for (κ0 ̸= j, ℓ > 0) or (ℓ = 0), the other case is not considered.

H0
j,β(Y, e, l, ℓ, k) =



Lκ0∑
α=1

nκ0,αE[Sκ0,α], k = κ0, κ0 ̸= j, ℓ > 0,

r +

Lκ0∑
α=1

gκ0,αE[Sκ0,α], k = κ0, ℓ = 0,

0, otherwise.

(16)
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For κ0 ∈ He, since we need the value only for (κ0 ̸= j), the other case is not considered.

H0
j,β(Y, e, l, ℓ, k) =



∑Lκ0
α=1 nκ0,αT

Lκ0
κ0,α

1− ϱ+κ0,Lκ0

, k = κ0, κ0 ̸= j, ℓ > 0,

1(r)T
Lκ0
κ0,a0

(r) +
∑Lκ0

α=1 gκ0,αT
Lκ0
κ0,α

1− ϱ+κ0,Lκ0

, k = κ0, κ0 ̸= j, ℓ = 0,

0, otherwise.

(17)

3.2 System State at the Next Polling Instant τel,ℓ+1

Let l, ℓ = 0, 1, 2, . . . and let Y = (κ0, a0, r,g,n, L) ∈ E be the system state at time τel,ℓ
where g = (gi,α : (i, α) ∈ S) and n = (ni,α : (i, α) ∈ S). We consider the system state

at the next polling instant τel,ℓ+1.

When we consider the system state (especially, the numbers of customers) at the

next polling instant, we consider the following cases according to κ0. For κ0 ∈ Hg, we

can show that

E[nm,γ(τ
e
l,ℓ+1)|κ(τ

e
l,ℓ+1) = κ1, (j, β,Y)el,ℓ, τ

e
l,ℓ < τel+1,0]

=


nm,γ +

∑Lκ0
α=1 nκ0,αNκ0,α,m,γ , m ̸= κ0, (ℓ > 0),∑Lκ0

α=1 nκ0,αNκ0,α,m,γ , m = κ0, (ℓ > 0),

nm,γ + 1m,γ(j, β) + 1(r)Nκ0,a0,m,γ(r)

+
∑Lκ0

α=1 gκ0,αNκ0,α,m,γ , (ℓ = 0),

(18)

for any (j, β), (m, γ) ∈ S; κ1 ∈ Π. For κ0 ∈ He, we have

E[nm,γ(τ
e
l,ℓ+1)|κ(τ

e
l,ℓ+1) = κ1, (j, β,Y)el,ℓ, τ

e
l,ℓ < τel+1,0]

=


nm,γ +

∑Lκ0
α=1 nκ0,αNκ0,α,m,γ , m ̸= κ0, (ℓ > 0),

nm,γ + 1m,γ(j, β) + 1(r)Nκ0,a0,m,γ(r)

+
∑Lκ0

α=1(gκ0,α + 1κ0,α(j, β))Nκ0,α,m,γ , m ̸= κ0, (ℓ = 0),

0, m = κ0, (ℓ ≥ 0),

(19)

for any (j, β), (m, γ) ∈ S; κ1 ∈ Π. Further for any (j, β), (m, γ) ∈ S; κ1 ∈ Π, we have

E[gm,γ(τ
e
l,ℓ+1)|κ(τ

e
l,ℓ+1) = κ1, (j, β,Y)el,ℓ, τ

e
l,ℓ < τel+1,0] = 0. (20)

3.3 The Linear Functional Expressions for the Quantities

From the analysis in this section, we have the following linear functional expressions

for the above expectations. In order to obtain these expressions, we define the following

constants.

h0
10(·) ∈ R2Jc×1; φ0(·) ∈ R2×1; h0

00(·) ∈ R2Jc×1;

U1(·) ∈ R2Jc×2Jc ; υ0(·) ∈ R2×2Jc ; U0(·) ∈ R2Jc×2Jc ; u0(·) ∈ R1×2Jc .

Their detailed definitions are given in Sub-section 9.1.
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Proposition 1 Let Y = (κ0, a0, r,g,n, L) ∈ E ; (j, β) ∈ S; e = 1, 2, . . . ; l, ℓ =

0, 1, 2, . . . and k, κ1 ∈ Π. Then we have

H0
j,β(Y, e, l, ℓ, k) =

{
(g,n)h0

10(κ0, j, k), ℓ > 0,

(r,1(r))φ0(κ0, a0, j, k) + (g,n)h0
00(κ0, j, k), ℓ = 0,

(21)

E[(g(τel,ℓ+1),n(τ
e
l,ℓ+1))|κ(τ

e
l,ℓ+1) = κ1, (j, β,Y)el,ℓ, τ

e
l,ℓ < τel+1,0]

=

{
(g,n)U1(κ0), ℓ > 0,

(r,1(r))υ0(κ0, a0) + (g,n)U0(κ0) + u0(κ0, j, β), ℓ = 0.
(22)

4 Analysis of Service Stages of a Customer

In this section we obtain the quantities related to each service stage of customer ce.

First we obtain the numbers of customers at the first polling instant of the station

ce stays in. Then we obtain the expressions for H1
j,β(·, k) and F 1

j,β(·) by solving the

polling equations. It can be shown that they have the linear functional forms. Finally

we obtain the expected values of the system state at the completion epoch of the service

stage.

4.1 Numbers of Customers at the First Polling Instant

For any l = 0, 1, 2, . . . and j ∈ Π, let us consider the event that customer ce arrives

at station j at time τel,0. Then let τel,Me
l

be the first time after τel,0 just when ce is

admitted into the service facility. Basically τel,Me
l
is the first polling instant of station

j after the arrival epoch, except for the following case.

– If κ(τel,0−) = j ∈ He, then τel,Me
l
= τel,0 and Me

l = 0.

(If κ(τe0,0−) = 0, that is, the system is empty just before τe0,0, then τe0,Me
0
is equal to

the first polling instant τe0,1(= τe0,0) and Me
0 = 1.) Then we define

νj,βk,γ(Y, e, l, ℓ) = E[nk,γ(τ
e
l,Me

l
)|(j, β,Y)el,ℓ, τ

e
l,ℓ < τel+1,0], (23)

νj,β(Y, e, l, ℓ) = (νj,βk,γ(Y, e, l, ℓ) : (k, γ) ∈ S) ∈ R1×Jc , (24)

for (k, γ), (j, β) ∈ S; Y ∈ E and l, ℓ ≥ 0.

In order to obtain the expressions for the above expectation, we define the following

constants.

Bj
1(·) ∈ R2Jc×Jc ; cj(·) ∈ R2×Jc ; Bj

0(·) ∈ R2Jc×Jc ; bj,β
0 (·) ∈ R1×Jc .

Their detailed definitions are given in Sub-section 9.2.

Proposition 2 The conditional expected numbers of customers at the first polling

instant (or arrival epoch) have the following expression.

νj,β(Y, e, l, ℓ) =

{
(g,n)Bj

1(κ0), ℓ > 0,

(r,1(r))cj(κ0, a0) + (g,n)Bj
0(κ0) + bj,β

0 (κ0), ℓ = 0,
(25)

for Y = (κ0, a0, r,g,n, L) ∈ E ; (j, β) ∈ S and l, ℓ ≥ 0.
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Proof: It can be shown that νj,βk,γ(·) satisfies the following polling equation.

νj,βk,γ(Y, e, l, ℓ) =


E[νj,βk,γ(Y(τel,ℓ+1), e, l, ℓ+ 1)|(j, β,Y)el,ℓ, τ

e
l,ℓ < τel+1,0],

if (κ0 ̸= j, κ0 ∈ Π) or (κ0 = j ∈ Hg, ℓ = 0),

nk,γ , if (κ0 = j ∈ He) or (κ0 = j ∈ Hg, ℓ > 0),

1k,γ(j, β), if κ0 = 0, l = 0, ℓ = 0,

(26)

for Y = (κ0, a0, r,g,n, L) ∈ E ; (k, γ), (j, β) ∈ S and l, ℓ ≥ 0.

We can show that νj,βk,γ(·) given by (25) satisfies the polling equation by direct

substitution and the use of Proposition 1. The uniqueness of the solution of the polling

equation is shown in Section 11.

4.2 The Linear Functional Expressions for H1
j,β(·) and F 1

j,β(·)

Now we give the linear functional expression for the performance measures H1
j,β(·) and

F 1
j,β(·) defined by equations (6) and (12). In order to obtain these expressions we define

the following constants.

hj
10(·) ∈ R2Jc×1;

φj(·),ηj,β(·) ∈ R2×1; hj
00(·), f

j,β(·) ∈ R2Jc×1; hj,β01 (·), fj,β(·) ∈ R.

Their detailed definitions are given in Sub-section 9.3.

Proposition 3 The expressions for the performance measures H1
j,β(·) and F 1

j,β(·)
have the following linear functional forms.

H1
j,β(Y, e, l, ℓ, k)

=

{
(g,n)hj

10(κ0, k), ℓ > 0,

(r,1(r))φj(κ0, a0, k) + (g,n)hj
00(κ0, k) + hj,β01 (κ0, k), ℓ = 0,

(27)

F 1
j,β(Y, e, l) = (r,1(r))ηj,β(κ0, a0) + (g,n)f j,β(κ0) + fj,β(κ0), (28)

for any (j, β) ∈ S; Y = (κ0, a0, r,g,n, L) ∈ E ; e = 1, 2, . . . ; l, ℓ = 0, 1, 2, . . . and

k ∈ Π.

Proof: For H1
j,β(·), by directly substituting the expression given by (27) and by using

Proposition 1, we can show that it satisfies the polling equation (9). The uniqueness

of the solution is shown in Section 11.

For F 1
j,β(·), let Y = (κ0, a0, r,g,n, L) ∈ E (g = (gi,α : (i, α) ∈ S),n = (ni,α :

(i, α) ∈ S)) be the system state at time τel,0, and we have

F 1
j,β(Y, e, l)− E[Sj,β ]
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=



∑Lj

α=1 nj,αE[Sj,α], j ∈ HgF ,∑Lj

α=1 nj,αE[Sj,α], j ∈ HeF & κ0 ̸= j,

r +
∑Lj

α=1 gj,αE[Sj,α], j ∈ HeF & κ0 = j,∑β−1
α=1 ν

j,β
j,α(Y, e, l, 0)E[Sj,α] + nj,βE[Sj,β ], j ∈ HgP ,∑β−1

α=1 ν
j,β
j,α(Y, e, l, 0)T

β−1
j,α + nj,βT

β−1
j,β

1− ϱ+j,β−1

, j ∈ HeP & κ0 ̸= j,

1(r)T
β−1
κ0,a0

(r) +
∑β

α=1 gj,αT
β−1
j,α

1− ϱ+j,β−1

, j ∈ HeP & κ0 = j,

for κ0 ∈ Π, and

F 1
j,β(Y, e, l)− E[Sj,β ] = 0,

for κ0 = 0 (l = 0).

Note that the quantity T
β−1
j,α /(1− ϱ+j,β−1) in the above expressions is the expected

length of the (j, β−1)-busy period starting with a (j, α)-customer. By substituting the

expression (25) into the above expression, the expression (28) is obtained.

4.3 Numbers of customers at the next feedback epoch

Let us consider the customer ce and its arrival epoch τel,0 (e = 1, 2, . . . ; l = 0, 1, 2, . . .).

Now we obtain the conditional expected numbers of customers at its next feedback

(or departure) epoch τel+1,0 given that Y(τel,0−) = Y = (κ0, a0, r,g,n, L) ∈ E and

Xe
S(τ

e
l,0) = (j, β) ∈ S (n = (nk,γ : (k, γ) ∈ S) and g = (gk,γ : (k, γ) ∈ S)).

These quantities are necessary for solving the feedback equations. Recall that the time

τel,Me
l
(≥ τel,0) is the first polling instant (or arrival epoch) when the server visits (or

already stays at) station j for ce’s service.

4.3.1 Gated groups

We consider the case: j ∈ Hg. The number nk,γ(τ
e
l+1,0−) is a sum of the following

(k, γ)-customers:

(1) (k, γ)-customers staying in the system at τel,Me
l
(if k ̸= j), and

(2) (k, γ)-customers arriving from outside or by feedback while ce stays in the service

facility.

Then we have

E[nk,γ(τ
e
l+1,0−)|(j, β,Y)el,0] (29)

=



νj,βk,γ(Y, e, l, 0) + λk,γF
1
j,β(Y, e, l) +

∑Lj

α=1 nj,αpj,α,k,γ , k ̸= j, j ∈ HgF ,

νj,βk,γ(Y, e, l, 0) + λk,γF
1
j,β(Y, e, l)

+
∑β−1

α=1 ν
j,β
j,α(Y, e, l, 0)pj,α,k,γ + nj,βpj,β,k,γ , k ̸= j, j ∈ HgP ,

λj,γF
1
j,β(Y, e, l) +

∑Lj

α=1 nj,αpj,α,j,γ , k = j, j ∈ HgF ,

λj,γF
1
j,β(Y, e, l)

+
∑β−1

α=1 ν
j,β
j,α(Y, e, l, 0)pj,α,j,γ + nj,βpj,β,j,γ , k = j, j ∈ HgP .
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The number gk,γ(τ
e
l+1,0−) is equal to

(1) 0 (for the case k ̸= j), that is, none of (k, γ)-customers is in the service facility at

τel+1,0−; or

(2) the number of (k, γ)-customers staying in the system at τel,Me
l
and not served before

ce (for the case k = j).

Then we have

E[gk,γ(τ
e
l+1,0−)|(j, β,Y)el,0] (30)

=



0, k ̸= j,

νj,βj,γ (Y, e, l, 0)− (1j,γ(j, β) + nj,γ), k = j, j ∈ HgF ,

0, k = j, γ < β, j ∈ HgP ,

νj,βj,β(Y, e, l, 0)− (1 + nj,β), k = j, γ = β, j ∈ HgP ,

νj,βj,γ (Y, e, l, 0), k = j, γ > β, j ∈ HgP .

4.3.2 Exhaustive FCFS groups

We consider the case: j ∈ HeF . In this case, (k, γ)-customers (for k ̸= j) in the waiting

room at τel+1,0 are composed of

(1) (k, γ)-customers staying in the system at τel,Me
l
, and

(2) (k, γ)-customers arriving from outside or by feedback while ce stays in the service

facility.

None of j-customers is in the waiting room at τel+1,0. Then we have

E[nk,γ(τ
e
l+1,0−)|(j, β,Y)el,0] (31)

=


nk,γ + λk,γF

1
j,β(Y, e, l) + 1(r)pj,a0,k,γ +

∑Lj

α=1 gj,αpj,α,k,γ , k ̸= j, (∗1),

νj,βk,γ(Y, e, l, 0) + λk,γF
1
j,β(Y, e, l) +

∑Lj

α=1 nj,αpj,α,k,γ , k ̸= j, (∗2),
λk,γE[Sj,β ], k ̸= j, (∗3),
0, k = j,

where (∗1) κ0 = j; (∗2) κ0 ∈ Π \{j}; (∗3) κ0 = 0. Then (j, γ)-customers in the service

facility at τel+1,0 are composed of

(1) (j, γ)-customers staying in the system at τel,Me
l
and not served before ce, and

(2) (j, γ)-customers arriving from outside or by feedback while ce stays in the service

facility.

Obviously none of k-customers (k ̸= j) is in the service facility at τel+1,0. Then we have

E[gk,γ(τ
e
l+1,0−)|(j, β,Y)el,0] (32)

=



0, k ̸= j,

λj,γF
1
j,β(Y, e, l) + 1(r)pj,a0,j,γ +

∑Lj

α=1 gj,αpj,α,j,γ , k = j, (∗1),

νj,βj,γ (Y, e, l, 0)− nj,γ − 1j,γ(j, β)

+λj,γF
1
j,β(Y, e, l) +

∑Lj

α=1 nj,αpj,α,j,γ , k = j, (∗2),
λj,γE[Sj,β ], k = j, (∗3),

where (∗1) κ0 = j; (∗2) κ0 ∈ Π \ {j}; (∗3) κ0 = 0.
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4.3.3 Exhaustive priority groups

We consider the case: j ∈ HeP . Let N
(j,δ)
j,α,k,γ be the number of (k, γ)-customers who

arrive (from outside or by feedback) during a (j, δ)-busy period starting with a (j, α)-

customer, and who still stay at station k at the end of the period ((k ̸= j) or (k = j

and γ > δ)). Then let N
(j,δ)
j,α,k,γ be its expected value and let N

(j,δ)
j,α,k,γ(r) be its expected

value conditioned on the remaining service time r of the initial (j, α)-customer. Then

N
(j,δ)
j,α,k,γ = λk,γE[Sj,α] + pj,α,k,γ +

∑δ
δ′=1(λj,δ′E[Sj,α] + pj,α,j,δ′)N

(j,δ)
j,δ′,k,γ , (33)

N
(j,δ)
j,α,k,γ(r) = λk,γr + pj,α,k,γ +

∑δ
δ′=1(λj,δ′r + pj,α,j,δ′)N

(j,δ)
j,δ′,k,γ , (34)

for (j, α), (k, γ) ∈ S; δ = 0, 1, . . . , Lj (γ > δ if k = j). Then we have

E[nk,γ(τ
e
l+1,0−)|(j, β,Y)el,0] (35)

=



nk,γ + 1(r)N
(j,β−1)
j,a0,k,γ

(r) +
∑β

α=1 gj,αN
(j,β−1)
j,α,k,γ + λk,γE[Sj,β ], k ̸= j, (∗1),

νj,βk,γ(Y, e, l, 0) +
∑β−1

α=1 ν
j,β
j,α(Y, e, l, 0)N

(j,β−1)
j,α,k,γ

+nj,βN
(j,β−1)
j,β,k,γ + λk,γE[Sj,β ], k ̸= j, (∗2),

λk,γE[Sj,β ], k ̸= j, (∗3),
0, k = j,

where (∗1) κ0 = j; (∗2) κ0 ∈ Π \{j}; (∗3) κ0 = 0. (Note that none of customers arrive

by feedback during ce’s service.) Further the explanation for (j, γ)-customers in the

service facility at the completion epoch of the sojourn time (related to) F 1
j,β(Y, e, l)

is similar to that for j ∈ HeF except that in this case (j, γ)-customers (γ < β) are

cleared from the system when ce starts service. Then we have

E[gk,γ(τ
e
l+1,0−)|(j, β,Y)el,0] (36)

=



0, k ̸= j,

λj,γE[Sj,β ], k = j, (∗0),

1(r)N
(j,β−1)
j,a0,j,β

(r) +
∑β

α=1 gj,αN
(j,β−1)
j,α,j,β + λj,βE[Sj,β ], k = j, (∗1a),

gj,γ + 1(r)N
(j,β−1)
j,a0,j,γ (r) +

∑β
α=1 gj,αN

(j,β−1)
j,α,j,γ + λj,γE[Sj,β ], k = j, (∗1b),

νj,βj,β(Y, e, l, 0)− nj,β − 1 +
∑β−1

α=1 ν
j,β
j,α(Y, e, l, 0)N

(j,β−1)
j,α,j,β

+nj,βN
(j,β−1)
j,β,j,β + λj,βE[Sj,β ], k = j, (∗2a),

νj,βj,γ (Y, e, l, 0) +
∑β−1

α=1 ν
j,β
j,α(Y, e, l, 0)N

(j,β−1)
j,α,j,γ

+nj,βN
(j,β−1)
j,β,j,γ + λj,γE[Sj,β ], k = j, (∗2b),

λj,γE[Sj,β ], k = j, (∗3),

where (∗0) γ < β, κ0 ∈ Π; (∗1a) γ = β, κ0 = j; (∗1b) γ > β, κ0 = j; (∗2a) γ = β, κ0 ∈
Π \ {j}; (∗2b) γ > β, κ0 ∈ Π \ {j}; (∗3) κ0 = 0.

4.3.4 Linear functional expressions for the quantities

Similar to the quantities given previously, we have the following linear functional ex-

pressions for the expected numbers of customers at the next feedback epoch. In order
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to obtain these expressions we define the following constants.

υj,β(·) ∈ R2×2Jc ; Uj,β(·) ∈ R2Jc×2Jc ; uj,β(·) ∈ R1×2Jc .

Their detailed definitions are given in Sub-section 9.4.

Proposition 4 Let Y = (κ0, a0, r,g,n, L) ∈ E ; (j, β) ∈ S; e = 1, 2, . . .; and l =

0, 1, 2, . . .. Then

E[(g(τel+1,0−),n(τel+1,0−))|(j, β,Y)el,0]

= (r,1(r))υj,β(κ0, a0) + (g,n)Uj,β(κ0) + uj,β(κ0). (37)

Proof: This expression can be easily obtained by substituting the expressions (25)

and (28) into the expressions obtained in this subsection.

5 The Linear Functional Expressions

In this section we obtain the expressions for the performance measures Hi,α(·), Fi,α(·)
by solving the feedback equations. As the expressions previously derived, it will be

shown that these expressions have the linear functional forms. In order to obtain these

expressions we define the following constants.

φi,α(·),ηi,α(·) ∈ R2×1; wi,α(·), f i,α(·) ∈ R2Jc×1; wi,α(·), fi,α(·) ∈ R.

Their detailed definitions are given in Sub-section 9.5.

Proposition 5 The expressions for the performance measures Hi,α(·) and Fi,α(·)
have the following linear functional forms.

Hi,α(j, β,Y, e, l, k) = (r,1(r))φi,α(j, β, κ0, a0, k)

+(g,n)wi,α(j, β, κ0, k) + wi,α(j, β, κ0, k), (38)

Fi,α(j, β,Y, e, l) = (r,1(r))ηi,α(j, β, κ0, a0)

+(g,n)f i,α(j, β, κ0) + fi,α(j, β, κ0), (39)

for Y = (κ0, a0, r,g,n, L) ∈ E ; e = 1, 2, . . . ; l = 0, 1, 2, . . . ; (i, α), (j, β) ∈ S and

k ∈ Π.

Proof: By directly substituting the expressions given in (38) and (39) and by using

Propositions 3 and 4, we can show that they respectively satisfy the feedback equations

given in Section 2. The uniqueness of the solutions is shown by the similar method given

in Hirayama (2003), by virtue of the linear functional expressions for the quantities.
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6 Steady State Values

Let us consider the system operating under any scheduling algorithm defined in Section

2. In this section, we would like to evaluate the following values for (i, α), (j, β) ∈ S:

w̄i,α(j, β) = lim
N→∞

1

N

N∑
e=1

E
[
W e

i,α + F e
i,α|X

e
S(τ

e
0,0) = (j, β)

]
. (40)

w̄i,α(j, β) denotes the average sojourn time that any customer arriving from outside the

system as a (j, β)-customer spend as an (i, α)-customer during its stay in the system.

The time average value of the state of the system is also defined by:

Ỹ
k
= (kq̃k, ãk, r̃k, g̃k, ñk, L̃k) = lim

t→∞
1

t

∫ t

0

E[Y(s)1{κ(s) = k}]ds, (41)

for k ∈ Π ∪{0}, where g̃k = (g̃ki,α : (i, α) ∈ S) and ñk = (ñk
i,α : (i, α) ∈ S). We assume

that all of the time averages and the customer averages defined in this section exist.

Then in order to investigate these average values in detail, we further define the

average sojourn times and the time average values as follows:

H̄i,α(j, β, k) = lim
N→∞

1

N

N∑
e=1

E
[
He

i,α(k)|X
e
S(τ

e
0,0) = (j, β)

]
, (42)

F̄i,α(j, β) = lim
N→∞

1

N

N∑
e=1

E
[
F e
i,α|X

e
S(τ

e
0,0) = (j, β)

]
, (43)

q̃κ0,a0 = lim
t→∞

1

t

∫ t

0

E[1{(κ(s), a(s)) = (κ0, a0)}]ds, (44)

r̃κ0,a0 = lim
t→∞

1

t

∫ t

0

E[r(s)1{(κ(s), a(s)) = (κ0, a0)}]ds, (45)

for (i, α), (j, β) ∈ S; k ∈ Π; (κ0, a0) ∈ S ∪ {(0, 0)}. Then we have

Proposition 6 The average numbers of customers (g̃k, ñk) and the average sojourn

times H̄i,α(j, β, k) and F̄i,α(j, β) have the following relations. For (i, α) ∈ S and k ∈ Π,

ñk
i,α =

∑
(j,β)∈S

λj,βH̄i,α(j, β, k); (46)

g̃ii,α =
∑

(j,β)∈S

λj,βF̄i,α(j, β)− q̃i,α; (47)

g̃ki,α = 0, (k ̸= i); ñ0
i,α = 0; g̃0i,α = 0. (48)

These expressions simply come from the Little’s formula. Then we can get the

following proposition that relates the average numbers of customers and the average

sojourn times.
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Proposition 7 Let us define the constants φ̃i,α(j, β, k) and η̃i,α(j, β), ((i, α), (j, β) ∈
S; k ∈ Π) whose precise definitions are given in Sub-section 9.6 (Equations (54) and

(55)). Then we have

H̄i,α(j, β, k) = φ̃i,α(j, β, k) +
∑
κ0∈Π

(g̃κ0 , ñκ0)wi,α(j, β, κ0, k), (49)

F̄i,α(j, β) = η̃i,α(j, β) +
∑
κ0∈Π

(g̃κ0 , ñκ0)f i,α(j, β, κ0), (50)

for (i, α), (j, β) ∈ S and k ∈ Π.

Proof: These expressions can be obtained by applying the averaging procedures and

the PASTA property to the expressions in Proposition 5.

Note. By combining the expressions given in Proposition 6 and the expressions given

in Proposition 7 we can obtain the linear equations for the (unknown) numbers of

customers (g̃k, ñk). The detailed equations are given in Section 10.

Proposition 8 The average sojourn times are given by

w̄i,α(j, β) =
∑
k∈Π

H̄i,α(j, β, k) + F̄i,α(j, β), ((i, α), (j, β) ∈ S). (51)

Note. In Section 10 we give an algorithm for calculating the average numbers of

customers and the average sojourn times, and its computational complexity.

7 A Packet scheduling Problem

In this section we consider a packet scheduling problem in communication networks

where five different types of packet-based traffic share a single network resource. Type

1-1 is a mission-critical traffic with the highest importance that constitutes category

1 traffic. Types 2-1 and 2-2 constitute category 2 that carries different types of traffic

Table 1 Statistical quantities for all types of the packetsa,b

Category Type M.R.R. V.R.R. M.Q.S. V.Q.S. R.O.R.

Category 1 Type 1-1 1.00000 0.50000 1.00 0.50 0.21255

Category 2 Type 2-1 3.04005 3.67368 0.25 0.10 0.21538
Type 2-2 3.04005 3.67368 0.50 0.20 0.21538

Category 3 Type 3-1 5.03456 9.77386 0.25 0.10 0.17835
Type 3-2 5.03456 9.77386 0.50 0.20 0.17835

—————————————–
a M.R.R.= Mean of Resource Requirement time; V.R.R.= Variance of Resource Requirement
time; M.Q.S.= Mean Quantum (Weight) Size; V.Q.S.= Variance of Quantum Size; R.O.R.=
(Relative) Resource Occupancy Ratio.
b For simplicity, we first determine the service quanta per stage (M.Q.S.s and V.Q.S.s) and
the feedback probabilities for all types, and then calculate the means and the variances of
the resource requirement times (M.R.R.s and V.R.R.s). Type 2-1 and type 2-2 have the same
resource requirements and assigned the different weights (quanta). The same explanation can
be applied to type 3-1 and type 3-2.
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Fig. 2 Diagrams of the Resource Requirement Paths in the scheduling algorithms

with medium importance. Types 3-1 and 3-2 constitute category 3 that carries different

types of normal traffic. Their statistical quantities are listed in Table 1. Their arrival

rates are varied in order to obtain the mean response times (i.e. sojourn times) for

different values of the resource utilization ρ.

We assume that the resource requirement time (i.e. overall service time) of each

packet may be divided into multiple quanta each of which can be allocated the resource

individually. That is, we consider “positive quanta algorithms.” In multimedia networks

with various types of traffic, delay sensitive real time traffic or mission critical traffic

is frequently necessary to be transmitted before the other normal data traffic. The

important traffic can be preferentially treated by allocating the resource more often

than the other traffic in the following manners.

– PT1: Allocate the resource more often by arranging the polling probabilities.

– PT2: Allocate the resource by the exhaustive rule.

– PT3: Assign the larger sizes of quanta.

We consider the following four scheduling algorithms (A-1, . . ., A-4). In the following

diagrams, a value above an arrow is a polling probability that the server moves from

a type (or a category) at the left of the arrow to a type (or a category) at its right. If

no value is above an arrow, it is assumed to be 1.

A-1. All types are allocated the resource in the following round robin (cyclic) fashion.

type 1-1 → type 2-1 → type 2-2 → type 3-1 → type 3-2 → type 1-1 → · · ·

A-2. Type 1-1 and the other types are alternately allocated the resource as follows.

type 1-1 →


0.3−→ type 2-1 →
0.3−→ type 2-2 →
0.2−→ type 3-1 →
0.2−→ type 3-2 →

→ type 1-1 → · · ·
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Fig. 3 MRTs for A-1 (left) and MRTs for A-2 (right)

A-3. Category 1 and the other categories are alternately allocated the resource as
follows.

category 1 →
{

0.6−→ category 2 →
0.4−→ category 3 →

}
→ category 1 → · · ·

A-4. All types are allocated the resource in the following manner.

type 1-1 →


0.5−→ type 2-1 →

{
0.5−→ type 3-1 →
0.5−→−→−→−→

}
→

0.5−→ type 2-2 →
{

0.5−→ type 3-2 →
0.5−→−→−→−→

}
→

→ type 1-1 → · · ·

In all of the scheduling algorithms, type 1-1 (category 1) has the exhaustive allocation

rule, and all the other types (or categories in A-3) have the gated allocation rule. All

quanta of packets in each type (or each category in A-3) are allocated the resource in

the FCFS order inside the type (or, respectively, the category). The service order in

every category in A-3 is also called the DRR (discriminatory round robin) (Hirayama,

2010).

The resource requirement paths of packets in the scheduling algorithms and their

correspondences to the service stages in the queueing model defined in Section 2 are

given in Fig.2. Each square box denotes a quantum of each packet that corresponds to

a service in a service stage of each customer whose (group, class) is denoted by a pair

of numbers in the box. Each arrow denotes a flow of each packet, and it may branch off

at an end of a quantum, denoting that each packet receiving the quantum completes its

overall resource requirements or requires more quanta probabilistically. For example,

type 1-1 receives only one quantum that corresponds to a service in a service stage

of class 1 in group 1, while type 3-2 receives at most 20 quanta that correspond to

services in service stages of classes 1, · · · , 20 in group 5 for A-1, A-2 or A-4; or services

in service stages of classes 41, · · · , 60 in group 3 for A-3.

In Figs. 3 and 4, the mean response times (MRTs) for all types of packets are plotted

for every scheduling algorithm. We can see from these graphs that in all scheduling

algorithms, the MRTs for type 1-1 are the best of all types. The reasons are that the

M.R.R. (Mean Resource Requirement, or Mean Overall Service Time) for type 1-1 is

smaller than the M.R.R.s for the other types (see Table 1) and that the preferential

treatments listed as PT1, PT2, PT3 are applied to type 1-1, except for the following
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Fig. 6 MRTs for category 2 (left) and MRTs for category 3 (right)

case. Because PT1 is not applied to type 1-1 in algorithm A-1, the MRT for type 1-1

in A-1 is somewhat worse than its MRTs in the other algorithms. Further the MRTs

for category 2 are almost better than those for category 3, because the M.R.R.s for

category 2 are less than those for category 3 and PT1 is applied to category 2, except

for the following case. Because PT1 is not applied to any type in A-1, the differences

in the MRTs between categories 2 and 3 in A-1 are relatively small. Since the M.Q.S.s

for type 2-1 and type 3-1 are equal, total number of the resource allocation (or service

stages) for type 2-1 is less than that for type 3-1, and hence every MRT for type 2-
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1 is less than that for type 3-1 even if all the other conditions are equal. The same

explanations are applicable to types 2-2 and 3-2.

In Figs. 5 and 6, the MRTs for all algorithms are plotted for every category and

those averaged over all categories are plotted (the left graph in Fig. 5). From Fig. 5,

we see that the overall MRTs for all algorithms are close, but for category 1 the MRT

for A-2 is the best of those for all algorithms. The reason may be that between two

consecutive allocations of the resource to type 1-1, only one other type is allocated the

resource in algorithm A-2, whereas two or more other types are allocated the resource

in the other algorithms. For categories 2 and 3, the MRTs in algorithms A-2 and A-3

are very close (i.e., the two curves for A-2 and A-3 in every graph in Fig. 6 are almost

overlapped). The reason is in the similar resource allocation rules for categories 2 and

3 in these algorithms. However for category 1 we can see that the MRT in A-2 is better

than the MRT in A-3. Hence we may conclude in this case that the algorithm A-2 is

better than the algorithm A-3.

8 Conclusions

We have considered the multiclass feedback queues where the server visits the customer

groups according to a Markov chain. There are multiple classes of customers in each

group that are served in one of the following service orders: the gated FCFS, the gated

priority, the exhaustive FCFS, and the exhaustive priority.

The functional computation method is used to analyze the mean sojourn times of

all classes of customers spent at all stages of services. It can be shown that the expected

values of the performance measures conditioned on the system state have the linear

functional expressions. The first conception of the analysis of these queues was given

in Hirayama (2009b). Although we have analyzed the model without switchover times,

it may be possible to analyze the model with switchover times by a manner similar to

that in Hirayama (2005) for the cyclic polling systems with switchover times.

Then our model is applied to the analysis of packet scheduling algorithms with

five types (or three categories) of traffic. The important traffic can be preferentially

treated by allocating the resource more often than the other traffic by arranging the

polling probabilities etc. We consider four scheduling algorithms with different polling

probabilities and service rules. The mean response times for all types of traffic in all

scheduling algorithms are calculated and compared.

By using our queueing models, we can construct various types of composite schedul-

ing algorithms that can approximate the actual network structures with many data

sources, many traffic types and various QoS requirements. We can treat not only polling

algorithms but also priority algorithms (Hirayama, 2003, 2010). Hence our methodol-

ogy may enhance capabilities of the queueing models in performance evaluation of

computer communication networks.

9 Appendix: Detailed expressions for the coefficients in the propositions

In this section, we give the detailed expressions for the coefficients in the propositions.

Each subsection in this section corresponds to each proposition. Because the coefficients

in each subsection (or proposition) use those in its previous subsections, we need to
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refer these subsections in order to calculate the coefficients. Further some elementary

constants are quoted from the main sections.

We define the constant commonly used in this section. For (j, β) ∈ S,

ej,β = (0, 0, . . . , 0, 1︸︷︷︸
(j, β)th

, 0, 0, . . . , 0) ∈ R1×Jc ,

I
j
= diag(1, 1, . . . , 1, 0︸︷︷︸

(j, 1)th

, 0, . . . , 0︸︷︷︸
(j, Lj)

th

, 1, 1, . . . , 1) ∈ RJc×Jc .

9.1 The coefficients in Proposition 1

We define the following constants used in Proposition 1.

h0
10(·) ∈ R2Jc×1, φ0(·) ∈ R2×1, h0

00(·) ∈ R2Jc×1,

U1(·) ∈ R2Jc×2Jc , υ0(·) ∈ R2×2Jc , U0(·) ∈ R2Jc×2Jc , u0(·) ∈ R1×2Jc .

We first show for reference the constants defined in the main sections. The following

quantities are used to calculate the constants h0
10(·),φ0(·),h0

00(·).

T
Lκ0
κ0,a0

(r) = r +
∑Lκ0

β=1 pκ0,a0,κ0,βT
Lκ0

κ0,β
,

ϱ+κ0,Lκ0
=
∑Lκ0

β=1 λκ0,βT
Lκ0

κ0,β
,

where T
Lκ0

κ0,β
is defined in (13). Then let

N
0
i,k,γ =


λk,γ , i ∈ Hg,

λk,γ +
∑Li

β=1 λi,βN i,β,k,γ , k ̸= i ∈ He,

0, k = i ∈ He,

N
1
i,α,k,γ =


pi,α,k,γ , i ∈ Hg,

pi,α,k,γ +
∑Li

β=1 pi,α,i,βN i,β,k,γ , k ̸= i ∈ He,

0, k = i ∈ He,

where N i,β,k,γ is defined in (14). Then the constant defined in (15) is given by

Nκ0,a0,m,γ(r) = rN
0
κ0,m,γ +N

1
κ0,a0,m,γ

which is used to calculate the constant υ0(·).
Then we define

h0
10(κ0, j, k) =



(
0

sκ0

)
, k = κ0, κ0 ̸= j, κ0 ∈ Hg,(

0

tκ0

)
, k = κ0, κ0 ̸= j, κ0 ∈ He,(

0

0

)
, otherwise,
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φ0(κ0, a0, j, k) =



(
1

0

)
, k = κ0, κ0 ∈ Hg,

1

1− ϱ+κ0,Lκ0

(
1∑Lκ0

β=1 pκ0,a0,κ0,βT
Lκ0

κ0,β

)
, k = κ0,
κ0 ̸= j, κ0 ∈ He,(

0

0

)
, otherwise,

h0
00(κ0, j, k) =



(
sκ0

0

)
, k = κ0, κ0 ∈ Hg,(

tκ0

0

)
, k = κ0, κ0 ̸= j, κ0 ∈ He,(

0

0

)
, otherwise,

where 0 ∈ RJc×1 is a zero vector and where

sκ0 =
(
0, . . . , 0, E[Sκ0,1], . . . , E[Sκ0,Lκ0

], 0, . . . , 0
)′ ∈ RJc×1,

tκ0 =
1

1− ϱ+κ0,Lκ0

(
0, . . . , 0, T

Lκ0
κ0,1

, . . . , T
Lκ0

κ0,Lκ0
, 0, . . . , 0

)′
∈ RJc×1.

Further we define

U1(κ0) =

(
O O

O Un(κ0)

)
, υ0(κ0, a0) =


(

0 N
0
κ0

0 N
1
κ0,a0

)
, ((κ0, a0) ∈ S),

Oυ, ((κ0, a0) = (0, 0)),

U0(κ0) =



(
O Ug(κ0)

O I

)
, (κ0 ∈ Hg),(

O Ug(κ0)

O I
κ0

)
, (κ0 ∈ He),

OU , (κ0 = 0),

u0(κ0, j, β) = (0, u0;1,1(κ0, j, β), . . . , u0;J,LJ
(κ0, j, β)),

where I,O ∈ RJc×Jc ;Oυ ∈ R2×2Jc ;OU ∈ R2Jc×2Jc ;0 ∈ R1×Jc are an identity

matrix and zero matrices, respectively, and where the constants Un(κ0),Ug(κ0) ∈
RJc×Jc ; Nκ0,α,N

0
κ0

,N
1
κ0,a0

∈ R1×Jc and u0;m,γ(·) ∈ R are defined by

Un(κ0) =



e1,1

...

eκ0−1,Lκ0−1

Nκ0,1

...

Nκ0,Lκ0

eκ0+1,1

...

eJ,LJ


, Ug(κ0) =



0
...

0

Nκ0,1

...

Nκ0,Lκ0

0
...

0


,
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Nκ0,α =


(Nκ0,α,1,1, . . . , Nκ0,α,J,LJ

), κ0 ∈ Hg,

(Nκ0,α,1,1, . . . , Nκ0,α,κ0−1,Lκ0−1
,

0︸︷︷︸
(κ0, 1)th

, . . . , 0︸︷︷︸
(κ0, Lκ0 )th

, Nκ0,α,κ0+1,1, . . . , Nκ0,α,J,LJ
), κ0 ∈ He,

N
0
κ0

=


(N

0
κ0,1,1, . . . , N

0
κ0,J,LJ

), κ0 ∈ Hg,

(N
0
κ0,1,1, . . . , N

0
κ0,κ0−1,Lκ0−1

,

0︸︷︷︸
(κ0, 1)th

, . . . , 0︸︷︷︸
(κ0, Lκ0 )th

, N
0
κ0,κ0+1,1, . . . , N

0
κ0,J,LJ

), κ0 ∈ He,

N
1
κ0,a0

=


(N

1
κ0,a0,1,1, . . . , N

1
κ0,a0,J,LJ

), κ0 ∈ Hg,

(N
1
κ0,a0,1,1, . . . , N

1
κ0,a0,κ0−1,Lκ0−1

,

0︸︷︷︸
(κ0, 1)th

, . . . , 0︸︷︷︸
(κ0, Lκ0 )th

, N
1
κ0,a0,κ0+1,1, . . . , N

1
κ0,a0,J,LJ

), κ0 ∈ He,

u0;m,γ(κ0, j, β) =


1m,γ(j, β), κ0 ∈ Hg or κ0 = 0,

1m,γ(j, β) +
∑Lκ0

α=1 1κ0,α(j, β)Nκ0,α,m,γ , m ̸= κ0, κ0 ∈ He,

0, m = κ0, κ0 ∈ He,

9.2 The coefficients in Proposition 2

We define the following constants used in Proposition 2.

Bj
1(·) ∈ R2Jc×Jc ; cj(·) ∈ R2×Jc ; Bj

0(·) ∈ R2Jc×Jc ; bj,β
0 (·) ∈ R1×Jc .

Let us define the constant Bj
1(·) ∈ R2Jc×Jc that satisfy the following linear equa-

tion.

Bj
1(κ0) =


(
O
I

)
, κ0 = j,

U1(κ0)

{∑
κ1∈Π\{j} p̂κ0,κ1B

j
1(κ1) + p̂κ0,j

(
O
I

)}
, κ0 ̸= j,

for κ0, j ∈ Π where O, I ∈ RJc×Jc are a zero matrix and an identity matrix, respec-

tively. Further we define the following constants cj(·) ∈ R2×Jc , Bj
0(·) ∈ R2Jc×Jc and

bj,β
0 (·) ∈ R1×Jc .

cj(κ0, a0) =

{∑J
κ1=1 p̂κ0,κ1υ0(κ0, a0)B

j
1(κ1), κ0 ̸= j or κ0 = j ∈ Hg,

0, κ0 = j ∈ He,

Bj
0(κ0) =


∑J

κ1=1 p̂κ0,κ1U0(κ0)B
j
1(κ1), κ0 ̸= j or κ0 = j ∈ Hg,(

O
I

)
, κ0 = j ∈ He,

bj,β
0 (κ0) =

{∑J
κ1=1 p̂κ0,κ1u0(κ0, j, β)B

j
1(κ1), κ0 ̸= j or κ0 = j ∈ Hg,

0, κ0 = j ∈ He,

for (κ0, a0), (j, β) ∈ S. For (κ0, a0) = (0, 0) and (j, β) ∈ S, we define

Bj
1(0) = O, cj(0, 0) = 0, Bj

0(0) = O, bj,β
0 (0) = ej,β .
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9.3 The coefficients in Proposition 3

We define the following constants used in Proposition 3.

hj
10(·) ∈ R2Jc×1;

φj(·),ηj,β(·) ∈ R2×1; hj
00(·), f

j,β(·) ∈ R2Jc×1; hj,β01 (·), fj,β(·) ∈ R.

Let us define constants hj
10(κ0, k) ∈ R2Jc×1 that satisfy the following linear equa-

tion:

hj
10(κ0, k) =

h0
10(κ0, j, k) +U1(κ0)

∑
κ1∈Π\{j} p̂κ0κ1h

j
10(κ1, k),

κ0 ̸= j, κ0 ∈ Π,

0, κ0 = j or κ0 = 0,

for κ0 ∈ Π ∪ {0}; j, k ∈ Π. Further for (κ0, a0) ∈ S ∪ {0, 0}, (j, β) ∈ S and k ∈ Π, let

φj(κ0, a0, k) =

{
φ0(κ0, a0, j, k) + υ0(κ0, a0)

∑
κ1∈Π\{j} p̂κ0κ1h

j
10(κ1, k), case 1,

0, case 2,

hj
00(κ0, k) =

{
h0
00(κ0, j, k) +U0(κ0)

∑
κ1∈Π\{j} p̂κ0κ1h

j
10(κ1, k), case 1,

0, case 2,

hj,β01 (κ0, k) =

{
u0(κ0, j, β)

∑
κ1∈Π\{j} p̂κ0κ1h

j
10(κ1, k), case 1,

0, case 2,

where “case 1” denotes (κ0 ̸= j, κ0 ∈ Π) or (j ∈ Hg); and “case 2” denotes (κ0 = j ∈
He) or (κ0 = 0).

Further for (κ0, a0) ∈ S, we define

ηj,β(κ0, a0)=



0,

{
(j ∈ HgF ) or
(j ∈ HeF , κ0 ̸= j)

,(
1

0

)
, j ∈ HeF , κ0 = j,

cj(κ0, a0)s
j
1,β−1, j ∈ HgP ,

cj(κ0, a0)t
j,β−1
1,β−1, j ∈ HeP , κ0 ̸= j,

1

1− ϱ+j,β−1

(
1∑β−1

γ=1 pκ0,a0,κ0,γT
β−1
κ0,γ

)
, j ∈ HeP , κ0 = j,

f j,β(κ0) =



(
0

sj1,Lj

)
,

{
(j ∈ HgF ) or
(j ∈ HeF & κ0 ̸= j)

,(
sj1,Lj

0

)
, j ∈ HeF , κ0 = j,

Bj
0(κ0)s

j
1,β−1 +

(
0

sjβ,β

)
, j ∈ HgP ,

Bj
0(κ0)t

j,β−1
1,β−1 +

(
0

t
j,β−1
β,β

)
, j ∈ HeP , κ0 ̸= j,(

t
j,β−1
1,β

0

)
, j ∈ HeP , κ0 = j,
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fj,β(κ0) =



E[Sj,β ],

{
(j ∈ HgF ) or

(j ∈ HeF , κ0 ≠ j)
,

E[Sj,β ], j ∈ HeF , κ0 = j,

bj,β
0 (κ0)s

j
1,β−1 + E[Sj,β ], j ∈ HgP ,

bj,β
0 (κ0)t

j,β−1
1,β−1 + E[Sj,β ], j ∈ HeP , κ0 ̸= j,

E[Sj,β ], j ∈ HeP , κ0 = j,

where we define vectors sjα,γ , t
j,β−1
α,γ ∈ RJc×1 as

sjα,γ = (0, . . . , 0, E[Sj,α]︸ ︷︷ ︸
(j, α)th place

, E[Sj,α+1], . . . , E[Sj,γ ]︸ ︷︷ ︸
(j, γ)th place

, 0, . . . , 0)′,

t
j,β−1
α,γ =

1

1− ϱ+j,β−1

(0, . . . , 0, T
β−1
j,α︸ ︷︷ ︸

(j, α)th place

, T
β−1
j,α+1, . . . , T

β−1
j,γ︸ ︷︷ ︸

(j, γ)th place

, 0, . . . , 0)′,

for j ∈ Π and 1 ≤ α, β, γ ≤ Lj , (α ≤ γ), and where T
β−1
j,α , ϱ+j,β−1 are defined by (13)

and the equation below it, respectively. For (κ0, a0) = (0, 0), we define

ηj,β(0, 0) = 0, f j,β(0) = 0, fj,β(0) = E[Sj,β ].

9.4 The coefficients in Proposition 4

We define the following constants used in Proposition 4.

υj,β(·) ∈ R2×2Jc ; Uj,β(·) ∈ R2Jc×2Jc ; uj,β(·) ∈ R1×2Jc .

For simplicity, we divide each vector or matrix into two components with the same size

as follows.

υj,β(κ0, a0) =
(
υj,β
g (κ0, a0), υj,β

n (κ0, a0)
)
,

(
υj,β
g (·),υj,β

n (·) ∈ R2×Jc

)
,

Uj,β(κ0) =
(
Uj,β

g (κ0), Uj,β
n (κ0)

)
,

(
Uj,β

g (·),Uj,β
n (·) ∈ R2Jc×Jc

)
,

uj,β(κ0) =
(
uj,β
g (κ0), uj,β

n (κ0)
)
,

(
uj,β
g (·),uj,β

n (·) ∈ R1×Jc

)
.

Let us define constants commonly used in the following expressions.

Ijα,γ = diag(0, . . . , 0, 1︸︷︷︸
(j, α)th

, 1, . . . , 1︸︷︷︸
(j, γ)th

, 0, . . . , 0) ∈ RJc×Jc ,

λ = (λj,β : (j, β) ∈ S) ∈ R1×Jc , pj,a = (pj,a,k,γ : (k, γ) ∈ S) ∈ R1×Jc .

Gated group j (j ∈ Hg)

For (κ0, a0) ∈ S,

υj,β
g (κ0, a0) =

{
cj(κ0, a0)I

j
1,Lj

, j ∈ HgF ,

cj(κ0, a0)I
j
β,Lj

, j ∈ HgP ,

υj,β
n (κ0, a0) =

 cj(κ0, a0)I
j
+ ηj,β(κ0, a0)λ, j ∈ HgF ,

cj(κ0, a0)
(
I
j
+ Ij1,β−1P

)
+ ηj,β(κ0, a0)λ, j ∈ HgP ,
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Uj,β
g (κ0) =


{
Bj

0(κ0)−
(
O

I

)}
Ij1,Lj

, j ∈ HgF ,{
Bj

0(κ0)−
(

O

Ijβ,β

)}
Ijβ,Lj

, j ∈ HgP ,

Uj,β
n (κ0) =


Bj

0(κ0)I
j
+ f j,β(κ0)λ+

(
O

Ij1,Lj
P

)
, j ∈ HgF ,

Bj
0(κ0)

(
I
j
+ Ij1,β−1P

)
+ f j,β(κ0)λ+

(
O

Ijβ,βP

)
, j ∈ HgP ,

uj,β
g (κ0) =


{
bj,β
0 (κ0)− ej,β

}
Ij1,Lj

, j ∈ HgF ,{
bj,β
0 (κ0)− ej,β

}
Ijβ,Lj

, j ∈ HgP ,

uj,β
n (κ0) =

bj,β
0 (κ0)I

j
+ fj,β(κ0)λ, j ∈ HgF ,

bj,β
0 (κ0)

(
I
j
+ Ij1,β−1P

)
+ fj,β(κ0)λ, j ∈ HgP .

For (κ0, a0) = (0, 0),

υj,β
g (0, 0) = O, υj,β

n (0, 0) = O, Uj,β
g (0) = O, Uj,β

n (0) = O,

uj,β
g (0) = 0, uj,β

n (0) = E[Sj,β ]λ.

Exhaustive FCFS group j (j ∈ HeF )

For (κ0, a0) ∈ S,

υj,β
g (κ0, a0) =


{
ηj,β(κ0, a0)λ+

(
0

pj,a0

)}
Ij1,Lj

, κ0 = j,{
cj(κ0, a0) + ηj,β(κ0, a0)λ

}
Ij1,Lj

, κ0 ̸= j,

υj,β
n (κ0, a0) =


{
ηj,β(κ0, a0)λ+

(
0

pj,a0

)}
I
j
, κ0 = j,{

cj(κ0, a0) + ηj,β(κ0, a0)λ
}
I
j
, κ0 ̸= j,

Uj,β
g (κ0) =


{
f j,β(κ0)λ+

(
Ij1,Lj

P

O

)}
Ij1,Lj

, κ0 = j,{
Bj

0(κ0) + f j,β(κ0)λ+

(
O

Ij1,Lj
P− I

)}
Ij1,Lj

, κ0 ̸= j,

Uj,β
n (κ0) =


{
f j,β(κ0)λ+

(
Ij1,Lj

P

I

)}
I
j
, κ0 = j,{

Bj
0(κ0) + f j,β(κ0)λ+

(
O

Ij1,Lj
P

)}
I
j
, κ0 ̸= j,

uj,β
g (κ0) =

{{
fj,β(κ0)λ

}
Ij1,Lj

, κ0 = j,{
bj,β
0 (κ0)− ej,β + fj,β(κ0)λ

}
Ij1,Lj

, κ0 ̸= j,

uj,β
n (κ0) =


{
fj,β(κ0)λ

}
I
j
, κ0 = j,{

bj,β
0 (κ0) + fj,β(κ0)λ

}
I
j
, κ0 ̸= j,
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For (κ0, a0) = (0, 0),

υj,β
g (0, 0) = O, υj,β

n (0, 0) = O, Uj,β
g (0) = O, Uj,β

n (0) = O,

uj,β
g (0) =

{
E[Sj,β ]λ

}
Ij1,Lj

, uj,β
n (0) =

{
E[Sj,β ]λ

}
I
j
.

Exhaustive priority group j (j ∈ HeP )

We define

N
0,(j,δ)
j,α,k,γ = λk,γ +

∑δ
δ′=1 λj,δ′N

(j,δ)
j,δ′,k,γ ,

N
1,(j,δ)
j,α,k,γ = pj,α,k,γ +

∑δ
δ′=1 pj,α,j,δ′N

(j,δ)
j,δ′,k,γ ,

N
0,(j,δ)
j,α =

(
N

0,(j,δ)
j,α,k,γ : (k, γ) ∈ S

)
∈ R1×Jc ,

N
1,(j,δ)
j,α =

(
N

1,(j,δ)
j,α,k,γ : (k, γ) ∈ S

)
∈ R1×Jc ,

M
(j,β)
α,γ =



0
...

0

N
(j,β)
j,α
...

N
(j,β)
j,γ

0
...

0


∈ RJc×Jc ,

where 0 ∈ R1×Jc is a zero vector and N
(j,β)
j,α =

(
N

(j,β)
j,α,k,γ : (k, γ) ∈ S

)
∈ R1×Jc and

N
(j,β)
j,α,k,γ is defined in (33). Then the constant defined in (34) is given by

N
(j,δ)
j,α,k,γ(r) = rN

0,(j,δ)
j,α,k,γ +N

1,(j,δ)
j,α,k,γ

which is used to calculate the constant υj,β(·).

For (κ0, a0) ∈ S,

υj,β
g (κ0, a0) =


(

N
0,(j,β−1)
j,a0

N
1,(j,β−1)
j,a0

)
Ijβ,Lj

, κ0 = j,

cj(κ0, a0)
(
I+M

(j,β−1)
1,β−1

)
Ijβ,Lj

, κ0 ̸= j,

υj,β
n (κ0, a0) =


(

N
0,(j,β−1)
j,a0

N
1,(j,β−1)
j,a0

)
I
j
, κ0 = j,

cj(κ0, a0)
(
I+M

(j,β−1)
1,β−1

)
I
j
, κ0 ̸= j,

Uj,β
g (κ0) =



(
M

(j,β−1)
1,β Ijβ,Lj

+ Ijβ+1,Lj

O

)
, κ0 = j,

Bj
0(κ0)

(
I+M

(j,β−1)
1,β−1

)
Ijβ,Lj

+

(
O

M
(j,β−1)
β,β Ijβ,Lj

− Ijβ,β

)
, κ0 ̸= j,

Uj,β
n (κ0) =


(
M

(j,β−1)
1,β

I

)
I
j
, κ0 = j,{

Bj
0(κ0)

(
I+M

(j,β−1)
1,β−1

)
+

(
O

M
(j,β−1)
β,β

)}
I
j
, κ0 ̸= j,
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uj,β
g (κ0) =

{
E[Sj,β ]λI

j
1,Lj

, κ0 = j,

bj,β
0 (κ0)

(
I+M

(j,β−1)
1,β−1

)
Ijβ,Lj

− ej,β + E[Sj,β ]λI
j
1,Lj

, κ0 ̸= j,

uj,β
n (κ0) =

{{
E[Sj,β ]λ

}
I
j
, κ0 = j,{

bj,β
0 (κ0)

(
I+M

(j,β−1)
1,β−1

)
+ E[Sj,β ]λ

}
I
j
, κ0 ̸= j,

For (κ0, a0) = (0, 0),

υj,β
g (0, 0) = O, υj,β

n (0, 0) = O, Uj,β
g (0) = O, Uj,β

n (0) = O,

uj,β
g (0) = E[Sj,β ]λI

j
1,Lj

, uj,β
n (0) =

{
E[Sj,β ]λ

}
I
j
.

9.5 The coefficients in Proposition 5

We define the following constants used in Proposition 5.

φi,α(·),ηi,α(·) ∈ R2×1; wi,α(·), f i,α(·) ∈ R2Jc×1; wi,α(·), fi,α(·) ∈ R.

Let ŵi,α(j, β, k), f̂ i,α(j, β) ∈ R2Jc×1 ((i, α), (j, β) ∈ S; k ∈ Π) be the solutions of

the following set of linear equations:

ŵi,α(j, β, k) = pj,β,i,αh
i
00(j, k) +

J∑
m=1

Lm∑
δ=1

pj,β,m,δU
m,δ(j)ŵi,α(m, δ, k),

f̂ i,α(j, β) = pj,β,i,αf
i,α(j) +

J∑
m=1

Lm∑
δ=1

pj,β,m,δU
m,δ(j)f̂ i,α(m, δ),

where hi
00(j, k), f

i,α(j) and Um,δ(j) are given in Subsections 9.3 and 9.4. Further let

ŵi,α(j, β, k), f̂i,α(j, β) ∈ R ((i, α), (j, β) ∈ S; k ∈ Π) be the solutions of

ŵi,α(j, β, k) =

J∑
m=1

Lm∑
δ=1

pj,β,m,δŵi,α(m, δ, k)

+

{
pj,β,i,αh

i,α
01 (j, k) +

J∑
m=1

Lm∑
δ=1

pj,β,m,δu
m,δ(j)ŵi,α(m, δ, k)

}
,

f̂i,α(j, β) =

J∑
m=1

Lm∑
δ=1

pj,β,m,δ f̂i,α(m, δ)

+

{
pj,β,i,αf

i,α(j) +

J∑
m=1

Lm∑
δ=1

pj,β,m,δu
m,δ(j)f̂ i,α(m, δ)

}
,

where hi,α01 (j, k), f i,α(j) and um,δ(j) are given in Subsections 9.3 and 9.4. Then let us

define the following constants used in Proposition 5.

φi,α(j, β, κ0, a0, k) = 1i,α(j, β)φ
j(κ0, a0, k) + υj,β(κ0, a0)ŵi,α(j, β, k),

wi,α(j, β, κ0, k) = 1i,α(j, β)h
j
00(κ0, k) +Uj,β(κ0)ŵi,α(j, β, k),

wi,α(j, β, κ0, k) = 1i,α(j, β)h
j,β
01 (κ0, k) + uj,β(κ0)ŵi,α(j, β, k) + ŵi,α(j, β, k),
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ηi,α(j, β, κ0, a0) = 1i,α(j, β)η
j,β(κ0, a0) + υj,β(κ0, a0)f̂ i,α(j, β),

f i,α(j, β, κ0) = 1i,α(j, β)f
j,β(κ0) +Uj,β(κ0)f̂ i,α(j, β),

fi,α(j, β, κ0) = 1i,α(j, β)f
j,β(κ0) + uj,β(κ0)f̂ i,α(j, β) + f̂i,α(j, β),

for (i, α), (j, β) ∈ S; (κ0, a0) ∈ S ∪ {(0, 0)}; k ∈ Π.

9.6 The coefficients in Propositions 6 and 7

We define or calculate the following constants used in Propositions 6 and 7.

q̃κ0,a0 , r̃κ0,a0 , φ̃i,α(j, β, k), η̃i,α(j, β) ∈ R.

First we calculate the set of the composite arrival rates {Λi,α} by solving:

Λi,α = λi,α +
∑

(j,β)∈S

Λj,βpj,β,i,α, ((i, α) ∈ S).

Then we can obtain the following explicit expressions for the time average values defined

in (44) and (45).

q̃κ0,a0 =

{
Λκ0,a0E[Sκ0,a0 ], (κ0, a0) ∈ S,
1− ρ, (κ0, a0) = (0, 0).

(52)

r̃κ0,a0 =

{
Λκ0,a0s

2
κ0,a0

/2, (κ0, a0) ∈ S,
0, (κ0, a0) = (0, 0).

(53)

Further we define the constants which are used in the expressions (49) and (50).

φ̃i,α(j, β, k) =
∑

(κ0,a0)∈S

(r̃κ0,a0 , q̃κ0,a0)φi,α(j, β, κ0, a0, k)

+
∑

(κ0,a0)∈S

q̃κ0,a0wi,α(j, β, κ0, k) + (1− ρ)wi,α(j, β, 0, k), (54)

η̃i,α(j, β) =
∑

(κ0,a0)∈S

(r̃κ0,a0 , q̃κ0,a0)ηi,α(j, β, κ0, a0)

+
∑

(κ0,a0)∈S

q̃κ0,a0fi,α(j, β, κ0) + (1− ρ)fi,α(j, β, 0), (55)

for (i, α), (j, β) ∈ S and k ∈ Π.

10 Appendix: Algorithm for computing the steady state values and its

computational complexity

10.1 The algorithm for computing the steady state values

1. Calculate the following constants used in Proposition 1:

h0
10(·) ∈ R2Jc×1; φ0(·) ∈ R2×1; h0

00(·) ∈ R2Jc×1;

U1(·) ∈ R2Jc×2Jc ; υ0(·) ∈ R2×2Jc ; U0(·) ∈ R2Jc×2Jc ; u0(·) ∈ R1×2Jc .

Their detailed expressions are given in Sub-section 9.1.



34

2. Calculate the following constants used in Proposition 2:

Bj
1(·) ∈ R2Jc×Jc ; cj(·) ∈ R2×Jc ; Bj

0(·) ∈ R2Jc×Jc ; bj,β
0 (·) ∈ R1×Jc .

Their detailed expressions are given in Sub-section 9.2.

3. Calculate the following constants used in Proposition 3:

hj
10(·) ∈ R2Jc×1;

φj(·),ηj,β(·) ∈ R2×1; hj
00(·), f

j,β(·) ∈ R2Jc×1; hj,β01 (·), fj,β(·) ∈ R.

Their detailed expressions are given in Sub-section 9.3.

4. Calculate the following constants used in Proposition 4:

υj,β(·) ∈ R2×2Jc ; Uj,β(·) ∈ R2Jc×2Jc ; uj,β(·) ∈ R1×2Jc .

Their detailed expressions are given in Sub-section 9.4.

5. Calculate the following constants used in Proposition 5:

φi,α(·),ηi,α(·) ∈ R2×1; wi,α(·), f i,α(·) ∈ R2Jc×1; wi,α(·), fi,α(·) ∈ R.

Their detailed expressions are given in Sub-section 9.5.

6. Calculate the following constants used in Propositions 6 and 7:

q̃κ0,a0 , r̃κ0,a0 , φ̃i,α(j, β, k), η̃i,α(j, β) ∈ R.

Their detailed expressions are given in Sub-section 9.6. Then calculate the average

numbers of customers:

g̃k = (g̃ki,α : (i, α) ∈ S), ñk = (ñk
i,α : (i, α) ∈ S) ∈ R1×Jc , (k ∈ Π ∪ {0})

by solving the following linear equations (Propositions 6 and 7).

ñk
i,α =

∑
(j,β)∈S

λj,β

{
φ̃i,α(j, β, k) +

∑
κ0∈Π

(g̃κ0 , ñκ0)wi,α(j, β, κ0, k)

}
, (k ∈ Π);

g̃ii,α =
∑

(j,β)∈S

λj,β

{
η̃i,α(j, β) +

∑
κ0∈Π

(g̃κ0 , ñκ0)f i,α(j, β, κ0)

}
− q̃i,α;

g̃ki,α = 0, (k ̸= i, k ∈ Π); ñ0
i,α = 0; g̃0i,α = 0.

7. Finally we can obtain the average sojourn times (in Proposition 8) by

w̄i,α(j, β) =

{∑
k∈Π

φ̃i,α(j, β, k) + η̃i,α(j, β)

}

+
∑
κ0∈Π

(g̃κ0 , ñκ0)

{∑
k∈Π

wi,α(j, β, κ0, k) + f i,α(j, β, κ0)

}

for (i, α), (j, β) ∈ S.
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10.2 Computational complexity for the steady state values

Let us evaluate the computational complexity for the steady state values. It can be

accomplished by evaluating the computational complexity for calculating the constants

used in all propositions whose expressions are given in Section 9. For simplicity, we

assume that an n× n matrix can be inverted in O(n3) operations.

Evaluation of the computational complexity

– Proposition 1: The calculation of the constants in this proposition can be accom-

plished by simple arithmetic calculations and substitutions of the given constants

and the constants related to {T δ
i,α} and {N i,α,k,γ}. Hence its computational com-

plexity is at most O(J4
c ).

– Proposition 2: The most efforts are required to calculate the set of the matrices

{Bj
1(κ0)}. This calculation requires J inversions of (2JcJ)×(2JcJ) matrices. Hence

its computational complexity is at most O(J3
c J

4).

– Proposition 3: The most efforts are required to calculate the set of the matrices

{hj
10(κ0, k)}. This calculation requires J inversions of (2JcJ) × (2JcJ) matrices.

Hence its computational complexity is at most O(J3
c J

4).

– Proposition 4: The calculation of the constants in this proposition can be ac-

complished by simple arithmetic calculations, substitutions and multiplications of

the matrices obtained previously. Hence its computational complexity is at most

O(J4
c J).

– Proposition 5: The most efforts are required to calculate the set of the matrices

{ŵi,α(j, β, k)} and {f̂ i,α(j, β)}. This calculation requires an inversion of (2J2
c ) ×

(2J2
c ) matrix. Hence its computational complexity is at most O(J6

c ).

– Propositions 6 and 7: The most efforts are required to calculate the set of the

average numbers of customers {(g̃k, ñk)}. This calculation requires an inversion of

(2JcJ)× (2JcJ) matrix. Hence its computational complexity is at most O(J3
c J

3).

– Proposition 8: The calculation of the constants in this proposition can be ac-

complished by simple arithmetic calculations and substitutions of the constants

obtained previously. Hence its computational complexity is at most O(J3
c J

2).

Hence the overall computational complexity for calculating the steady state values is

at most O(J3
c J

4 + J6
c ).

11 Appendix: Polling equations

In this appendix, we give the generalized definition of the polling equation and the

uniqueness of its solution. Let T = {(l, ℓ) : l = 0, 1, 2, . . . ; ℓ = 0, 1, 2, . . .} be the index

set of pairs of the arrival and the polling instants, and let V ′ be the set of real valued

functions on S × E0 × {1, 2, . . .} × T where E0 = E \ {(0, 0, 0,0,0, L)}. We generalize

the polling equations (9) and (26).

Polling Equation. Let f0 ∈ V ′ be any known function. We define a polling equation

for an unknown function f ∈ V ′ as follows.

fj,β(Y, e, l, ℓ) = f0j,β(Y, e, l, ℓ)

+E
[
Ze
P,l,ℓfj,β(Y(τel,ℓ+1), e, l, ℓ+ 1)|(j, β,Y)el,ℓ, τ

e
l,ℓ < τel+1,0

]
(56)
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for (j, β) ∈ S, Y = (κ0, a0, r,g,n, L) ∈ E0, e ∈ {1, 2, . . .} and (l, ℓ) ∈ T where

Ze
P,l,ℓ =

{
0, Me

l ≤ ℓ,

1, Me
l > ℓ.

Note. Because fj,β(Y, e, l, ℓ) = H1
j,β(Y, e, l, ℓ, k) and fj,β(Y, e, l, ℓ) = νj,βk,γ(Y, e, l, ℓ)

have the simple explicit expressions for (l, ℓ) = (0, 0) and κ(τe0,0−) = 0, we have omitted

this case from the above equation, that is, the state space is limited to E0.
Then let

V ′
B =


f ∈ V ′ :

There exist nonnegative constants c0f ∈ R2×1,

cf ∈ R2Jc×1, c1f ∈ R such that

|fj,β(Y, e, l, ℓ)| ≤ (r,1(r))c0f + (g,n)cf + c1f
for (j, β) ∈ S, Y = (κ0, a0, r,g,n, L) ∈ E0,
e ∈ {1, 2, . . .} and (l, ℓ) ∈ T .


.

The objective of this section is to prove the following theorems.

Theorem 1 For any given function f0 ∈ V ′
B, the polling equation (56) has at most

one solution on V ′
B.

Theorem 2 The polling equation (26) solved in Proposition 2 has a unique solution

for νk,γ = νj,βk,γ(·) for all (k, γ) ∈ S. And the polling equation (9) solved in Proposition

3 has a unique solution for H1(k) = H1
j,β(·, k) for all k ∈ Π.

The proof is executed step by step while proving some related lemmas. For conve-

nience, we define

τ̃el,ℓ =

{
τel,0−, ℓ = 0,

τel,ℓ, ℓ > 0.

Lemma 1 There exist nonnegative constants c00p ∈ R2×2Jc ,C0p ∈ R2Jc×2Jc , c10p ∈
R1×2Jc such that

E

Me
l∑

k=ℓ

(g(τ̃el,k),n(τ̃
e
l,k)) (j, β,Y)el,ℓ, τ

e
l,ℓ < τel+1,0

 ≤ (r,1(r))c00p + (g,n)C0p + c10p

for (j, β) ∈ S, Y = (κ0, a0, r,g,n, L) ∈ E0, e ∈ {1, 2, . . .} and (l, ℓ) ∈ T .

Proof: We can show the following equation by using induction and Proposition 1.

E
[
Ze
P,l,k(g(τ

e
l,k+1),n(τ

e
l,k+1)) (j, β,Y)el,ℓ, τ

e
l,ℓ < τel+1,0

]

=



ζl,ℓ(j, κ0)(g,n)R1(κ0)[Ũ(j)]k−ℓI0, ℓ > 0,

ζl,ℓ(j, κ0){(r,1(r))Υ0(κ0, a0) + (g,n)R0(κ0)

+Ru(κ0, j, β)}[Ũ(j)]kI0, ℓ = 0, j ∈ He,

ζl,ℓ(j, κ0){(r,1(r))Υ0(κ0, a0) + (g,n)R0(κ0)

+Ru(κ0, j, β)}Ũg(j)[Ũ(j)]k−1I0, ℓ = 0, j ∈ Hg, k > 0,

ζl,ℓ(j, κ0){(r,1(r))Υ0(κ0, a0) + (g,n)R0(κ0)

+Ru(κ0, j, β)}I0, ℓ = 0, j ∈ Hg, k = 0,

(57)
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for k ≥ ℓ, where

ζl,ℓ(j, κ0) =

{
1{κ0 ̸= j}, ℓ > 0,

1{κ0 ̸= j ∈ He}+ 1{j ∈ Hg}, ℓ = 0,

Ũ(j) =



Ũ(1, j)
...

Ũ(j − 1, j)

Õ

Ũ(j + 1, j)
...

Ũ(J, j)


, Ũg(j) =



Ũ(1, j)
...

Ũ(j − 1, j)

Ũ(j, j)

Ũ(j + 1, j)
...

Ũ(J, j)


, I0 =


I

I
...

I

 ,

where Ũ(j), Ũg(j) ∈ R(2JcJ)×(2JcJ), and I0 ∈ R(2JcJ)×(2Jc), and

Ũ(i, j) =
(
p̂i,1U1(1), . . . , p̂i,j−1U1(j − 1),O, p̂i,j+1U1(j + 1), . . . , p̂i,JU1(J)

)
∈ R(2Jc)×(2JcJ), (i = 1, . . . , J),

 ,

R1(κ0) = (O, · · · ,O,U1(κ0)︸ ︷︷ ︸
κth
0

place

,O, · · · ,O) ∈ R(2Jc)×(2JcJ),

Υ0(κ0, a0) = (02, · · · ,02,υ0(κ0, a0)︸ ︷︷ ︸
κth
0

place

,02, · · · ,02) ∈ R2×(2JcJ),

R0(κ0) = (O, · · · ,O,U0(κ0)︸ ︷︷ ︸
κth
0

place

,O, · · · ,O) ∈ R(2Jc)×(2JcJ),

Ru(κ0, j, β) = (01, · · · ,01,u0(κ0, j, β)︸ ︷︷ ︸
κth
0

place

,01, · · · ,01) ∈ R1×(2JcJ),

where Õ ∈ R(2Jc)×(2JcJ),O ∈ R(2Jc)×(2Jc),02 ∈ R2×(2Jc),01 ∈ R1×(2Jc) are the

zero matrices, and I ∈ R(2Jc)×(2Jc) is the identity matrix.

Hence we have

E

 Me
l∑

k=ℓ+1

(g(τel,k),n(τ
e
l,k))

(j, β,Y)el,ℓ
τel,ℓ < τel+1,0


=

∞∑
k=ℓ

E

[
Ze
P,l,k(g(τ

e
l,k+1),n(τ

e
l,k+1))

(j, β,Y)el,ℓ
τel,ℓ < τel+1,0

]

=


ζl,ℓ(j, κ0)(g,n)R1(κ0)[Ĩ− Ũ(j)]−1I0, ℓ > 0,

ζl,ℓ(j, κ0){(r,1(r))Υ0(κ0, a0) + (g,n)R0(κ0)

+Ru(κ0, j, β)}[Ĩ− Ũ(j)]−1I0, ℓ = 0, j ∈ He,

ζl,ℓ(j, κ0){(r,1(r))Υ0(κ0, a0) + (g,n)R0(κ0)

+Ru(κ0, j, β)}
{
Ĩ+ Ũg(j)[Ĩ− Ũ(j)]−1

}
I0, ℓ = 0, j ∈ Hg,

(58)

where Ĩ ∈ R(2JcJ)×(2JcJ) is the identity matrix. The last equality comes from the

fact that [Ũ(j)]k → O ∈ R(2JcJ)×(2JcJ) as k → ∞. This completes the proof of this

lemma.
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Lemma 2 Suppose that f ∈ V ′
B satisfies the following inequality:

|fj,β(Y, e, l, ℓ)| ≤ E
[
Ze
P,l,ℓ|fj,β(Y(τel,ℓ+1), e, l, ℓ+ 1)| | (j, β,Y)el,ℓ, τ

e
l,ℓ < τel+1,0

]
for (j, β) ∈ S, Y = (κ0, a0, r,g,n, L) ∈ E0, e ∈ {1, 2, . . .} and (l, ℓ) ∈ T . Then

f = 0.

Proof: By recursively applying the condition of this lemma, we have

|fj,β(Y, e, l, ℓ)|
≤ E

[
Ze
P,l,ℓ+k|fj,β(Y(τel,ℓ+k+1), e, l, ℓ+ k + 1)| (j, β,Y)el,ℓ, τ

e
l,ℓ < τel+1,0

]
for k = 0, 1, 2, . . .. Because f ∈ V ′

B , there exist nonnegative constants c0f ∈ R2×1,

cf ∈ R2Jc×1, c1f ∈ R such that

|fj,β(Y, e, l, ℓ)| ≤ E
[
Ze
P,l,ℓ+k

{
(r(τel,ℓ+k+1),1(r(τ

e
l,ℓ+k+1)))c

0
f

+(g(τel,ℓ+k+1),n(τ
e
l,ℓ+k+1))cf + c1f

}
(j, β,Y)el,ℓ, τ

e
l,ℓ < τel+1,0

]
= E

[
Ze
P,l,ℓ+k(g(τ

e
l,ℓ+k+1),n(τ

e
l,ℓ+k+1)) (j, β,Y)el,ℓ, τ

e
l,ℓ < τel+1,0

]
cf

+E
[
Ze
P,l,ℓ+k (j, β,Y)el,ℓ, τ

e
l,ℓ < τel+1,0

]
c1f

→ 0, (k → ∞).

This expression converges to 0 because

∞∑
k=ℓ

E
[
Ze
P,l,k(g(τ̃

e
l,k+1),n(τ̃

e
l,k+1)) (j, β,Y)el,ℓ, τ

e
l,ℓ < τel+1,0

]
= E

Me
l −1∑
k=ℓ

(g(τ̃el,k+1),n(τ̃
e
l,k+1)) (j, β,Y)el,ℓ, τ

e
l,ℓ < τel+1,0

 < ∞,

E
[
Ze
P,l,ℓ+k (j, β,Y)el,ℓ, τ

e
l,ℓ < τel+1,0

]
= P

{
Me

l > ℓ+ k|(j, β,Y)el,ℓ, τ
e
l,ℓ < τel+1,0

}
=

{
P
{
κ(τel,ℓ+1) ̸= j, . . . , κ(τel,ℓ+k) ̸= j κ(τ̃el,ℓ) = κ0

}
, ζl,ℓ(j, κ0) = 1,

0, ζl,ℓ(j, κ0) = 0

→ 0, (k → ∞).

The last expression comes from the fact that the (finite state) Markov chain generated

by the transition probability matrix P̂ is irreducible.

Proof of Theorem 1: Let f ∈ V ′
B and f̂ ∈ V ′

B be any two solutions that satisfy the

equation (56) for the given f0. Then

|fj,β(Y, e, l, ℓ)− f̂j,β(Y, e, l, ℓ)|

≤ E

[
Ze
P,l,ℓ

∣∣fj,β(Y(τel,ℓ+1), e, l, ℓ+ 1)− f̂j,β(Y(τel,ℓ+1), e, l, ℓ+ 1)
∣∣ (j, β,Y)el,ℓ

τel,ℓ < τel+1,0

]
for (j, β) ∈ S, Y ∈ E0, e ∈ {1, 2, . . .} and (l, ℓ) ∈ T . Since f − f̂ ∈ V ′

B , we have from

Lemma 2, f = f̂ .

We next show that the quantities νk,γ = νj,βk,γ(·) for all (k, γ) ∈ S and H1(k) =

H1
j,β(·, k) for all k ∈ Π respectively defined in Sections 2 and 4 are indeed the functions

in V ′
B .
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Lemma 3 Let νk,γ = νj,βk,γ(·) be the number of (k, γ)-customers at time τel,Me
l
de-

fined in (23), and let H1(k) = H1
j,β(·, k) be the performance measures defined in (6).

Then, νk,γ ∈ V ′
B for all (k, γ) ∈ S, and H1(k) ∈ V ′

B for all k ∈ Π.

Proof: νk,γ ∈ V ′
B can be easily shown by Lemma 1.

Now we consider H1(k) ≥ 0.

H1
j,β(Y, e, l, ℓ, k) = E

[∫ τe
l+1,0

τe
l,ℓ

Ce
Wj,β(t)1{κ(t) = k}dt (j, β,Y)el,ℓ

τel,ℓ < τel+1,0

]

= E

Me
l −1∑

m=ℓ

∫ τe
l,m+1

τe
l,m

Ce
Wj,β(t)1{κ(t) = k}dt (j, β,Y)el,ℓ

τel,ℓ < τel+1,0


=

∞∑
m=ℓ

E

[
Ze
P,l,m

∫ τe
l,m+1

τe
l,m

Ce
Wj,β(t)1{κ(t) = k}dt (j, β,Y)el,ℓ

τel,ℓ < τel+1,0

]

=

∞∑
m=ℓ

E

[
Ze
P,l,mH0

j,β(Y(τ̃el,m), e, l,m, k)
(j, β,Y)el,ℓ
τel,ℓ < τel+1,0

]

≤
∞∑

m=ℓ

E

[
Ze
P,l,m

{
(r(τ̃el,m),1(r(τ̃el,m)))φ0 + (g(τ̃el,m),n(τ̃el,m))h0

} (j, β,Y)el,ℓ
τel,ℓ < τel+1,0

]

= E

Me
l −1∑

m=ℓ

{
(r(τ̃el,m),1(r(τ̃el,m)))φ0 + (g(τ̃el,m),n(τ̃el,m))h0

} (j, β,Y)el,ℓ
τel,ℓ < τel+1,0


≤ (r,1(r))φ0 +

{
(r,1(r))c00p + (g,n)C0p + c10p

}
h0

where φ0 and h0 are the constants that respectively satisfy

φ0(κ0, a0, j, k) ≤ φ0 and h0
10(κ0, j, k),h

0
00(κ0, j, k) ≤ h0.

The first inequality comes from Proposition 1 and the second inequality comes from

Lemma 1.

Proof of Theorem 2: The function νk,γ = νj,βk,γ(·) defined in (23) is an element of V ′
B

for any (k, γ) ∈ S from Lemma 3 and satisfies the polling equation given given by

(26). Hence from Theorem 1 νk,γ given by (25) is the unique solution of the polling

equation. (The function f0 related to νk,γ is obviously in V ′
B .)

The function H1(k) = H1
j,β(·, k) defined in (6) is an element of V ′

B for any k ∈ Π

from Lemma 3 and satisfies the polling equation given by (9). Hence from Theorem

1 H1(k) given by (27) is the unique solution of the polling equation. (The function

f0 = H0
j,β(·, k) defined in (7) is in V ′

B from Proposition 1.)
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