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Analysis of multiclass Markovian polling systems with
feedback and composite scheduling algorithms

Tetsuji Hirayama

Abstract We consider multiclass Markovian polling systems with feedback and an-
alyze their average performance measures. Scheduling in polling systems has many
applications in computer and communication systems. We utilize the framework that
has been effectively used to analyze various composite scheduling algorithms in many
types of multiclass queues systematically in conjunction with the functional computa-
tion method (Hirayama, 2003, 2005, 2009a, 2010).

We define the conditional expected values of the performance measures such as the
sojourn times as functions of the system state and find their expressions by solving some
equations. Then from these expressions, we derive the average numbers of customers
and the average sojourn times for all service stages of customers circulating the system.
We consider their application to a packet scheduling problem where multiple categories
of packets share a resource.

Keywords Multiclass queues - Feedback - Markovian polling - Packet scheduling

1 Introduction

Multiclass queueing systems have been extensively studied to analyze packet schedul-
ing problems in computer communication networks (Kleinrock, 1976). These systems
have multiple classes of customers with various features in quantities such as arrival
rates, service times, feedback probabilities and service paths, and have many kinds of
scheduling algorithms such as priorities and server allocation policies. They are pow-
erful tools for performance evaluation because they can analyze detailed structures of
communication networks with many types of application packets and scheduling algo-
rithms. Our aim is to develop the method of analyzing full-scale multiclass queueing
models that can investigate real packet scheduling problems in detail.

Faculty of Engineering, Information and Systems, University of Tsukuba

Tsukuba-shi, Ibaraki 305-8573, JAPAN

Tel.: +-81-29-853-5325

Fax: +81-29-853-5206

E-mail: hirayama@cs.tsukuba.ac.jp

The formal version of this paper was published in Annals of Operations Research, 198, 83123,
(2012).



We consider a two level classification of customers where there are multiple groups
(stations) each of which comprises multiple classes of customers. A single server visits
a group at a time, and then some customers in the group are admitted into the service
facility and are served according to some service order that utilizes their classes. Hence
the scheduling algorithms for the multiclass queues are effectively prescribed by the
following items.

1. Selection (or visiting) orders of groups by the server.

2. Customer selection rules used when the server admits customers in each group into
the service facility.

3. Service orders of customers in the service facility.

Typical selection orders of groups are a priority order and a (cyclic) polling order. There
are many types of customer selection rules, e.g., gated, exhaustive and 1-limited. There
are also many service orders of customers, e.g., FCFS, priority, PS (processor sharing),
LAS (least attained service first), SJF (shortest job first), etc. The DRR (discriminatory
round robin) considered in (Hirayama, 2010) is another example. (Note that not all of
these combinations can be analyzed by our method.)

This framework for scheduling algorithms has been effectively used to analyze vari-
ous composite scheduling algorithms in many types of multiclass queues systematically
in conjunction with the functional computation method ((Hirayama, 2003, 2010) for
the multiclass priority systems with feedback, (Hirayama, 2005) for the multiclass
cyclic polling systems with feedback). We also use this framework to analyze multi-
class Markovian polling systems with feedback in this paper. A similar framework was
considered later in (Wierman et al., 2007; Boxma et al., 2009) to analyze scheduling
in polling systems. Because in our models we treat only the average values of the per-
formance measures, e.g., the average numbers of customers and the average sojourn
times, we often do not explicitly mention whether or not distributions of performance
measures were considered in the existing models taken up in this section.

Priority order is a major one of the selection orders of groups. Many researchers have
investigated multiclass queueing systems with priority. Kleinrock (1976) extensively
investigated the systems and their applications to packet scheduling problems. These
multiclass systems have been extended to the systems with feedback where customers
can receive multiple services by returning to the systems several times. The Bernoulli
feedback systems with multiple groups considered in (Choi et al., 2000; Doshi and
Kaufman, 1988) are these systems where service times, feedback probabilities, and the
other statistical quantities of customers in each group, respectively, are independent
and identically distributed at all of their service stages. In the systems (Jewkes and
Buzacott, 1991; Van den Berg et al., 1989), statistical quantities and priorities at all
service stages of customers can be different, but all customers essentially belong to a
single group.

The feedback systems in (Paterok et al., 1989; Simon, 1984) have multiple groups
with the 1-limited customer selection rule where statistical quantities and priorities
at all service stages of customers in every group can be different. These systems were
extended to the Markovian feedback system (Hirayama, 2003) that has multiple classes
in each group with the gated rule as a customer selection rule and with FCFS order
and priority order as service orders of customers in the service facility. In (Hirayama,
2010) the system was further extended to the system with mixtures of the 1-limited,
the gated, and the exhaustive customer selection rules.



The other major selection order of groups is (cyclic) polling order. The cyclic polling
systems with a single class in each group were considered in many papers ((Cooper,
1970; Cooper and Murray, 1969) for the systems with zero switchover periods, (Eisen-
berg, 1972) for the system with nonzero switchover periods). Although these papers
utilized the buffer occupancy method (BOM), which has been the major method for
analyzing the polling systems, many other methods have also been investigated. The
station time method (STM) (Ferguson and Aminetzah, 1985), the functional compu-
tation method (FCM) (Hirayama et al., 2004), and the mean value analysis (MVA)
(Winands et al., 2006) have been developed. The descendant set method which is a
variation of BOM was considered in (Konheim et al., 1994), and was used to ana-
lyze polling systems with simultaneous batch arrivals in (Van der Mei, 2002). Another
method was also considered in (Sarkar and Zangwill, 1989). These variations and the
methods of analysis were surveyed in (Levy and Sidi, 1990; Takagi, 1986).

The cyclic polling systems have also been extended to the systems with feedback.
The symmetric polling system with Bernoulli feedback was analyzed by the stochastic
decomposition property in (Takine et al., 1991). The two-stage tandem system with
multiple customer groups discussed in (Katayama, 1992), which was analyzed by the
standard embedded Markov chain approach, is a variation of the cyclic polling system
with feedback. Sidi et al. (1992) analyzed by BOM the cyclic polling system with
Markovian feedback that has a single class in each group. Hirayama (2005) extended it
to the system that has multiple classes in each group with the gated or the exhaustive
rule as customer selection rules and with FCFS or priority order as service orders of
customers in the service facility, and analyzed the system by FCM.

Although the cyclic polling order is a typical selection order of groups by the
server, we can consider the other polling orders. A system with a general deterministic
order was investigated by STM in (Baker and Rubin, 1987). A system with a random
order (Kleinrock and Levy, 1988), and a system with a general probabilistic order
(Srinivasan, 1991) were analyzed by BOM. Hirayama (2009a) investigated a system
with a Markovian order by FCM, and calculated its computational complexity. In this
paper we further extend it to the system with Markovian feedback that has multiple
classes in each group with the gated or the exhaustive rule as a customer selection
rule and with FCFS or priority order as a service order in the service facility. Such
general polling orders can give preferential treatments to some groups of customers
by appropriately arranging the frequencies that the server visits them. In Section 7,
we give such examples in a packet scheduling problem. To the best of our knowledge,
this Markovian polling system with feedback and with the two level classification of
customers has not been investigated.

Concerning customer selection rules, the gated rule and the exhaustive rule have
commonly been used in many of the papers. One of the other rules, the 1-limited rule,
is fairly difficult to analyze except for some special cases (Levy and Sidi, 1990). The
symmetric polling system with the 1-limited rule and Bernoulli feedback was analyzed
in (Takine et al., 1991). The other (analyzable) variations, the binomial gated rule
and the globally gated rule, were investigated by BOM in (Levy, 1991) and by the
cycle time analysis in (Boxma et al., 1992), respectively. Strictly speaking, because the
globally gated rule is outside the above framework, we somewhat need to modify it in
order to treat the rule.

The only service order of customers (in the service facility) in the polling systems
has been FCFS for a long time, because there has been a single class in each group.
Recently several service orders in each group with multiple classes of customers have



been considered. The mean sojourn times in the cyclic polling system with the gated
and the exhaustive groups that have several service orders including priority, PS and
SJF were analyzed by MVA in (Wierman et al., 2007). The LSTs of the sojourn time
distributions in the cyclic polling system with either the gated or the globally gated rule
and with several service orders including PS and SJF were obtained in (Boxma et al.,
2009) by combining the method developed by Resing (1993) for branching type selection
rules and the cycle time analysis. Further the LSTs of the sojourn time distributions
in the cyclic polling system with either the gated, the exhaustive or the globally gated
rule in which customers in each group are served in a priority order were obtained in
(Boon et al., 2010) by combining the above Resing’s method, the cycle time analysis
and the decomposition property. The average sojourn times in the cyclic polling system
with feedback that has the gated and the exhaustive rules and has FCFS and priority
service orders were obtained in (Hirayama, 2005) by FCM. In this paper we extend it
to Markovian polling systems.

PS and LAS are “infinitesimal quanta algorithms” where all relevant customers are
served simultaneously by dividing their service times into infinite numbers of infinites-
imal service quanta. In contrast to these algorithms, we can consider “positive quanta
algorithms” where a service time of each customer is divided into a finite number of
positive service quanta and where all relevant customers receive their quanta one af-
ter another until they complete their services. We can model these positive quanta
algorithms by the feedback systems. DRR considered in (Hirayama, 2010) is a positive
quanta version of DPS (discriminatory processor sharing) (Altman et al., 2006) which
is a multiclass extension of PS. DPS is used to approximate the actual packet schedul-
ing algorithms like WFQ (weighted fair queue) (Aalto et al., 2007). In (Hirayama,
2010) DRR was combined with the priority selection order to approximate the actual
scheduling algorithms like LLQ (low latency queue) and IP-RTP priority that combine
WFQ with PQ (priority queue). We can also combine DRR with the polling selection
orders.

From the perspective of the mathematical analysis, we use the functional compu-
tation method (FCM) which has been developed in order to analyze performance of
many M/G/1 type multiclass queues and various scheduling algorithms. This method
was used to analyze the polling system (Hirayama et al., 2004) and its extension to
the multiclass polling system with feedback (Hirayama, 2005). Further it was used to
analyze the multiclass feedback queue with priority order and the gated selection rule
(Hirayama, 2003) and its extension to the system with mixtures of the 1-limited, the
gated and the exhaustive selection rules (Hirayama, 2010).

The main differences between the classical methods (e.g. BOM and STM) and
FCM are as follows. These classical methods analyze evolution of the system states
along time and derive the equations satisfied by their moments (or transforms of their
distributions). The system states of BOM are numbers of customers at polling instants,
and those of STM are terminal service times each of which consists of a service period
and a switchover period. Then the average waiting times can be derived by relating
them to these moments of the system states. On the other hand, the analysis of FCM
is accomplished as follows. By observing any one of customers, its expected sojourn
times conditioned on its arrival epochs (or its related polling instants) are derived step-
by-step (often by solving equations). Then the average sojourn times are derived by
averaging those conditional expected sojourn times of all customers, and the average
number of customers are derived by the Little’s formula and the PASTA property. The
relationship between BOM and FCM was given in (Hirayama et al., 2004; Hirayama,



2005). The other difference is their ranges of analysis. These classical methods can
only analyze polling systems while FCM can analyze not only polling systems but also
priority systems and feedback systems (as described above).

The whole analysis of a queueing system by FCM is carried out by adequately
combining analysis common to various systems and analysis intrinsic to the individual
system. First the states of the system are defined, and then its performance measures
such as the conditional expected sojourn times are defined as functions of the states.
The performance measures and their components are related by some equations (e.g.
the feedback equations and the polling equations). Expressions for these components
are derived by analyses intrinsic to the system, whereas expressions for the performance
measures are derived from these equations whose solution methods are common to
various systems. Further steady state values of the performance measures are obtained
from these expressions by applying some common limiting procedures, the Little’s
theorem and the PASTA property.

These common parts of the analysis give the excellent characteristics that our
method can analyze various systems. But when we investigate any individual system,
we should use its individual structures in order to give its concrete model description
such as the system states and the performance measures, and in order to obtain their
expressions and their steady state values in detail. For example, the analysis of busy
periods and delay cycles is used to analyze the priority systems (Hirayama, 2003, 2010),
whereas the analysis of numbers of customers at polling instants is used to analyze the
polling systems (Hirayama, 2005; Hirayama et al., 2004). It is the linear functional
expressions that closely link the common parts with the individual parts.

To see these excellent characteristics, we can compare the expressions in equations
(5.12) and (5.13) in (Hirayama, 2005) with the expressions in equations (60) and (61) in
(Hirayama, 2010). These expressions are essentially the same except for those related to
the switchover periods (k € IT° in (5.12)) despite the considerable structural differences
between the former polling system and the latter priority system. However the deriva-
tion procedures of the expressions for their coefficients (¢; ,(*), Wi o (), wi,a(-), etc.)
in these two systems are of course fairly different. Another advantage of the method is
that similar analysis can be applied to both of the systems with switchover times and
without switchover times.

The paper is organized as follows. In Section 2 we describe our model of the mul-
ticlass Markovian polling systems with feedback. We define the system structures and
the scheduling algorithms in detail along the framework given above. Then we define
the system states and the conditional expectations of the performance measures. In
Section 3 we analyze service periods of every station for all scheduling algorithms.
In Section 4 the components of the expected performance measures and their related
quantities at every service stage of a tagged customer are analyzed. In Section 5 we
obtain the linear functional expressions for the conditional expectations of the per-
formance measures. Then we consider their steady state average values in Section 6.
We consider an application to a packet scheduling problem where three categories of
packets share a resource in Section 7. We construct the four scheduling algorithms and
compare their performance. The algorithm for calculating the performance measures
and its computational complexity are given in the appendices.



2 Model Description

In this section, we describe our model of the multiclass queues.

2.1 The system structures and the parameters

There are J groups of customers and L; classes of customers in group i. (4, a)-customers
(belonging to class « in group 4) arrive at station ¢ from outside the system according
to a Poisson process with rate \; o. Let S = {({,a) :i=1,...,Jand a = 1,...,L;},
Je = Z;jzl L;,and \ = Z;’Zl 22;1 Ai,a- All customers, whose arrival rate is A, are
numbered in order of arrival where ¢ and 7§, denote the et arriving customer itself
and its arrival epoch, respectively (e = 1,2,...). (We use Tﬁe (1, =0,1,2,...) to
denote the typical time epochs related to c®, whose definitions are given below. Also
see Fig.1.)

Each arriving customer receives service many times while changing its group and
class. A service stage is a time period from when a customer arrives at a station until
it completes a service at the station. Let S; o be a service time an (i, o)-customer
receives during a service stage whose mean and second moment are E[S; o] > 0 and
812, o Tespectively. After completing a service, an (i, a)-customer either returns to the
system as a (g, 8)-customer with probability p; o j g or departs from the system. The
feedback probability matrix is given by P = (p; «,j,3 : (4,0),(j,8) € S). We assume
that P™ — O as n — oo. Then let T} ,, be a total amount of service times received by
a customer from when it becomes an (¢, )-customer until it departs from the system.
Its expected value Ti,a satisfies the following equation.

J Ly

Ti,oz = E[Si,a] + Z Zpi,a,k,’ka,'ya (i7 Ot) € S. (1)
k=1~v=1

Then, let p = E;.le Zi’zl )\i’aTi’a < 1 be the resource utilization of the system.

A single server visits these stations according to a Markovian polling order. That
is, for any ¢ = 1,...,J, when the server completes necessary services of customers at
station ¢ (defined below as a period ), one of the following two cases occurs:

— If the system is not empty, the server selects station j with probability p;; and then
visits it immediately (j = 1,...,J). If the visiting station j is not empty, the server
begins services of its customers; while if it is empty, the server again selects station
k immediately according to the probability p;; and then visits it (k = 1,...,J),
and so on. This process continues until the server reaches a non-empty station.

— If the system is empty, the server becomes idle. At the next time a customer arrives,
the server immediately starts its service.

All switchover times spent when the server moves between stations are assumed to
be 0. The server cannot be idle whenever the system is not empty. Let P = (Pij =
i,7 =1,...,J) be the switching probability matrix. We assume that the Markov chain
generated by the transition probability matrix P is irreducible.

The system is separated into two parts, which are called the “service facility” and
the “waiting room.” There is a gate at each station between the set of its queues in
the waiting room and the set of its queues in the service facility, which intercepts the



migration of customers between them. Each customer arriving at each station from
outside the system or by feedback enters its queue in the service facility when its gate
is opened; otherwise, it enters its queue in the waiting room.

The server visits one of the stations at a time, and then opens its gate in order
to admit some customers at the station to its queues in the service facility. Then, the
server serves the customers in the service facility until the server empties it, and then
visits another station and opens its gate. Since the gates of the stations that are not
visited by the server are closed, all customers at such stations must wait for service
in the waiting room. Once a customer begins a service, it is not interrupted by other
customers (that is, each service in each service stage is non-preemptive).

Each time interval from when the server visits a station until the first time the
server empties the service facility is called a “service period.” Each time interval when
the server is idle is called an “idle period.” We use an abbreviated term “period k”
to denote a service period during which the server visits station k if £ # 0 or an idle
period if K = 0. Let IT = {1,...,J} be the set of indices of the service periods.

2.2 The scheduling algorithms

Customers in the system are served according to a predetermined scheduling algorithm.
As we explained in Introduction, it is prescribed by (1) selection orders of the groups
(stations) by the server, which is the Markovian polling as described before; (2) cus-
tomer selection rules in each group, which is either the gated or the ezhaustive; (3)
service orders of customers in the service facility, which is either the FCFS, or the fixed
priority (FP). He, Her and H,.p denotes the set of the groups with the exhaustive rule
(the exhaustive groups), the set of this groups with the FCFS order (the exhaustive
FCFS groups) and the set of this groups with the FP order (the exhaustive priority
groups), respectively. Hg, Hyr, Hgp are similarly defined for the groups with the gated
rule.

For any gated group, the gate is opened just when the server polls the group,
and all customers staying in the group at this polling instant are admitted into the
service facility, and then the gate is closed immediately. For any exhaustive group,
the gate is opened just when the server polls the group, and it remains open and all
customers staying in the group are admitted into the service facility until it is cleared of
customers. For the FCFS service order, both of exogenous arrival epochs and feedback
arrival epochs are considered to be the “coming” epochs which are used to decide its
service order. That is, every customer arriving (exogenously or by feedback) at any
group with the FCFS order joins the tail of its queue. For the FP order, customers in
each group have the local nonpreemptive priority order where class a customers have
priority over class 8 customers if & <  and the order is effective only within the group.

2.3 The system states

Let us consider the system operating under a specified scheduling algorithm. For a
while, we give attention to ¢ arriving at 75y (e = 1,2,...). Then let 7/ be the time
just when, after completing its I service stage, it arrives (by a feedback) at one of the

stations or departs from the system (I = 1,2,...). Further let {7/, : £ =1,2,...} be
a sequence of all polling instants (i.e., service period beginning epochs) of all stations
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Fig. 1 Arrival epochs and polling instants related to c€

which occur after the ¢“’s arrival epoch 7 (see Fig.1). We assume that 775 < 7;7; <
7o < -+ At ¢s arrival epoch 7/, if the system is empty (when [ = 0) or a service
period ends (when [ > 0), then a polling instant occurs immediately and 77 = 7/7;.

The stochastic process with state space £ is defined by

Q =A{Y(t) = (k(t), a(t),r(t), g(t),n(t), L(t)) : t = 0} (2)

where

(k(t),a(t)) € SU{(0,0)} is the status of the server at time ¢, that is, a (k(t), a(t))-

customer is being served if k(¢) € II, or the server is idle if x(t) = 0,

— r(t) is the remaining service time at time ¢ of a customer being served if x(¢t) € IT,
or is equal to 0 if k(t) = 0,

- g(t) = (gi,a(t) : (1,a) €S) € RY*Je where 9i,o(t) is the number of (%, o)-customers
in the service facility at time ¢ (who are not being served),

- n(t) = (i) : (o) € S) € RY*Je where N o(t) is the number of (i,a)-
customers in the waiting room at time ¢,

— L(t) is the other information of the system.

Let X§(t) denote the two-dimensional value of (group, class) of ¢ at time ¢, or X§(t) =
(0,0) if it does not stay in the system at time t. We use the term “the system state at
time 7,°,” to denote Y (7/) if £ > 0 or denote Y (7/—) if £ = 0. For simplicity, we use
the notation (j, 3, YY), to denote the status (X§(7/,) = (4,8), Y(7,) =Y) if £ >0,
or the status (X§(7/o) = (4, 8), Y(7/p—) =Y) if £ =0.

We use the notation (g, n) € R1%27¢ to denote a generic value of the vector of the
numbers of customers at any time epoch (g = (gi,o : (,0) € S),n = (N5 : (i,a) €
S)). Further we often use the notations 1(r) = 1{r > 0} and 1; »(j,6) = 1{(i,a) =
(4,8)} where 1{-} € R is an indicator function and r denotes a generic value of the
remaining service time of a customer being served currently.

Note. We assume that at any polling instant 77, (¢ > 0), all gates are closed and all
customers are in the waiting room, and then iminediately after the instant, the gate
of the station visited by the server is opened and its customers are admitted into the
service facility.

2.4 The performance measures

We define two types of the system performance measures of customer ¢ (e = 1,2,...).
First type of them are related to the waiting times of customer ¢® in the waiting room.



We define
Cri o(t) = 1, if ¢® stays in the waiting room as an (4, «)-customer at time ¢,
Wi,al™ =) 0, otherwise,
for any t > 0 and (i, ) € S. Then we define
(o)
Hiah) = [ ClrialList) =0)at, (L)€, ke, ®
0
J o
Wia =Y Hiah) = [ Clrala, (o) €. (@)
k=1 0

where 1{-} is an indicator function. H , (k) is the waiting time that c“ spends in the
waiting room as an (i, a)-customer while the system is in period k. Wﬁa is the waiting
time that c® spends in the waiting room as an (i, a)-customer.

We would like to obtain the following expected waiting times conditioned on the

state of the system at time 7/.

Hi,oc(j7ﬂvY,e7l7k) =FE

/Tcmﬂmudw:mw

1,0

(j7ﬂ7Y)?,O] ’ (5)

for (3,0),(5,8) € 8§; Y € & 1 = 0,1,2,...; k € II. (For convenience, we define
H; ,(0,0,Y,e,l,k) =0.) Further we define the following related conditional expected
waiting times.

"'z,e+1,o (/3 Y)e
H 5(Y,e,l,0,k) = E Ceri sM1{k(t) = kYdt| L7 Y e | 6
1o ) lﬁ fraa@10s(0 =Rae| BP0 (g
(.8, Y)f
HY (Y, e 1,0,k :E/ Ctri g(O1{k(t) = kYat | L7 Y ue | 7
2 )= E| | Gt =] R ()

for (,8) € S Y € & 1,4 =0,1,2,...; k € II. The condition 7/, < 77, denotes
that during [y, /], ¢© has not been served and its group and class have not been
changed. H},B(Y’ e,l,4,k) is the expected waiting time ¢ spends during [/, 7/ 1 ()
in a service stage and Hﬁﬂ (Y,e,l, £, k) is the expected waiting time c® spends during
a service period [szz,Tf’Z+1) (while the system is in period k). Then the following
equations hold.

Feedback equation.

H’i,oz(j7/83Y76al7k)
H]{[B(Y767l707k)
= ‘FE[I—IZ‘,OC(*ng’(7—le<|»1,())7Y(Tli»l,of)?eal+ 17k)‘(j7ﬂaY)le,0]7 (i7a) = (]7 B)v (8)

E[Hio(X5(41,0), Y (T50,0-) 6L+ LENG B, Yl (6) # (7, 5),

for Y = (ko,a0,7,8,n,L) €&; (i,a),(j,B) €S; 1=0,1,2,... and k € II.
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Polling equation.

Hj (Y, e,1,0,k)
HY 5(Y,e,1,4,k)
+E[H] 5(Y(rfo31), 1,0+ LE) (G, B, Y)F 070 < Tn o) ©)
if (ko # j, ko € II) or (ko =7 € Hyg, £=10),
0, if (ko =7 € He) or (ko =j € Hg,£ > 0) or (kg =0,l =0,¢=0),

for Y = (ko,a0,7,8,n,L)€E&; (5,8)€S; 1,£=0,1,2,... and k € II.

The second type of the performance measures are related to the sojourn times of
customer ¢ in the service facility. We define for any ¢t > 0 and (i,a) € S,

1, if c® stays in the service facility or receives
Cf:-iya(t) = a service as an (4, a)-customer at time ¢,

0, otherwise.

The sojourn time (i.e., the waiting time plus the service time) that ¢® spends in the
service facility as an (i, a)-customer is defined by

o - / Chia(®)dt, ()€ S, (10)
0

The expected sojourn time in the service facility conditioned on the state of the
system at time Tﬁo is defined by

Fi,oc(.j7ﬁ7Yae7l) =F

/ C%i,a(t)dt (jvﬁvY)?,O] ’ (11)

e
1,0

Tl€+1,0
Fjl,ﬂ(Yaevl) =F |:/ C%j,ﬂ(t)dt (jaﬁaY)?,O] ) (12)
T

e
1,0

for Y € &, (i,a), (4, 8) € S. (For convenience, we define F; ,(0,0,Y,e,l) = 0.) Then
the feedback equation for Fj ,(-) similar to equation (8) holds. (For this type of the
performance measures, we do not explicitly set up a polling equation.)

3 Analysis of Service Periods of Stations

In this section we obtain the conditional expected waiting times HQﬁ(-, e,l,¢,-) of the
customer ¢ assuming that it is a (j, #)-customer at epoch 7/, (e = 1,2,...; (4,8) €
S; 1,£=0,1,2,...). We also consider the expected numbers of customers at the next
polling instant 7,7, ;.

Now let us consider an (¢, @)-customer staying at station ¢ ((i, ) € S). Let Tfa be
the total amount of service times the customer receives until the first time it dei)arts
from the set of classes (4,1),...,(4,0) at station ¢ after at least receiving its initial

. . . =0 .
service time as an (i, a)-customer (6 =0,1,...,L;). Let T; ,, be its expected value and



11

=0
T;,

«(r) be its expected value conditioned on its initial remaining service time r as an
i, a)-customer. They satisfy the following equations.

—5 E) =0
Tio = E[Si o] + Zg:1 Pi,a,i,8T4,8;

s ) s (13)
Tia(r)=r+3_5_1Pia,ipli,pi

for (i,a) € Sand 6 =0,1,...,L;. (The empty sum which arises when § = 0 is equal
to 0.) Then let Ql‘.’:é = Zi:l ALO‘T?@.

Let N; ok, be the number of (k,y)-customers who arrive during a service period of
station ¢ starting with an (i, a)-customer, and who still stay at station k at the service
period completion epoch. Then its expected value and its expected value conditioned
on the remaining service time r of the initial (4, «)-customer respectively are denoted

by Ni,a,k,'y and Ni,a,k,'y(r)- They satisfy the following equations.

My ElSi 0] + Pk, i€ Hg,
— Moy ESi o) + ps
Nk = k,y [in,a] Pi,a,k,y o ' (14)

T +2 501 (X 8ElSial + Pisa,i,8)Ni,g ki, & #1 € He,
0, k=1¢€ He,
)\k,’yr +pi,a,k,’y7 i€ Hg,

— AkAT + Dijak,
Niak~(r) = ] ne (15)

L; nT -
+2 501 (X7 + Divasi,8) NGBk kT E He,
0, k=1¢€ He.

Finally we define the notion related to busy periods, which will be used in Section
4.For j € Hepand 6 =0,1,...,Lj, let a “(j,0)-busy period” denote a period during a
service period of station j completed at the first time when all customers belonging to
classes (j,1),...,(4,0) clear. We assume that a (j, o)-customer can initiate a (7, §)-busy
period even if o > 6. (Of course, all customers belonging to (j,6 +1),..., (4, L;) other
than the initial customer do not receive any service during the (j, §)-busy period.) In
particular, a (j,0)-busy period is completed at the first time when a group j customer
being served currently completes its service, and a service period of station j is a
(4, Lj)-busy period. Then the expected length of a (4, d)-busy period initiated with a

L =0
(j, c)-customer is given by T o /(1 — Qj:é)’ (a=1,...,L; and 6 =0,1,..., Lj).

3.1 Expressions for H;.), )

Let I,£ = 0,1,2,... and let Y = (kg,a0,7,8,n,L) € £ be the system state at time
7o where g = (gi,o : (i,2) € §) and n = (n; o : (i,a) € S). We assume that ¢ is
a (j, B)-customer at this time, i.e., X§(7/,) = (4, ). For ko € Hgy, since we need the
value only for (kg # j, £ > 0) or (£ = 0), the other case is not considered.

LNO
ZHNC)’QE[SHO;QL k:KO7K/0 ¢]>€>07

a=1
HY5(Y,e,l,0,k) = Lrg (16)
r+ Z gKO,D‘E[SHO’aL k= "{“’076 = 03
a=1
0, otherwise.
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For kg € He, since we need the value only for (kg # j), the other case is not considered.

Le, L,
Za:1 Nro,al'kg,a

) k:KO7HO#]7E>O7

1-— Q+
0 Lo L
Hjaﬁ(Y7 3 l7 Z’ k) = I(T)TR:,OQO (’I") + Zalol gKOﬁoéTf‘i(jvoa k _ # - E =0 (17)
1 — ‘QJF ’ = Ko, k0O .]7 - Y
K0,Lk,
0, otherwise.

3.2 System State at the Next Polling Instant T&_H

Let 1,£=0,1,2,... and let Y = (ko, a0,7, 8,0, L) € £ be the system state at time Tlej
where g = (95,0 : (1,a) € S) and n = (n;,o : (4,a) € S). We consider the system state
at the next polling instant Tlfé+1.

When we consider the system state (especially, the numbers of customers) at the
next polling instant, we consider the following cases according to kg. For rg € Hg, we
can show that

Elnm (TLop )16 er1) = K1, (G, 8,Y) oo e < Tid1 0]

L. —
Nm,y + Za:ol nkao,oang,oz,m,'y, m ?é KQ, (Z > 0),
L. —
= Za:ol Nko,alNVko,a,m,y, o m = ko, (£>0), (18)
Nm,y + 1m,’Y(j7 ﬂ) + 1(7")Nno,ao,m,“r(7")
L, -
+Za=01 gmo,aNno,a,m,'y, (Z: 0),
for any (7, 8), (m,v) € S; k1 € II. For kg € He, we have
Elnm~ (T er )& o41) = w1, (G, B, Y) oy Tre < Ti1,0]
L, -
s + 5 0 Moy m £ Ko, (£ 0),
) ey + 1 G B) + 1) N gy (1) "

Ly . -~
+Zo¢:01(g"‘070‘ + 15070‘(J7ﬁ))N’1070‘am777 m 7& K0, (Z = 0)7
0, m = ko, (£ >0),

for any (4, 08), (m,v) € S; k1 € II. Further for any (3, 8), (m,v) € S; k1 € II, we have

Elgm~(TLor )8 e41) = 51, (G, 8, Y) 10, e < Tig1,0] = 0. (20)

3.3 The Linear Functional Expressions for the Quantities

From the analysis in this section, we have the following linear functional expressions
for the above expectations. In order to obtain these expressions, we define the following
constants.

Bfo() € R 60() € R¥Y b () € R,
Ui() € R¥¥2e; 40y € RPe; Ug() € R2TXe; uo() € RIX¥e,

Their detailed definitions are given in Sub-section 9.1.
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Proposition 1 Let Y = (ko,a0,7,8,n,L) € & (4,8) € S; e = 1,2,...; 1,f =
0,1,2,... and k,k1 € II. Then we have
(gv )hl()(‘%Oajvk)a > 0,
Y,e l, 0k ) . 21
3o )= {o«, 1) (50, 0,5, k) + (g m)fo (o, . k), £ =0,V

Bl er1), 0o D&t es1) = K1, G 8, Y) o Te < 41,0
n)

:{( Ui (ko), £>0, o)
(r,1(r))vo(ko, ao) + (g,n)Uo (ko) + uo(ko,J, B), £ = 0.

4 Analysis of Service Stages of a Customer

In this section we obtain the quantities related to each service stage of customer c®.
First we obtain the numbers of customers at the ﬁrst polling instant of the station
c® stays in. Then we obtain the expressions for H 5( k) and F} ;,3(*) by solving the
polling equations. It can be shown that they have the linear functzonal forms. Finally
we obtain the expected values of the system state at the completion epoch of the service
stage.

4.1 Numbers of Customers at the First Polling Instant

For any [ = 0,1,2,... and j € I, let us consider the event that customer c® arrives
at station j at time 7°;. Then let TﬁMle be the first time after 7,7 just when c“ is

admitted into the service facility. Basically 7'167 are is the first polling instant of station
7 after the arrival epoch, except for the following case.

— If k(7{p—) = j € He, then Tle,Mle =7/ and Mj = 0.

(If k(75,0—) = 0, that is, the system is empty just before 7§ o, then T&Mg is equal to
the first polling instant 7§ ; (= 7(,9) and Mg = 1.) Then we define

?i’,’i(Y,e,l,f) = Elnk (1 me) 10, 8, Y)ies e < Tiy1.0), (23)
FPY e, 1,0) = @0 (Y,e,1,0) : (k,y) € S) € RV, (24)

for (k,v),(5,8) €S; YeEandl,£>0.
In order to obtain the expressions for the above expectation, we define the following
constants.

B{(.) e R2Jex e, j( )e R2xe. B]( ) e R2TexJe bJ,B(_) c RIXVe.
Their detailed definitions are given in Sub-section 9.2.

Proposition 2 The conditional expected numbers of customers at the first polling
instant (or arrival epoch) have the following expression.

By ot g — | (@B(k0), 4 ‘ £>0,
(Yoot 0 {(nl(r))cf(no,aow(g,n>Ba<mo>+bgﬁ<m>,e—o, (25)

fOTY: (KO,CLO,T,g,D,L) 66; (.776) €S and l7£2 0.
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Proof: 1t can be shown that Pi’fy (-) satisfies the following polling equation.

E[Ui)’i (Y(TIP:€+1)7 €, l7 £ + 1)|(]7 ﬁ7 Y)i[7 Tlej < Tlﬂ»l’o]:

Pj’ﬁ(Y,e,l,K) — if (ko # j, Ko € II) or (ko = j € Hg, £ =0), (26)
kyy Ty if (ko =J € He) or (ko =J € Hg, £>0),
1k,'y(j75)7 if ko =0,1=0,£=0,

for Y = (/-@07(1077“, g, n, L) € 5; (ka’Y)a (]7ﬁ) € S and l7£ > 0.

We can show that ?{%’fy (-) given by (25) satisfies the polling equation by direct

substitution and the use of Proposition 1. The uniqueness of the solution of the polling
equation is shown in Section 11. =

4.2 The Linear Functional Expressions for H Jl 5(+) and Fj1 )
Now we give the linear functional expression for the performance measures H ]17 (-) and

Fjlﬁ() defined by equations (6) and (12). In order to obtain these expressions we define
the following constants.

1 2J.%x1
hjlo(‘) € R7ex
()P () e RPN mho (), 877 () e RN mdP (), 178 () e R

Their detailed definitions are given in Sub-section 9.3.

Proposition 3 The expressions for the performance measures H;ﬁ(-) and F;B()
have the following linear functional forms.

1
H; 5(Y,e,l,¢,k)

_ {<g,n>h{0<50,k>, ‘ } e>00
(r,1(r))¢’ (Ko, a0, k) + (g, n)h} (ko k) + hé’l’g("ioy k), £=0,
F}5(Y,e,1) = (r, 10’ (50, a0) + (g, )7 (r0) + £ (o), (28)
for any (4,8) € S; Y = (ko,a0,7,8,n,L) € & e =1,2,...; I, =0,1,2,... and

kell.

Proof: For H Jl (), by directly substituting the expression given by (27) and by using
Proposition 1, we can show that it satisfies the polling equation (9). The uniqueness
of the solution is shown in Section 11.

For Fj{ (), let Y = (ko,a0,7,8,0,L) € £ (8 = (gi,o : (1,0) € S),n = (N o :
(i,) € §)) be the system state at time 7, and we have

F} 5(Y,e,l) — E[S; 4]
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L, ]
ZaJ:l nj»OCE[Sj’Ol]’ J eHng
L, . .
Y al1 1,0 ElS)al, JE€Her & Ko # J,
L, . .
T+ZajlgjaE[S'0tL JGHSF&F"/OZJa
1 .
_ Zﬁ 1 §§(Y e,l,0)E[S;, a]+nj,8E[Sj 8l J € Hyp,
B-1 7B 78— 0=
> (Y,e,1,0)T Y n 6T
a1 7y i 20 jﬂ7 JE€Hep & Ko # J,
1—of
Jﬁ 1 6 L
1 )+
() HO,aol Z 1gja g ) je/HeP&HOZj7
— 051

for kg € II, and
1
F;5(Y,el) — E[S; 5] =0,

for kg =0 (I =0).
., =B—1 . . .
Note that the quantity Tfa /(1= gj /3—1) in the above expressions is the expected

length of the (j, 8 —1)-busy period starting with a (j, a)-customer. By substituting the
expression (25) into the above expression, the expression (28) is obtained. m

4.3 Numbers of customers at the next feedback epoch

Let us consider the customer c® and its arrival epoch Tl‘fo (e=1,2,...;1=0,1,2,...).
Now we obtain the conditional expected numbers of customers at its next feedback
(or departure) epoch 7, o given that Y(7/y—) =Y = (ko,a0,7,8,n,L) € £ and
X§(rfy) = (GB) € S (0 = (g, : (k1) € S) and g = (grry ¢ (k7)€ S)).
These quantities are necessary for solving the feedback equations. Recall that the time
I Mle(z /o) is the first polling instant (or arrival epoch) when the server visits (or

already stays at) station j for c®’s service.
4.8.1 Gated groups

We consider the case: j € Hg. The number ng (Tf+1’07) is a sum of the following
(K, )-customers:

(1) (k,~)-customers staying in the system at 7'1671\41e (if k # j), and
(2) (k,~y)-customers arriving from outside or by feedback while ¢ stays in the service
facility.

Then we have
Elng(1i31,0-)1, 8, Y) o] (29)

—7 Lj ..
V‘]Z;fy (Y7 €, l7 0) + )‘k,’ijl)ﬁ(Y7 €, l) + ZaJ:l nj,apj,a,k,’yv k # 7] € HgF7
vgf (Y, e,1,0) + Ay Fl (Y 1)

1_j o
_ Zg 1 ;7,1 (Y e7l7O)p]ak,’y+n] BPj,B,k,vs k#3, ] eﬁHgPa
Xy Fj 58(Y,el) +Za 1 0P 05,75 k=3, 5€Hgp,
Aj Flﬁ(Y e,l)

1 ..
+30 J B (Y, e,1,0)pj,a,iy +1j,8P5,8,,7> k=3j,j€MHgp.
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The number gy, (7% 1 o—) is equal to
(1) O (for the case k # j), that is, none of (k,~y)-customers is in the service facility at

€
Ti41,0—5 OF
(2) the number of (k, v)-customers staying in the system at ;° My and not served before

c® (for the case k = j).

Then we have

Elgk (71,0210 8, Y)io] (30)
0, k# 3,
(Y, e,1,0) = (14 (5, B) + njy), b =, § € Hr,
={0, k=3, v<B, j€Hgp,
7Y, €,1,0) = (1+n;5), k=34, v=8 jeHyp,
70(Y ,e,1,0), k=3, 7> B, j€Hyp.

4.8.2 Exhaustive FCFEFS groups

We consider the case: j € Hp. In this case, (k,~y)-customers (for k # j) in the waiting

room at Tl€+1 o are composed of

(1) (k,7)-customers staying in the system at Tlfo, and

(2) (k,~)-customers arriving from outside or by feedback while ¢ stays in the service
facility.

None of j-customers is in the waiting room at TﬁH o- Then we have

Elng (141,01, 8, ) 0] (31)
L, .
Ty + ey By 5 (Y€1) + 1()Djag by + Yoot GiaPiakiys B 7 5 (%1),
i L; .
— Vgg’fy(ervho) +Ak‘,"ij17ﬂ(Yveal) +Za]:1 nj,ozpj,a,k,’ya k #]v(*Q)v
My B[S 8], k# 3, (+3),
0, k=7,

where (x1) ko = j; (x2) ko € IT\{j}; (¥3) ko = 0. Then (j,v)-customers in the service
facility at Tlilyo are composed of

(1) (4,7)-customers staying in the system at TﬁMZS and not served before c®, and
(2) (4,7)-customers arriving from outside or by feedback while c® stays in the service
facility.

Obviously none of k-customers (k # 7) is in the service facility at Tle+1,0- Then we have

Elgk~ (131,01 8, )1 o] (32)
0, k # 7,
N FLg(Y e ) + 1(M)pjag iy + Yow Gjajrogis b = s (+1),
= 72(Y,e,0,0) = njy — 1545, 8)
N (YD) + Sy P k
AiyE1S;,8; k
where (x1) ko = J; (x2) kg € IT \ {j}; (*3) ko = 0.

j’ (*2)’
3: (+3),
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4.83.3 Exhaustive priority groups

We consider the case: j € Hep. Let N(J %) be the number of (k,v)-customers who
arrive (from outside or by feedback) durlng a (j,9)-busy period starting with a (j, a)-
customer, and who still stay at station k at the end of the period ((k # j) or (k = j

and vy > §)). Then let Ny& )k ~ be its expected value and let Nj ;k ~(r) be its expected

value conditioned on the remaining service time r of the initial (], a)-customer. Then

(7.5 5 ~(3,6)
Njokn = e ElSjal ¥ Pjaky + 25—1(No ElSjal + Piajs )N s (33)
5 s — 3.5
N(J ) (7") = AT + Pjaky + Z&’:l()‘j’éw + pj,a’jﬁ’)N;?c?’,)kﬁ’ (34)

for (j,a), (k,v) €S; 6 =0,1,...,L; (v > d if k= j). Then we have

Elng (141,010, 8, )i o] (35)

—~—(5,8-1) 4,8-1) .
Wy + LN o (1) + 30 95N i) + Ak ELS) gl k # 4, (+1),

7Y, e,1,0) + 0T wA (Y e,,ONSI
_ 5.8 .
+nj,l3N§‘7,8,k,7) + Moy B[S 8], k # 3, (x2),
My B[S ], k# 3, (+3),
0, k= Js

where (x1) ko = j; (%¥2) ko € IT\{j}; (*3) ko = 0. (Note that none of customers arrive
by feedback during ¢®’s service.) Further the explanation for (j,v)- customers in the
service facility at the completion epoch of the sojourn time (related to) F B(Y e, l)
is similar to that for j € H.p except that in this case (j,7)-customers (’y < fB) are
cleared from the system when c® starts service. Then we have

Elgr (141,010, 8, )i o] (36)
0, k # 7,
A~ E[S) 5], k = j, (x0),
B B .
1(r)N Ejaojﬁ +Z —19.aN Jja16)+)‘ BE[S;,8]; k= j, (+la),

7,8-1) ~7(4,8-1) .
g],’y+1( )Ngao,j'y +Z 1gjOéNj,o¢]'y +>‘j’YE[S][3]ak:]a(*1b)v

= POV, e, ,0) —nyp — 1+ O (Y e LN
15,5 g + X8 BLS,8), k = j, (+2a),
B, 00,00+ I B (Y e, N
+15,5N 5+ i ElS0), k = j, (x2b),
A E1S561 k= J,(3)

where (x0) v < B, ko € II; (¥1a) v = B, k0 = j; (¥1b) v > B, k0 = J; (x2a) v = B, Ko €
IT\ {j}; (x2b) v > B, ko € 1T\ {j}; (*3) ko = 0.

4.8.4 Linear functional expressions for the quantities

Similar to the quantities given previously, we have the following linear functional ex-
pressions for the expected numbers of customers at the next feedback epoch. In order



18

to obtain these expressions we define the following constants.
Uj,ﬁ(,) c R2><2]u. UJ}B(.) c R2J¢><2Jc. ujﬁ(,) c RIXQJC'
Their detailed definitions are given in Sub-section 9.4.

Proposition 4 Let Y = (kg,a0,7,8,n,L) € & (5,8) € S; e =1,2,...; and | =
0,1,2,.... Then

El(g(141,0—)s n(1,0-)10, 8, Y)L o]
= (r,1(r)v"" (ro, a0) + (g, n)U? (ko) + u?? (ko). (37)

Proof: This expression can be easily obtained by substituting the expressions (25)
and (28) into the expressions obtained in this subsection. m

5 The Linear Functional Expressions
In this section we obtain the expressions for the performance measures H; o(:), Fj o ()
by solving the feedback equations. As the expressions previously derived, it will be

shown that these expressions have the linear functional forms. In order to obtain these
expressions we define the following constants.

ia()Mial) € RZY Wia(),fia() € R wia(), fial) €R.
Their detailed definitions are given in Sub-section 9.5.

Proposition 5 The expressions for the performance measures H; o(-) and Fj ()
have the following linear functional forms.

Hi,a(jaﬁ7Yaealak) = (T, 1(T))§oi7a(jaﬁ7'€07a07k)
+(g7 n)Wi7a(j,ﬁ7Iio,k) +wi,a(j7/87'y”-07k)7 (38)
Fio(4,8,Y,e,1) = (r,1(r))n; o (4, B, Ko, ao)
+(g, 0)f; o (4, 8, ko) + fi,a (4, B, ko), (39)
for Y = (ko,a0,7,8,n,L) € & e =1,2,...; 1 =0,1,2,...; (i,a),(j,8) € S and

kell.

Proof: By directly substituting the expressions given in (38) and (39) and by using
Propositions 3 and 4, we can show that they respectively satisfy the feedback equations
given in Section 2. The uniqueness of the solutions is shown by the similar method given
in Hirayama (2003), by virtue of the linear functional expressions for the quantities.
u
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6 Steady State Values

Let us consider the system operating under any scheduling algorithm defined in Section
2. In this section, we would like to evaluate the following values for (i, @), (4,8) € S:

N
WialisB) = Jm > B[+ FalXa(rho) = G.0)] (40)

N —o00

W;,o (4, B) denotes the average sojourn time that any customer arriving from outside the
system as a (j, 8)-customer spend as an (7, a)-customer during its stay in the system.
The time average value of the state of the system is also defined by:

t
v* = (k" at g B = im / E[Y(s)1{r(s) = k}lds, (1)
0

t—o00

7,0
that all of the time averages and the customer averages defined in this section exist.

for k € ITU{0}, where gF = (g{fu . (i,a) € ) and 0¥ = (7F  : (i,a) € S). We assume

Then in order to investigate these average values in detail, we further define the
average sojourn times and the time average values as follows:

N
HialG0.0) = Jim — " B[HE (0| X5(750) = (.0)] (42)
e=1
1 N
Fialirf) = Jim > B[FalX5(60) = (. 8)] (43)
e=1
t
7o = lim ! /O E[L{(x(s),a(s)) = (o, a0)})ds, (44)

t
7090 = lim %/0 Er(s)1{(x(s),a(s)) = (ko,a0)}]|ds, (45)

for (i,Oé), (]7ﬁ) €S; kell; (507040) eESU {(070)} Then we have

Proposition 6 The average numbers of customers (g’ﬂ flk) and the average sojourn
times H; o(j, 8, k) and F; o (4, B) have the following relations. For (i,«) € S and k € II,

il = Z Aj.pHia(d, B, k); (46)
(4,8)€S

Gho = D NpFiali,B) -3 (47)
(4,8)€S

gf,oz =0, (k#1); ﬁ?,a =0 g?,a =0. = (48)

These expressions simply come from the Little’s formula. Then we can get the
following proposition that relates the average numbers of customers and the average
sojourn times.
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Proposition 7 Let us define the constants ¢; (4, 8, k) and 71;.o(4, 8), ((i, ), (4, B) €
S; k € II) whose precise definitions are given in Sub-section 9.6 (Equations (54) and
(55)). Then we have

Hia(j, 8,k) = GialGi B k) + ) (8,8 )Wia(j. B, ko, k), (49)
ko€Il
Fia(G.B) = 1,0, B) + Y (8, 8")fia(j: B, ko), (50)
rko€Il

for (i,),(4,8) € S and k € II.

Proof: These expressions can be obtained by applying the averaging procedures and
the PASTA property to the expressions in Proposition 5. m

Note. By combining the expressions given in Proposition 6 and the expressions given
in Proposition 7 we can obtain the linear equations for the (unknown) numbers of
customers (g’“, flk). The detailed equations are given in Section 10.

Proposition 8 The average sojourn times are given by

Bia(i8) = D Hiali B K) + Fia(iB),  ((,0),(,8)€S).  (51)

kell

Note. In Section 10 we give an algorithm for calculating the average numbers of
customers and the average sojourn times, and its computational complexity.

7 A Packet scheduling Problem

In this section we consider a packet scheduling problem in communication networks
where five different types of packet-based traffic share a single network resource. Type
1-1 is a mission-critical traffic with the highest importance that constitutes category
1 traffic. Types 2-1 and 2-2 constitute category 2 that carries different types of traffic

a,b

Table 1 Statistical quantities for all types of the packets

Category Type M.R.R. V.R.R. M.Q.S. V.Q.S. R.O.R.

Category 1 Type 1-1 ~ 1.00000  0.50000 1.00 0.50 0.21255
Category 2 Type 2-1  3.04005 3.67368 0.25 0.10 0.21538
Type 2-2 3.04005 3.67368 0.50 0.20 0.21538
Category 3  Type 3-1  5.03456  9.77386 0.25 0.10 0.17835
Type 3-2  5.03456  9.77386 0.50 0.20  0.17835

@ M.R.R.= Mean of Resource Requirement time; V.R.R.= Variance of Resource Requirement
time; M.Q.S.= Mean Quantum (Weight) Size; V.Q.S.= Variance of Quantum Size; R.O.R.=
(Relative) Resource Occupancy Ratio.

b For simplicity, we first determine the service quanta per stage (M.Q.S.s and V.Q.S.s) and
the feedback probabilities for all types, and then calculate the means and the variances of
the resource requirement times (M.R.R.s and V.R.R.s). Type 2-1 and type 2-2 have the same
resource requirements and assigned the different weights (quanta). The same explanation can
be applied to type 3-1 and type 3-2.
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Fig. 2 Diagrams of the Resource Requirement Paths in the scheduling algorithms

with medium importance. Types 3-1 and 3-2 constitute category 3 that carries different
types of normal traffic. Their statistical quantities are listed in Table 1. Their arrival
rates are varied in order to obtain the mean response times (i.e. sojourn times) for
different values of the resource utilization p.

We assume that the resource requirement time (i.e. overall service time) of each
packet may be divided into multiple quanta each of which can be allocated the resource
individually. That is, we consider “positive quanta algorithms.” In multimedia networks
with various types of traffic, delay sensitive real time traffic or mission critical traffic
is frequently necessary to be transmitted before the other normal data traffic. The
important traffic can be preferentially treated by allocating the resource more often
than the other traffic in the following manners.

— PT1: Allocate the resource more often by arranging the polling probabilities.
— PT2: Allocate the resource by the exhaustive rule.
— PT3: Assign the larger sizes of quanta.

We consider the following four scheduling algorithms (A-1, ..., A-4). In the following
diagrams, a value above an arrow is a polling probability that the server moves from
a type (or a category) at the left of the arrow to a type (or a category) at its right. If
no value is above an arrow, it is assumed to be 1.

A-1. All types are allocated the resource in the following round robin (cyclic) fashion.
type 1-1 — type 2-1 — type 2-2 — type 3-1 — type 3-2 — type 1-1 — - --

A-2. Type 1-1 and the other types are alternately allocated the resource as follows.

E type 2-1 —

0—‘> type 2-2 —

— type 3-1 —
— type 3-2 —

type 1-1 — — type 1-1 — - --
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Fig. 3 MRTs for A-1 (left) and MRTSs for A-2 (right)

A-3. Category 1 and the other categories are alternately allocated the resource as
follows.

0.6
a} category 2 —

. — category 1 — - --
— category 3 —

category 1 — {
A-4. All types are allocated the resource in the following manner.

0.5
E) type 2-1 — { o5 type 3-1 H} —

—_————
type 1-1 — o5 — type 1-1 — - --
25 type 2-2 — { o5 type 3-2 — } —
————

In all of the scheduling algorithms, type 1-1 (category 1) has the exhaustive allocation
rule, and all the other types (or categories in A-3) have the gated allocation rule. All
quanta of packets in each type (or each category in A-3) are allocated the resource in
the FCFS order inside the type (or, respectively, the category). The service order in
every category in A-3 is also called the DRR (discriminatory round robin) (Hirayama,
2010).

The resource requirement paths of packets in the scheduling algorithms and their
correspondences to the service stages in the queueing model defined in Section 2 are
given in Fig.2. Each square box denotes a quantum of each packet that corresponds to
a service in a service stage of each customer whose (group, class) is denoted by a pair
of numbers in the box. Each arrow denotes a flow of each packet, and it may branch off
at an end of a quantum, denoting that each packet receiving the quantum completes its
overall resource requirements or requires more quanta probabilistically. For example,
type 1-1 receives only one quantum that corresponds to a service in a service stage
of class 1 in group 1, while type 3-2 receives at most 20 quanta that correspond to
services in service stages of classes 1,---,20 in group 5 for A-1, A-2 or A-4; or services
in service stages of classes 41,---,60 in group 3 for A-3.

In Figs. 3 and 4, the mean response times (MRT's) for all types of packets are plotted
for every scheduling algorithm. We can see from these graphs that in all scheduling
algorithms, the MRTSs for type 1-1 are the best of all types. The reasons are that the
M.R.R. (Mean Resource Requirement, or Mean Overall Service Time) for type 1-1 is
smaller than the M.R.R.s for the other types (see Table 1) and that the preferential
treatments listed as PT1, PT2, PT3 are applied to type 1-1, except for the following
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and MRTs for category 1 (right)
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Fig. 6 MRTs for category 2 (left) and MRTs for category 3 (right)

case. Because PT1 is not applied to type 1-1 in algorithm A-1, the MRT for type 1-1
in A-1 is somewhat worse than its MRTs in the other algorithms. Further the MRT's
for category 2 are almost better than those for category 3, because the M.R.R.s for
category 2 are less than those for category 3 and PT1 is applied to category 2, except
for the following case. Because PT1 is not applied to any type in A-1, the differences
in the MRTs between categories 2 and 3 in A-1 are relatively small. Since the M.Q.S.s
for type 2-1 and type 3-1 are equal, total number of the resource allocation (or service
stages) for type 2-1 is less than that for type 3-1, and hence every MRT for type 2-
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1 is less than that for type 3-1 even if all the other conditions are equal. The same
explanations are applicable to types 2-2 and 3-2.

In Figs. 5 and 6, the MRTs for all algorithms are plotted for every category and
those averaged over all categories are plotted (the left graph in Fig. 5). From Fig. 5,
we see that the overall MRTs for all algorithms are close, but for category 1 the MRT
for A-2 is the best of those for all algorithms. The reason may be that between two
consecutive allocations of the resource to type 1-1, only one other type is allocated the
resource in algorithm A-2, whereas two or more other types are allocated the resource
in the other algorithms. For categories 2 and 3, the MRTs in algorithms A-2 and A-3
are very close (i.e., the two curves for A-2 and A-3 in every graph in Fig. 6 are almost
overlapped). The reason is in the similar resource allocation rules for categories 2 and
3 in these algorithms. However for category 1 we can see that the MRT in A-2 is better
than the MRT in A-3. Hence we may conclude in this case that the algorithm A-2 is
better than the algorithm A-3.

8 Conclusions

We have considered the multiclass feedback queues where the server visits the customer
groups according to a Markov chain. There are multiple classes of customers in each
group that are served in one of the following service orders: the gated FCF'S, the gated
priority, the exhaustive FCFS, and the exhaustive priority.

The functional computation method is used to analyze the mean sojourn times of
all classes of customers spent at all stages of services. It can be shown that the expected
values of the performance measures conditioned on the system state have the linear
functional expressions. The first conception of the analysis of these queues was given
in Hirayama (2009b). Although we have analyzed the model without switchover times,
it may be possible to analyze the model with switchover times by a manner similar to
that in Hirayama (2005) for the cyclic polling systems with switchover times.

Then our model is applied to the analysis of packet scheduling algorithms with
five types (or three categories) of traffic. The important traffic can be preferentially
treated by allocating the resource more often than the other traffic by arranging the
polling probabilities etc. We consider four scheduling algorithms with different polling
probabilities and service rules. The mean response times for all types of traffic in all
scheduling algorithms are calculated and compared.

By using our queueing models, we can construct various types of composite schedul-
ing algorithms that can approximate the actual network structures with many data
sources, many traffic types and various QoS requirements. We can treat not only polling
algorithms but also priority algorithms (Hirayama, 2003, 2010). Hence our methodol-
ogy may enhance capabilities of the queueing models in performance evaluation of
computer communication networks.

9 Appendix: Detailed expressions for the coefficients in the propositions

In this section, we give the detailed expressions for the coefficients in the propositions.
Each subsection in this section corresponds to each proposition. Because the coefficients
in each subsection (or proposition) use those in its previous subsections, we need to
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refer these subsections in order to calculate the coefficients. Further some elementary
constants are quoted from the main sections.
We define the constant commonly used in this section. For (j, 3) € S,

e? =(0,0,...,0, 1 ,0,0,...,0) € R’

~—
G, Bt
T = diag(1,1,...,1, 0 ,0,..., 0 ,1,1,...,1) e RT*/e.
S~~~ ~—~—
(4, DR G, Lyth

9.1 The coefficients in Proposition 1
We define the following constants used in Proposition 1.

ho() € R27X1 o0() e RP*¥L, hdy(-) € RPXL,
UL() € Y7 wy() € R, Ug() € RPXPe | ug() e RIXe,

We first show for reference the constants defined in the main sections. The following
quantities are used to calculate the constants hi(-), ¢%(-), hdy(-).

=L, L, =L,
Tiigtao (1) =1+ 3257 Pro,ao,mo.8T g 50
n Lk =L,
QK,[),LNO - ZB:O]. )\KUaﬁTK,(),(}a7
where Tﬁ;”ﬁ is defined in (13). Then let
Ak7r\{7 7 € Hg,
—0 L; — .
Niky = ey T 2500 Mg Nig ks kb #1 € He,
0, k=1¢€ He,
1 pi,a,k,w I - 1 € Hg,
Niakny = § Piaky T 2gen Pia,i,8Ni8 .k K 7#0 € He,
0, k=1¢€ He,

where N; 3 1 - is defined in (14). Then the constant defined in (15) is given by

— —0 —1
Nko,a0,my (1) = TN go,myy T Neo,a0,m,y

which is used to calculate the constant vg(-).
Then we define

0 .
g ,k:HO,KO#]7HOGHg,
Ko
. 0 .

h(l)O(HO»]:k): E 7k:’£07“<’0 #]7"/‘:06%87
Ko
0 .
0 > , otherwise,
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1
(0), k:IiO, I‘COGHg,

0 . 1 1 k = ko,
R (zg:; pm,am,ﬂggfﬁ> Cno # 4, "0 € Her
(8 , otherwise,
§S° , k=Ko, ko € Hy,
hQo (0, j, k) = ESU s k=Ko, ko # J, Ko € He,
0

0 > , otherwise,

where 0 € R7*! is a zero vector and where

_ /

Swo = (0,0, B[Sy 1], -, B[Sk, ],0,...,0) € R71,

_ 1 =L, =Lk ! Jex1

fay = ——— (00 0T Tty 0 i0) € R
_QHO,LH,O

Further we define

0 Ny,
Us(ro) = (8 Un(():‘io)> » wo(ko,a0) = <0 Ni07a0> » (50, a0) € 5),
Ou, (%0, a0) = (0,0)),
0 ). (ko € o)
Ug(ko) = 8 U%'gf;o) (ho € Ho),
OU7 (Ko = 0),

UO(KO,L 6) = (07u0;1,1("707j7 5)7 <o U0 J Ly (‘%07]’7 ﬁ))v

where I,0 € RJCx‘]C;OU € R2X2JC;OU € RQJngJC;O e RY™e are an identity

matrix and zero matrices, respectively, and where the constants Up(kg), Ug(kg) €
— —0 —1

RI*e: Ny 0y Nio s Nig.ag € RY¥7e and wg,m () € R are defined by

el 0
650_17[/&071 0
NH(J,I Nno,l
Un(’io) = s UQ(KU) = : P
NHU,LNP HU7LNO
efotl, 0
J,Ly 0

e
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(Nfﬂ'/O,a,l,l?"'7NK07Q,J7LJ)7 ] GHg,
N o (Nno,a,l,la"-7Nm),a,m0—1,L,€0,17
Ko, — N N
0 ,..., 0 ,Nno)m,io_;,_l)l,..,,NHO,Q’J’LJ),Iio € He,
(g, M (50> Lrg)th
—0
(NK(),l,l?""NH(J,J,LJ)? i} GHQa
—0 —0
NC = ) WNeo 1105 Nigmo—1,Lg 15
Ko = —0 —0
0 3oy 0 7NI£0,I~€0+1,17"'7NH0,J,LJ)>K/O 6H€7
(10, )M (505 Lrg)th
—1 —1
(Nkoa0.1,15 -+ Nko,a0,7,L5)5 Ko € Mg,
—1 —1
~L — (NN0711071717"'7Nfio7ao,f€0—1,L~ —1
Nﬁoyao - 10 —1
\ 0 [ 0 , 7NK0,a0,H0+1,17"'7Nfio,a0,J,LJ)7 KO EH@,
(g, )M (%0, Lig)th
L~ (7, 8), Ko € Hg or kg = 0,

. i Ly . -~
UO;m,fy(“O,],ﬁ) = 1m,’Y(Jvﬁ) + Za:01 1kg,a(Js B)Nﬁo,a’m,% m # ko, ko € He,
0, m = Ko, ko € He,

9.2 The coefficients in Proposition 2

We define the following constants used in Proposition 2.
B'{() c R2JC><JC; Cj(‘) c RQXJC; B'(])() c R2JC><JC; b%,ﬂ() c RlXJC.

Let us define the constant le() € R2/e*Je that satisfy the following linear equa-

tion.
‘ <(I)> ; KO = Js
B (ko) = ‘ o
Ul(’iO) {anen\{j}ﬁfio,mB{(”l) +ﬁ50,j ( 1 > } ; KO 7’é j7

for kg,j € II where O,I € R7e*Je are a zero matrix and an identity matrix, respec-

tively. Further we define the following constants ¢’ (-) € R?*7¢, B)(-) € R2JexJe and
s 1xJe

b}’ () € RV Ve,

J . j ) .
Cj(l-i() ag) = Z,ﬁ:lpiﬂo,mvo(’iOvaO)B{("él)a ko # jor kg =7 € Hg,
’ 07 RO = ] c He,
J . ; ) .
_ > ri—1Pro,ri Uo(k0) B (K1), Ko # j or ko = j € Hg,
B} (ko) = (0

I 5 HO:jeH@

J ~ . j . .
bj’ﬁ(lﬁo) _ Zm:lpno,muo(/‘iody/B)le(ﬁl)’ Ko # jorkg=j€ Hg,
0 5 RO = J S He,

for (ko,a0),(4,8) € S. For (kg,ap) = (0,0) and (4, 3) € S, we define

B/ (0) =0, ¢/(0,0)=0, B}(0)=0, bj’0)=e"’.
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9.3 The coefficients in Proposition 3

We define the following constants used in Proposition 3.
j 2J:%x1
hj () € R* ™,
j s 2x1, i s 2Jcx1, 17, s
© ()07 () € R by (), 897 () € R 1P (), 79 () e R.

Let us define constants h{o(no, k) € R27eXL that satisfy the following linear equa-
tion:

j h(l)o(n()vjy k) +U1(K/0) Zﬁlen\{j}f)ﬁoﬂlh{o(l{’lak)a
by (ko, k) = Ko # J, ko € II,
0, Ko =7 or kg =0,

for ko € ITU{0}; j,k € II. Further for (ko,a0) € SU{0,0}, (4,8) € S and k € II, let

(pj(lio ao ]C) _ {¢0(507a07‘j7 k) + UO(Ko,ao) ZIﬂEH\{j} ﬁfioﬁ1h{0(’<‘17k)7 case 1,
T 0, case 2,

h] (‘%O ]ﬂ) — h80(’£07j7 k) +UO(HO) Zmleﬂ\{j}ﬁﬁoﬁ1h]10(l{/l7k)v case 15
00 ) 0, case 2,

hj,ﬁ(ﬁ/o k) _ UO(KJ(),]., ﬂ) Zﬁlen\{j}ﬁﬁoﬁlhjlo(‘%lak)a case ]-7
ol ’ 0, case 2,

where “case 1”7 denotes (kg # J, ko € IT) or (j € Hg); and “case 2”7 denotes (kg = j €
He) or (ko = 0).
Further for (kg,a0) € S, we define

0 (_7 € Hyp) or .
’ (J € Her, k0 #J)

1 . .
(0)’ ]EHeFaHOZ.%

" (ko,a0) = 4 ¢ (k0. a0)8] 451, j€Hyp,
. —j,8—1 . .
C](H(Jyao)t'jl’gfla J S Her Ko 7é Js
1 1 o .
- I —1 *ﬁ*l ,]6 PykRo =1,
1-— Q;:,g_l Z'[j:l pﬁo,ao,ﬁoﬁTﬁo,’y ¢
0 (] € Hyp) or .
Sz, )’ (j € Her & Ko #3)
§ . .
16Lj ; j € Her, ko = J,
98 () =  BI (1 Vs 0 _—
(K/O) - O(K;O)S],Bfl + §J ) J € gP>
8,8
; i B—1 0 ) )
Bé(ﬂo)tjl,%_l + tj,51> 7 € Hep, Ko # 7,
B8

Ejﬂ—l
LB ) jEHePﬂfO:j»
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(j € Hyr) or
E[S; ], A .
155.5] {(]EHeFﬂfO #7)
B E[Sj,ﬁ]v jGHeF,NOZj,
S 0] = 0 b3 (o8] 5y + ELSj6l. 5 € g
5,81 ) .
by (s0)E 1 + E[Sj6). 5 € Hepomo # 4.
E[Sj,b’]v J € Hep, ko =7,
where we define vectors §£’77f£§71 e R7*1 as
8,0 =(0,...,0, E[Sja] ,E[Sjat1ls---» E[Sj,] ,0,...,0),
—— N——
(G )" place G, M place
—5,B-1 1 FB-1  HB-1 =A—1 '
tay, =—7F1— 0,...,0, Tjo Tjat1:---» T 50,...,0),
l—0;5 4 ~— ——
(4, @)t" place G, )t place

for j € Il 'and 1 < «, 8,7 < Ly, (o < y), and where Tﬁ;l, Qj_,(i—l are defined by (13)
and the equation below it, respectively. For (kg,ag) = (0,0), we define

n?0,00=0,  £#70) =0,  f(0) = E[S; 4].

9.4 The coefficients in Proposition 4

We define the following constants used in Proposition 4.
’ULB() c RQXQJC; Uj,ﬁ() c RQJCXQJC; uj,ﬁ() c RlXQJC.

For simplicity, we divide each vector or matrix into two components with the same size

as follows.
v (k0,a0) = (v} (0, a0), vh(k0.a0)) (70, 0h0() € RP),
ijﬁ(’f()) — (Ug’ﬁ(KOL U%}B(K,O)) , (Ug’ﬁ()ngl’B() c RQJCXJc) ,
w P (0) = (wh” (mo), (o)) (w0 ub" () e V).
Let us define constants commonly used in the following expressions.
I, ., = diag(0,...,0, 1 ,1,..., 1 ,0,...,0) € R7*/e,

(G a)th (4. )"

A=\ (4,8 €S eR™e piu=Wjaky: (k) ES) e R e,

Gated group j (j € Hy)

For (kp,ap) € S,

1 cj(K07a0 Ij 7]6H F
]’B(Iio,ao) _ { ) LL; 9

v = .

g ct (KO’G‘O)I]B,LJ-’ j€ ng,

B ¢/ (ko,a0)T + 17 (r0, ag) A, JjE€Hyr,
vy (Ko, a0) =

Cj(ﬁo,ao) (i] + 1]1-”8_113) + 'I7j”8(,‘$0,a0))\7 Jj € Hyp,
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i O .
(e () e
Ug’ (Ho) =
B (ko) — o ¥, jeH
olko v B,L;° J gP>
8,8
; —j ) (0]
B%(HO)IJ + 98 (ko)A + (Ij P) , Jj € Hyr,
1,L;

U (ko) =
P) ,J € ngPv

. . . ) (0]
B%(/io) (IJ +Ij1 5_1P) + fj’ﬂ(lfo))\-‘r ( j
’ Lo s

u?” (o) by (r0) =€ [Ty € Hor,

g 0) = : . . )
by (ko) = LI | j € Hyp,

03P (ko)T + 79 (ko) A, j €My,

Jﬁ(
0) = : ; .
b’ (o) (T 4T, P) + 77 (ko)A j € Hyp.

For (kg,ao) = (0,0),
v15(0,0) = 0, v%7(0,0) = 0, U##(0) = 0, UL (0) = O,
w}?(0) = 0, u}’(0) = E[S; s]A.
Exhaustive FCFS group j (j € Her)

For (kp,ag) € S,

.8 0 j _
'r]j’ K0, Q) + I L k0 =17,
v} (Ko, a0) = { | o0+ {p, >} HE
{< (k0,a0) + 78 (ko, ao) A j2 1,0, R0 7 s
) 0 i
B J .
. n?" (ko, ap) X + )}I , KO = 7,
vl (Ko, a0) = { . Pjao ) )
{c(k0,a0) + n7P (Ko, a0) A} T, ko # 5,
B Iji L. P J .
£ (ko)A + I I]_ L.> Ko =7,
3.8 O "
Uy (ko) o _
{B%(mo)-i—fivﬂ( )A+(I{LPI>}IJ1’LJ"HO #79,
4 0P\
{f]”B(mo)A+ ( 1?‘ )}I], Ko = J,
U% (ko) o _
{B%(mo)—&-fj Bro) A+ (Ij P)}I],no #J,
1,L;
{f A} 11 L ) K/O :j7
u}? (ko) =

bé:ﬁ(ﬂo) _ e] B + f]’ﬁ(}io)k} I{’Lj7 Y] 7& .j7

bl (r0) + fJ’B(Ho)A}ﬂ Ko 7# J

{
{177 (ro)A} T, Ko = J,
{
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For (H'Ovao) = (0,0)7
m(o 0) = 0, v;”(0,0) = 0, U;”(0) = 0, U’ (0) = O,
u)®(0) = {B[S; p]A} ], . uh?(0) = { B[S, s]A} T

Exhaustive priority group j (j € Hep)

We define
0
~0.:0) ~39) :
Nj,a,k,v_Ak7+Zé’ 1 25,8 N 5360 ey 0
Nk = Phocky + Lgm1 Piesio Njgrhoy Je .y
{06 _ (79.0:0) Mant=| o ERTTE
Nja " = (Nj:a,}c,"/ (k) € S) e R, N
N ~71,(4,6 0
Ny = (W) s (ki) €S) e R, ‘
0
where 0 € R'*7¢ is a zero vector and N(LB) (N;jof)’ i (k,y) € S) e RY™7e and
Ngjaﬁll ~ is defined in (33). Then the constant defined in (34) is given by

+7(4,6) +70,(3,6) | +71,(4,9)
NjakA(r) = TN j oy T Nk

which is used to calculate the constant v7+7(.).
For (ko,ap) € S,

0,(7:,8-1)\
. 18s ) | B, Ko = J,
v} (w0, a0) = I B

J,@0

¢/ (ko, ao) (I + Mf;f_‘l”) I, 1 ko # .

~0:(4,6—1) )
. E{’%Q ,6’_1) ijv ko = j7
38 (Ko, ag) = Nj:af;

¢/ (ko, ag) (I + ngﬂﬂ 11)) , KO # Js

v

Ko = J,

(4,8—1)1j j
(MLB 158+15+LLJ>7
U3 (ko) =
Bj( ) (1 M(jﬁ—l) g o £
0“0("' 1,’71) L, t (4,8-1) 15 oy y KO 7 s
o Pla T\ Mgy T g,
(4,8-1) .
(M 7 )Ijv Ko = J,
j I
U5 (ko) = X
{Bj(ﬁo) (IJFMEJ,’ﬁBl))Jr(M(J}B 1))}1 Ko # J,
8,8
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ug’ﬁ(ﬁo) _ {E[ij,ﬁ]AI{,L ; o) . oo =J:7

‘ b (o) (1+ M) T = e 4 BIS I w0 # 5,
u}? (ko) = { {EE%’B]A}T g GA-D) = " :]:7
{bo’ (r0) (I+M1”ﬁil )+E[sj,/3])\}1 Ko #

For (ko,a0) = (0,0),
v37(0,0)= 0, v3°(0,0) = 0, U3(0) =0, UL’ (0) = O,
ugﬁ(o) E[S 7, B])‘Il L7 uﬁzﬁ(o) = {E j,B])‘}I .

9.5 The coefficients in Proposition 5
We define the following constants used in Proposition 5.
Pia()Mial) € RZY Wia(),fial) € RN wia(), fial) €R

Let Wi (4, 3, )7 ia(d,B) € R2Jex1 ((i,a), (4, 8) € S; k € IT) be the solutions of
the following set of linear equations:

J  Lm
N . 3 . S/ N\~
Wil 8,8) = pj gi.abboG k) + DY 0 gms U™ ()Wia(m, k),
m=14§=1
J L
. o -
£i00:8) = Pjpinf () + DD PipmsU™ ()i alm, o),
m=14§=1

where hj (7, k), £5%(5) and U™ (j) are given in Subsections 9.3 and 9.4. Further let
@i 0, B, k), fi,a(G, B) € R ((i;0),(j, B) € S; k € IT) be the solutions of

J L
ﬁ)i,a(jv B, k) = Z ij,ﬂ,m,éwi,a (m7 6: k)
m=1§=1
) J L
+ {Pj,ﬂ,zyahé’f(j’ B+ Y pismen™ () Wialm,s, k)} :
m=1 =1
J L,
fi,a(j7 ﬁ) = Z pj,ﬁ,m,5fi,a(m7 6)
m=1§=1
J L,
Hriniar 6 S i}
=16=1

where hé’f‘ (G, k), f7“(j) and u™?°(j) are given in Subsections 9.3 and 9.4. Then let us
define the following constants used in Proposition 5.

Pi.o (G, B k0, a0, k) = 1 0(j, B)¢’ (Ko, a0, k) + v7P (k0, a0) Wi, (j, B, k),
Wil By k0, k) = 14,003, B)h (Ko, k) + UPP (k0) Wi 0 (J, B, K),
Wi (s By K0, k) = 14,0 (i, BYRDE (Ko, k) + 0P (ko)W o (4, B, k) + 10 (G, B, k),
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i, (s B, K0, a0) = Lia (G, B)17 (Ko, a0) + 07" (Ko, a0)fi.a (. B),
£1.0(7,8,50) = Li.a (G, B (s0) + U’ (k0)Ei.a(, B),
fialG, B.50) = 13,0, B) 77 (ko) + u?” (m)fi,a(j, B) + fi.a(G B),
for (i,a),(4,8) € S; (rko,a0) € SU{(0,0)}; k € II.

9.6 The coefficients in Propositions 6 and 7

We define or calculate the following constants used in Propositions 6 and 7.

qHO)ao preo-ao , Pi, a(] B, ) ﬁi,oz(j75) eR.

First we calculate the set of the composite arrival rates {/A; o} by solving:

Ajja = Ao + Z 45,69 8,00 ((i,a) €S).
(4.8)es

Then we can obtain the following explicit expressions for the time average values defined
in (44) and (45).

52
1—0p, (HOaCLO):((]?O)‘ ( )
,FKO’U«O — AK/070«08%0,0,0/27 (HO»GO) S 87 (53)
0, (K0, a0) = (0,0).
Further we define the constants which are used in the expressions (49) and (50).
Piali Bk) = D (F0%, 37 o (5, B, ko, ao, k)
(Kko,a0)€S
+ Z ~K07aowi,a(j7/87507k) + (1 7p)w7l,oc(j7/8’07k)7 (54)
(Ko,a0)€ES
i B) = D (F%,§)m; o5, 8, ko, a0)
(Ko0,a0)€S

S il Buko) + (L p)fiali 5.0), (55)

(rk0,a0)€ES

for (i,),(j,8) € S and k € II.

qﬁmao = {AHOVGOE{S’{OJLOL (KO’G’O) € 57

10 Appendix: Algorithm for computing the steady state values and its
computational complexity

10.1 The algorithm for computing the steady state values

1. Calculate the following constants used in Proposition 1:

hip() € R¥XY 0() € RPY hig () € R,
Ul() c RQJCXQJC; UO() c RQXQJC; UO() c RQJCXQJC; 110() c RlXQJC.

Their detailed expressions are given in Sub-section 9.1.
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2. Calculate the following constants used in Proposition 2:
B‘i() c RQJCXJC; CJ() c RQXJC; B'é() c RQJCXJC; b%,ﬂ() c RIXJC.

Their detailed expressions are given in Sub-section 9.2.
3. Calculate the following constants used in Proposition 3:

A .
h{o() c R2 Xl;
@ (), 1P () e RPN ny (), 80 () e R wiP (), 7P () e R.

Their detailed expressions are given in Sub-section 9.3.
4. Calculate the following constants used in Proposition 4:

,Ujﬁ(,) c R2><2Jc; Uj”B(~) c RQJUX2JC; uj,ﬁ(.) c RIX2Je

Their detailed expressions are given in Sub-section 9.4.
5. Calculate the following constants used in Proposition 5:

Pio()Mia() € R wia().fial() € RN wia(), fial) €R.

Their detailed expressions are given in Sub-section 9.5.
6. Calculate the following constants used in Propositions 6 and 7:

q‘NO,ao’fﬁmao’@i,a(j’ﬁ’ k)aﬁi,a(j’ /8) ER.

Their detailed expressions are given in Sub-section 9.6. Then calculate the average
numbers of customers:

" = (G (ba) €9), i = (Aq : (i,a) € §) e RVe, (k€ TU{0})
by solving the following linear equations (Propositions 6 and 7).

e = Y Aj,ﬁ{¢i,a(j7ﬁ,k)+ > (g“%ﬁ“)wi,a(j,ﬁ,no,k)}, (k € IT);

(4,8)€S ko€ll

Gia = Y )‘jﬂ{ﬁi,a(]}ﬂ)Jr > (éﬁo,flm)f@a(],ﬂ,ﬂo)} -

(4,8)es Ko €T

~k . ~0 ~0
Gia =0, (k# i,k € II); Nia = 0; Gi,a = 0.

7. Finally we can obtain the average sojourn times (in Proposition 8) by

“_)i,a(j7 B) = {Z Sai,a(jaﬂJc) + ﬁi,a(j7 ﬁ)}

kell
+ > (@™,A™) {Z Wi a(J, B, 50, k) + £i.0(5, B, fio)}
Ko€IT kell

for (i, @), (4, 8) € S.
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10.2 Computational complexity for the steady state values

Let us evaluate the computational complexity for the steady state values. It can be
accomplished by evaluating the computational complexity for calculating the constants
used in all propositions whose expressions are given in Section 9. For simplicity, we
assume that an n X n matrix can be inverted in O(n®) operations.

FEvaluation of the computational complexity

— Proposition 1: The calculation of the constants in this proposition can be accom-
plished by simple arithmetic calculations and substitutions of the given constants
and the constants related to {Tia} and {Ni@’k’,y}. Hence its computational com-
plexity is at most O(Jél).

— Proposition 2: The most efforts are required to calculate the set of the matrices
{B7(k0)}. This calculation requires J inversions of (2Jc.J) x (2Jc.J) matrices. Hence
its computational complexity is at most O(Jé3 J 4).

— Proposition 3: The most efforts are required to calculate the set of the matrices
{h},(ko,k)}. This calculation requires J inversions of (2J¢J) x (2JcJ) matrices.
Hence its computational complexity is at most O(Jg’ J 4).

— Proposition 4: The calculation of the constants in this proposition can be ac-
complished by simple arithmetic calculations, substitutions and multiplications of
the matrices obtained previously. Hence its computational complexity is at most
O(J2J).

— Proposition 5: The most efforts are required to calculate the set of the matrices
{Wi.a(j,B,k)} and {f; o(j,3)}. This calculation requires an inversion of (2J2) x
(2J2) matrix. Hence its computational complexity is at most O(JS).

— Propositions 6 and 7: The most efforts are required to calculate the set of the
average numbers of customers {(g~, n*)}. This calculation requires an inversion of
(2JcJ) x (2JcJ) matrix. Hence its computational complexity is at most O(J2.J3).

— Proposition 8: The calculation of the constants in this proposition can be ac-
complished by simple arithmetic calculations and substitutions of the constants
obtained previously. Hence its computational complexity is at most O(Jg’ J 2).

Hence the overall computational complexity for calculating the steady state values is
at most O(J§J4 + JC6).

11 Appendix: Polling equations

In this appendix, we give the generalized definition of the polling equation and the
uniqueness of its solution. Let 7 = {(,¢) : 1 =0,1,2,...;£=10,1,2,...} be the index
set of pairs of the arrival and the polling instants, and let V' be the set of real valued
functions on S x & x {1,2,...} x T where & = £\ {(0,0,0,0,0, L)}. We generalize
the polling equations (9) and (26).

Polling Equation. Let fo € V' be any known function. We define a polling equation
for an unknown function f € V' as follows.

Fi.8(Y e,1,0) = f7 5(Y e,1,0)
+E[Zp1 0 f5.8(X (TLe1) e L+ DG, B, Y) oo mie < Tih1,0]  (56)
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for (j,8) € S, Y = (ko,a0,7,8,1n,L) € &, e € {1,2,...} and (I,£) € T where

Ze _ 05 Mle S €7
PLET N\ 1, ME > 0.

Note. Because f;3(Y,e,1,£) = HJ{ﬂ(Y,e,l,é, k) and f; 5(Y,e,l,£) = Pi’f;(Y,e,l,é)
have the simple explicit expressions for (I, £) = (0,0) and x(75 o—) = 0, we have omitted
this case from the above equation, that is, the state space is limited to &.

Then let

There exist nonnegative constants c(} € R2X17
cy € Rﬂcxl,c} € R such that

V= feV: [fs(Y.e,l,0)] < (r,1(r))c} + (g.n)cs +c}
for (4,8) € S, Y = (ko,a0,7,8,1n,L) € &,
e€{1,2,...} and ([,€) € T.

The objective of this section is to prove the following theorems.

Theorem 1 For any given function Ve V’B, the polling equation (56) has at most
one solution on V.

Theorem 2 The polling equation (26) solved in Proposition 2 has a unique solution
for vy, = Di’i() for all (k,v) € S. And the polling equation (9) solved in Proposition

3 has a unique solution for H' (k) = H}ﬁ(-, k) for all k € II.

The proof is executed step by step while proving some related lemmas. For conve-
nience, we define

7~_€ _ 7'1670_7620,
Lemma 1 There exist nonnegative constants cgp S R2X2JC,COI, S ’R2J“X2‘]°‘,c(1)p

RI*¥2Je such that

S

My

~ ~ . 0 1
B (8(n)nG) | G 8, Y)ie e < 10| < (1,1(r)ed, + (8,1m)Cop + cip
k={

for (7,8) €S, Y = (ko,a0,7m,8,n,L) € &, e € {1,2,...} and (I,£) € T.

Proof: We can show the following equation by using induction and Proposition 1.

E[Zp 1 18 k1) n(ti k1)) | G, B, Y) om0 < Ti10]

G104, ko) (g, )R (ko) [U(4)]F 1o, >0,
C,e(d: k0){(r, 1(r)) Xo(k0, ao) + (g, n)Ro(ro)
+RU(K/07]75)}[U(])]]€IO7 EIO?] €H€7

= G.eld ko){(r, 1(r)) Yo (ko, a0) + (g, m)Ro(x0) (57)
+Ru(k0, 5, 8)YUg (1)U ()0, £= 0,5 € Hg, k>0,
C,e(d, 50){(r, 1(r)) Yo (x0, ao) + (g n)Ro(ko)
+Ru(k0, J, B) Ho, £=0,j€Hg, k=0,
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for k > ¢, where

o ko # 5}, £>0,
@d%W)—{1%0¢jeag+1ﬁe?@hﬂ—m

U(1,5) U(1,5)
B B .
i UG - 1,5) i UG- 1,4) I
U(J): B 0] 3 U‘J(]): ~U(]7.]) ) 10: : 5
U@ +1,7) U@ +1,5) :
T(1.5) T(J1.)

where U(4), Ug(j) € R(EII)X(2e)  ang 1y € R(ID*(2J)  and
U(Z"]) = (pl’lUl( )’ s ’pi,jflUl(‘] - 1)707]37;7j+1U1(j + 1)7 . ,ﬁiJUl(J)) ,
e RBIIXQRID (3 =1,....J),

R (ko) = (O, --,0,U;(kg),0,---,0) € R(QJC)X(NCJ)’
N——r

th
wEl place
Yo(k0,a0) = (0g,- - -,02,v0(ko, ap), 0, - - -, 02) € RZX(2Je))
——

wEh place

Ro(ko) = (0, ---,0,Ug(kg), 0, ---,0) € R(2Jc)><(2JcJ)7
——
n(t)h place

Ru(’€07‘j7 /B) = (017' ) '7017u0(’i07.j7 6)7017' : '701) S RlX(QJCJ)7
————

méh place

where O € R(2JC)X(2JC‘]),O € R(QJC)X(NC),OQ € R2x(2']c),01 € R (27e) are the
zero matrices, and I € R(2J)X(27e) s the identity matrix.

Hence we have
e
Ml

E Z (8(x), (1 1)) (ej’ﬂ’Ye)le’f

T p < T,
Myl 1,0 1+1,0

€ e
Tre <Ti11,0

3 (4,8, Y)]
= E |:Z;’,l,k(g(7fk+1), n(7541)) Js P X )ie }
k=t

Ce(y ko) (g, n)R (o) [T — U)o, >0,
G,e(d, ko) {(r, 1(r ))To(ﬁo,ao) + (g:n)Ro (ko)
= +Ru(ko,j, B)}I - U)o, £=0,j € He, (58)
Ce(d, ko) (r, 1(r) X (ﬁo,ao) + (8,m)Ro (ko)
+Ru (Ko, j, B) }{I+Uq HI=U0G) '} o, £=0,5 € Hg,

where T € R(27e/)x(2Je)) g the identity matrix. The last equality comes from the

fact that [U(j)]* — O € R(//)x(2Je) 45 | — 0. This completes the proof of this
lemma.
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Lemma 2 Suppose that f € ng satisfies the following inequality:
£5.80Y,e,1,0| < E[Zp ol f5,8(Y (TLo1) L L+ D] | (4,8, Y) o760 < 10
for (7,8) €S, Y = (ko,a0,7,8,n,L) € &, e € {1,2,...} and (I,£) € T. Then
f=0.
Proof: By recursively applying the condition of this lemma, we have
|f],ﬂ(Y7 €, l: Z)‘
< E[Zp 0kl Fi8(Y (o) e L+ k+ D] | (43,8, Y){ 0, 80 < 7i41.0]
for K = 0,1,2,.... Because f € V"B, there exist nonnegative constants c(} € R2X1,
cy € RQJCxl,c}c € R such that
0
1£5,8(Y,e,1,0| < E[Zpy o1 {(r(fon41), 1 (i 0 p41)))C}
1 .
(8 o k1) (o kg1))er +cf } ‘ (s B.Y) s e < Tii1 0]
= E[Zp 10418 ork1) 0T erns1) | G B )L 0n e < 71 0) o5

. 1
+E[Z%1 041 | G, B, Y)0s 70 < Tiy1,0] cf
— 0, (k — 00).

This expression converges to 0 because

o0
ZE[Zie?,z,k(g(ﬁe,kﬂ)an(ﬁe,kﬂ)) | (G, B, Y) 050 < Th1,0]
=t
Mp—1
=F Z (8T k1) (T 1)) | G B, Yoy e < Tig10| < 00,
=t

EZporn | G, B Y) 0 mh0 < miy10] = P{M > L+ k[(,8,Y)] 0,750 < 7410}

_ {P {H(Tle,ul) F - ,H(sz+k) #J ‘ "5(7:16,3) = NO} » Ge(d, ko) = 1,
0, Cre(d ko) =0
— 0, (k — o).

The last expression comes from the fact that the (finite state) Markov chain generated
by the transition probability matrix P is irreducible.

Proof of Theorem 1: Let f € V}; and f € V;; be any two solutions that satisfy the
equation (56) for the given f°. Then

|f],ﬂ(Y7 €, l7 K) - fj,ﬁ(Y7 €, l7£)|

SE|Zp1|fs(Y (o) e L+ 1) = f55(Y (1 041), €, 1, £+ 1)

(7.8, )5, }

€ €
Tie <Ti11,0

for (4,8) € S, Y € &, e €{1,2,...} and (I,£) € T. Since f — fe Vi, we have from
Lemma 2, f=f. =
We next show that the quantities 7y, , = ?{fy() for all (k,v) € S and H' (k) =

H},ﬁ(-, k) for all k € IT respectively defined in Sections 2 and 4 are indeed the functions

in V%.
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Lemma 3  Let 7y, = Ff;’fy(-) be the number of (k,~)-customers at time Tlfo de-
fined in (23), and let H (k) = H;ﬁ(-, k) be the performance measures defined in (6).
Then, Ty, € Vi for all (k,v) € S, and H (k) € V5 for all k € II.

Proof: vy € V,’B can be easily shown by Lemma 1.
Now we consider H' (k) > 0.

10
H} (Y, el l,k)=E / Civj.p(O1{k(t) = k}dt
T,

e e
e, Tie <Ti41,0

G.B. Y ]

MP—1 e
! Tl m41

LAY
=B Ciy s (01 {n(t) = kyar| Y% )i
m=t YT m s (VHA() =1} e < Tit10

Tle,7n+1
E Z;Lm/ Cwj (1) 1{k(t) = k}dt
T,

e
I,m

o

G5, ]

e e
Tre < Ti41,0

3
‘I)L

0 ~
ZlcsvlamijB(Y(Tle,m)ﬂ €, l7 m, k)

M
&=

(j>ﬂ7Y)le7£
e e
L Tie <Ti41,0

m

E Zlc;’,l,m {(T(%le,m)’ 1(71(7:16;771)))900 + (g(%le,m)v n(%lc;m))ho}

M

(7.8, )5, ]

€ €
Tie <Ti11,0

3
l

Mf—1

—E mzze {0 G 1 G @ + (8(F ) n(70))R° } %ﬁg}iﬂo

0 0 1 0
< (T7 1(7‘))(10 + {(T: 1(7‘))(:017 + (g7 H)Cop + cOp} h
where <p0 and h” are the constants that respectively satisfy
©°(r0,a0,4,k) < ¢° and hiy(ko, j, k), hdo(ko, j, k) < h°.

The first inequality comes from Proposition 1 and the second inequality comes from
Lemma 1.

Proof of Theorem 2: The function 7, , = ﬁig() defined in (23) is an element of Vi
for any (k,v) € S from Lemma 3 and satisfies the polling equation given given by
(26). Hence from Theorem 1 Ty, ., given by (25) is the unique solution of the polling
equation. (The function 1Y related to U}, is obviously in Vi)

The function H'(k) = H}”B(-, k) defined in (6) is an element of Vj for any k € IT
from Lemma 3 and satisfies the polling equation given by (9). Hence from Theorem
1 H'(k) given by (27) is the unique solution of the polling equation. (The function

o= H]Q”@(-, k) defined in (7) is in V} from Proposition 1.)
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