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ABSTRACT 

The multinomial logit model in discrete choice analysis is widely used in transport research. 

It has long been known that the Gumbel distribution forms the basis of the multinomial logit 

model. Although the Gumbel distribution is a good approximation in some applications such 

as route choice problems, it is chosen mainly for mathematical convenience. This can be 

restrictive in many other scenarios in practice. In this paper we show that the assumption of 

the Gumbel distribution can be substantially relaxed to include a large class of distributions 

that is stable with respect to the minimum operation. The distributions in the class allow 

heteroscedastic variances. We then seek a transformation that stabilizes the heteroscedastic 

variances. We show that this leads to a semiparametric choice model which links the linear 

combination of travel-related attributes to the choice probabilities via an unknown sensitivity 

function. This sensitivity function reflects the degree of travelers‟ sensitivity to the changes in 

the combined travel cost. The estimation of the semiparametric choice model is also 

investigated and empirical studies are used to illustrate the developed method.  

Keywords: Discrete choice model; Gumbel distribution; Multinomial logit model; 

Semiparametric model; Variance stabilization 
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1. Introduction 

 

The multinomial logit model is widely used in a variety of transport-related choice 

contexts. Compared with the other choice models, the multinomial loigt model is particularly 

attractive in many modeling scenarios due to the nature that it is linked to the decision-

making behavior via the maximising (minimising) the utility (cost).  In the derivation of the 

closed-form multinomial logit model, there are three underlying assumptions, i.e., the random 

variables of interest are assumed (a) to be independent of each other; (b) to have an equal 

variability across cases; and (c) to follow the Gumbel (Type I extreme value) distribution 

(McFadden, 1978; Ben-Akiva and Lerman, 1985; Train, 2003; Bhat et al., 2008; Koppelman, 

2008). In practice, these assumptions may be violated in many choice contexts. To address 

this issue, much attention has been paid to the relaxation of these assumptions in the last three 

decades. Because these assumptions are related to each other to some extents, relaxing one 

assumption may affect the others (see e.g. Castillo et al., 2008; Fosgerau and Bierlaire, 2009). 

In general, however, the extensions of the multinomial logit model may be classified into two 

different categories: open-form and closed-form choice models.  

Closed-form choice models have several advantages over open-form models. They are 

usually simpler both conceptually and computationally. Consequently it is usually easier to 

specify a closed-form model and interpret the obtained results. In this paper, we will focus on 

closed-form models. See Bhat et al. (2008) for an overview of various open-form choice 

models developed in recent years.  

Several important approaches were developed in the 1970s to increase the flexibility of 

the multinomial logit model by relaxing the assumption on the independence of alternative 

outcomes while still retaining the choice models in a closed form. They include the nested 

logit model and a more general approach: the generalized extreme value (GEV) family 
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(McFadden, 1978). Since the 1970s, this area has attracted a large number of researchers and 

many useful models have been proposed, such as paired combinatorial logit (PCL), cross-

nested logit (CNL), and generalized nested logit (GNL). These approaches allow dependence 

or correlation among the random variables by relaxing the cross-elasticity restrictions. See 

Train (2003) and Koppelman (2008) for recent overviews. 

Relaxation of the equality of the error variance structure across cases has been 

investigated by Swait and Adamowicz (1996), Bhat (1997), and many others. Swait and 

Adamowicz (1996) developed the heteroscedastic multinomial logit (HMNL) model that 

allows the random error variances to be non-identical across individuals/cases. On the other 

hand, Bhat (1997) proposed the covariance heterogeneous nested logit model (COVNL). The 

COVNL model was developed on the basis of the nested logit model and it allows 

heterogeneity across cases in the covariance of nested alternatives.  

Now we turn to the assumption on the functional form of the underlying distributions. 

Lee (1983) in his pioneering work explored relaxing the assumption of the underlying 

distributions by an arbitrary pre-specified distribution. Recently Castillo et al. (2008) have 

proposed using the Weibull distribution as an alternative to the Gumbel distribution to derive 

a multinomial choice model. They show that the Weibull distribution may provide a better 

approximation for some route choice problems than the Gumbel in practice. Further they 

demonstrate that if the random variables for different alternatives follow the Weibull 

distribution, then a closed-form expression for the choice probabilities can be obtained from 

the utility-maximizing behavior. Furthermore, Fosgerau and Bierlaire (2009) show that the 

assumption of the Weibull distribution is associated with the discrete choice model having 

multiplicative error terms, and the log-transformation links the multiplicative model to the 

additive model for which the Gumbel distribution is assumed. In addition, Castillo et al. 

(2008) and Fosgerau and Bierlaire (2009) find that the Weibull-distribution-based model 
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allows random variables with heteroscedastic variances. As a consequence, performing the 

log-transformation can achieve two goals simultaneously: on the one hand it stabilizes 

variances, and on the other it specifies the Weibull distribution as the underlying distribution 

instead of the conventional Gumbel distribution.  

From a practical perspective, assuming a particular functional form such as the Gumbel or 

Weibull distribution for the underlying distribution of random variables for different 

alternatives is restrictive in many applications. This is because discrete choice analysis is 

used in a variety of the problems in transport research (Bhat et al., 2008). It is hard to believe 

that a single statistical distribution can accommodate such a variety of applications. In this 

paper we shall present empirical evidence that the actual underlying distribution indeed 

differs from both the Gumbel and Weibull distributions in some applications.  

In addition, as demonstrated in this paper, the assumption of underlying distributions for 

different alternatives is linked to a sensitivity function which reflects how sensitive a traveler 

is to the changes in a linear combination of travel-related attributes such as travel time, travel 

expenses, etc. Consequently, specifying an underlying distribution implicitly stipulates a 

sensitivity function. Empirical results in this paper show that people may have different 

sensitivities to the same amount of change when using different transportation modes. Hence 

the issue of travelers‟ sensitivity has to be taken into consideration during modeling. 

The purpose of this paper is to extend the Weibull-distribution results obtained by 

Castillo et al. (2008) and Fosgerau and Bierlaire (2009) to a more general situation. We will 

show that to derive a closed-form discrete choice model from the cost-minimization (or 

utility-maximizing) behavior, the actual functional form of the underlying distributions does 

not have to be explicitly pre-specified provided that they belong to a certain class of 

distributions that is stable with respect to the minimum operation. The model with an 

unspecified underlying distribution allows researchers considerable flexibility in model 
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specification, which is particularly important in practice because the discrete choice model is 

applied in different areas.  

We will show that the proposed distribution family allows heteroscedastic variances. 

Hence, it has also relaxed the assumption of homoscedastic variances made for the 

multinomial logit model. We will seek a transformation that stabilizes the heteroscedastic 

variances of the underlying distributions. We will show that this leads to a semiparametric 

choice model which links the linear combination of travel-related attributes to the choice 

probabilities via an unknown sensitivity function. We will also investigate the estimation of 

the unknown sensitivity function and discuss practical implications of the sensitivity function.  

This paper is organised as follows. In the next section the assumption of the Gumbel 

distribution is relaxed to include a large class of distributions. In Section 3 a semiparametric 

choice model is investigated. Section 4 is devoted to the estimation of the unknown 

sensitivity function and the coefficients of the attributes in the semiparametric choice model. 

The developed method is illustrated in Section 5 using two datasets from Danish value-of-

time study. Finally discussion and conclusions are given in Section 6. 

 

2.   Underlying distributions in discrete choice analysis 

 

2.1. A stable class of distributions with respect to the minimum operation 

Discrete choice models may be investigated in various transport-related contexts. In this 

paper we consider this problem from the perspective of individual choice behavior where a 

traveler wishes to minimize his/her travel cost among several alternatives (routes, 

transportation modes etc.). Note that for the problems of random utility maximization, the 

results can be applied straightforwardly by considering the corresponding negative utilities.  
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Let    denote the feasible choice set of each individual n (n=1,…,N) and     denote the 

random travel cost for traveler n when choosing alternative i. We assume throughout this 

paper that the random costs     (     
 and for all n) are independent of each other. 

Rather than assuming a particular distribution (such as the Gumbel or Weibull) for the 

random costs
 
   , we suppose that the distributions of      are from a large class of 

distributions with the following functional form of cumulative distribution function (CDF): 

                               ,      (1) 

where the base distribution function      is left unspecified. The parameters     are assumed 

to be associated with individual alternative i and traveler n. From the perspective of statistical 

inference, the assumption that the random costs      follow any distribution from distribution 

family (1) with an unspecified base function      allows researchers great flexibility to 

accommodate different problems.  Table 1 displays some special cases of distributions from 

this distribution family.  

 

(Table 1 is here) 

 

Let     and     
  denote the expectations and variances of    , i.e.,          and 

            
 . The variances    

   may depend on the expectations      so in general they are 

heteroscedastic. We suppose that the expectations     are linked to a linear function of a q-

vector of attributes     (usually including attributes for alternative i as viewed by traveler n 

and characteristics of traveler n such as income, gender and age) that influences specific 

discrete outcomes: 

        
  ,          (2) 
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where   is a vector of parameters to be estimated. As Fosgerau and Bierlaire (2009) have 

pointed out, if the coefficient of the travel expenses is normalized to one unit, then other 

coefficients in vector   can be interpreted as willingness-to-pay indicators. 

Now we show that distribution family (1) is closed under the minimum operation. 

Suppose that the random costs      follow the distribution                     
 
for any 

base function     . Under the assumption of independence we have 

                                      

                                                   , 

where             . Hence, the minimum cost            belongs to the same 

distribution family as the individual random costs      (      and for all n) do. 

We also note that under the assumption of independence, any distribution family that is 

closed under the minimum operation must have the functional form given in (1). Hence the 

family (1) is the most general class that is stable with respect to the minimum operation. As 

shown later in Section 3, the stability with respect to the minimum operation is crucial for the 

derivation of choice probabilities.  

 

2.2     Variance-stabilizing transformations 

In general, for a given base function     , the variances of the distributions in family (1), 

            
 , are heteroscedastic (see, e.g., Table 1). Hence, the distribution family (1) 

does not restrict the random costs to be homoscedastic. In this subsection we show that the 

variances can be stabilized via a suitable transformation. First we state a theorem that links 

distribution family (1) to the Gumbel distribution. 

 

Theorem 1. Suppose that random variables     (j=1,…,m) have the following CDFs: 
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                         with          (j=1,…,m), 

where      is any chosen CDF. Then                              is a monotonically 

increasing transformation and the transformed random variables           follow the 

Gumbel distribution                               
with a common scale parameter  . 

 

From Theorem 1,      transforms     to Gumbel-distributed variates             with 

CDFs of  

                                 .                                                                    (3) 

The means and variances of      are given by                      and          

        
 
 respectively, where    is the Euler constant.  

Theorem 1 also indicates that                             transforms 

heteroscedastic variances             
   to a constant value         . Consequently      

is a variance-stabilizing transformation. Hence, the relaxation of the Gumbel distribution to 

the distribution family (1) is also linked to the relaxation of the second assumption for 

multinomial logit models, i.e., homoscedastic variances. Castillo et al. (2008) and Fosgerau 

and Bierlaire (2009) have considered a special case where the transformation function       

is taken as the log-transformation for variance stabilization. Table 2 displays      for some 

commonly used distributions.  

 

(Table 2 is here) 

 

In practice, variance stabilization is an important issue and has been investigated 

intensively in the literature. A general asymptotic variance-stabilizing transformation for a 

random variable X with a mean of   and variance       can be shown to be       
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      (see, e.g., Tibshirani, 1988). For the exponential distribution, for instance, 

        
  (see Table 1). Hence the asymptotic variance-stabilizing transformation for the 

exponential distribution is              which is identical to     , up to a scale/level 

constant. 

 In general, however,       and      differ from each other. Unlike the asymptotic 

variance-stabilizing transformation      ,      is an accurate transformation for variance 

stabilization for the distribution family (1).  

 

2.3     Identifiability 

Any discrete choice model must address the issue of identifiability since the level and 

scale of utility are irrelevant (Ben-Akiva and Lerman, 1985; Train, 2003). When the 

variance-stabilizing transformation      is replaced by       ) with two constants a and 

   , the Gumbel distribution (3) is replaced by: 

                                                                                                            

with mean                      and  variance            respectively. Hence, the 

transformation function      is not uniquely defined. In practice, for identification purposes, 

some restrictions on the level constant and scale constant have to be imposed to ensure that 

     is identifiable. We shall return to this issue in Sections 3 and 4.  

 

2.4      The mean function  

In this subsection we will derive a mean function that links the means before and after the 

transformation. Let        denote the inverse function of     , i.e.,              
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                , where        is the inverse function of     . Then the expectations of     

may be evaluated as follows: 

                              .         (4) 

 

Theorem 2. Let      be any chosen CDF and                            . Then for 

the random variables    having the CDFs given by                       with   

    , the expectations                         are monotonically decreasing 

functions of    (j=1,…,m). 

 

From Theorem 2, an implicit mean function      is derived from the variance-stabilizing 

transformation     : 

           ,                  (5)                                                      

where        is monotonically decreasing. This has established a link between the 

parameter     and the expectation     of a random variable    . Since                 

 /  and   is constant,  (.) captures the relationship between the two means obtained before 

and after transformation      is applied. In the case of the exponential distribution        

             , for instance, we have         .  

In general, the relationship between      and      can be complicated. Specifically, let 

       be the inverse function of     . From the proof of Theorem 2, we have 

                                                      . 

Hence,               is a convolution of        and the density function of the 

Gumbel distribution                                  . Clearly under some mild 

conditions      is uniquely determined by     , and vice versa. The complexity of the 

relationship between      and      can be seen from the case of the Type II logistic 
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distribution                          with a mean of                , where 

     is the first derivative of the function         and      is the gamma function. By 

defining        as the inverse function of     , we obtain                 , which 

does not have a simple link to the corresponding                            . Table 2 

displays the mean function      for some commonly used distributions.  

Under certain conditions there exists a simple approximate relation between the two 

functions      and     . Specifically, noting that     follow the Gumbel distribution (3) with 

                    , we have  

                                                . 

By approximating                  by                 , we obtain     

                     . Hence the mean function      can be approximated by   

           , up to a constant. In addition, noting that                           , we 

can further obtain an approximate relationship between the mean function      and the 

unspecified base distribution     : 

                       , 

up to a constant. Note that for the exponential distribution, the above relation holds exactly, 

i.e.,                       . 

 

3.   A semiparametric choice model 

 

3.1.   A semiparametric single-index choice model 

In this section we show that the assumption of distribution family (1) leads to a semi-

parametric single-index choice model.  
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According to the theory of individual choice behavior (see, e.g., Ben-Akiva and Lerman, 

1985), the probability that any alternative i in    is chosen by traveler n is              

     ∀     and  ≠ . Then from the total probability theorem, we obtain:  

                                                                . 

Since                                                      , we have  

                                               . 

Hence, by defining             , we obtain 

                                                     
   

   
 

      

           
 . 

When the expectations          are linked to a linear function of a q-vector of 

attributes     via equation (2), this leads to the following choice model: 

       
     

   

      
        

 .        (6) 

Clearly equation (6) generalizes the multinomial logit model by using the unknown mean 

function      to replace the exponential function. In addition, although the random costs of 

interest have heteroscedastic variances as assumed in equation (1), the variances are 

stabilized via      so that the scale parameter in (6) is constant across all alternatives and 

travelers. This scale parameter is absorbed into      so it is not identifiable. Hence, 

extending the multinomial logit model by allowing an unspecified functional form      can 

address both the issue of nonlinearity in the mean function and the issue of variance 

stabilization.  

Equation (6) belongs to semiparametric single-index models. In statistics and 

econometrics, a model is termed a single index model if it only depends on the vector x 

through a single linear combination, i.e.    . In a semiparametric single index model, the 

model depends on x through an unknown function     , i.e.        (see, e.g., Stoker 1986; 
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Ichimura, 1993). Note also that in semiparametric single-index models, there is only one 

nonparametric dimension, thus these methods fall into the class of dimension reduction 

techniques. Consequently although both   and      are unknown, only       is 

nonparametrically estimated.  

In recent years attention has been paid to semiparametric approaches in the transport 

literature. For instance, Fosgerau (2006) has investigated the distribution of the value of 

travel time savings, and Fosgerau and Bierlaire (2007) have investigated mixing distributions 

in discrete choice analysis, both using a semiparametric approach.  

The semiparametric single index model (6) is a special case of the more general 

nonparametric choice model investigated in Huang and Nychka (2000) where        is 

further extended to a general nonlinear function            of q variables. From a 

computational perspective, a major advantage of semiparametric single-index models is that 

they avoid the so-called “curse of dimensionality” by reducing the nonparametric 

dimensionality from q to one. 

Due to the issue of identifiability of      and  , it is required in this paper that the linear 

combination of attributes     does not include an intercept, and that   has unit length and 

one of its entry (say the first one) has a positive sign. Following Ichimura (1993), some 

further conditions need to be imposed for the identification of      and  . In particular      

is required not to be constant on the support of    . The vector of attributes x should also 

admit at least one continuously distributed component. See Ichimura (1993) for details. 

 

3.2.   Sensitivity function 

From equation (5) the mean function      is non-negative. Now define      

          so that the range of      is the whole real line. Equation (6) becomes 
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.        (7) 

In this paper      is termed sensitivity function. It reflects how sensitive a traveler is to 

the changes in the combined travel cost (including travel time, travel expenses, etc.). Table 2 

displays the sensitivity function for some commonly used distributions. When the sensitivity 

function is linear,          with a scalar parameter    , model (7) reduces to the 

ordinary multinomial logit model and the corresponding underlying distribution is the 

Gumbel. A linear sensitivity function thus provides a benchmark for comparison. This is 

illustrated in Figure 1. For the sensitivity function represented by the dotted line in Figure 1, 

for instance, travelers are more sensitive to one unit increment in the combined travel cost in 

the area where the combined travel cost is high. In contrast, the sensitivity function of the 

broken line represents the scenario where travelers are more tolerable to the increment in the 

combined travel cost. In the multiplicative choice model developed in Castillo et al. (2008) 

and Fosgerau and Bierlaire (2009), the logarithm sensitivity function is used. It is worth 

noting that for the log-function, there not exist a point with respect to which it is symmetric. 

Hence it is suitable to such a scenario where travelers are more sensitive to one extreme end 

of the combined travel cost but less sensitive to the other.  

 

(Figure 1 is about here) 

 

From a practical perspective, a very important issue is model selection: how do we 

discriminate among several competing choice models, including the ordinary multinomial 

logit model where no transformation is applied, the multiplicative choice model with the log-

transformation, and the more general semi-parametric model (7)? In this paper we 

incorporate the well-known deviance information criterion (DIC) as a measure of goodness-
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of-fit for model comparison. The DIC is a hierarchical modeling generalization of the AIC 

(Akaike information criterion) and BIC (Bayesian information criterion). Similar to AIC and 

BIC, it takes into consideration both the model accuracy and the degree of model parsimony. 

See Spiegelhalter (2002) for the details on the DIC. 

 

3.3.   Further extensions 

The multinomial logit model is frequently used as a building block in discrete choice 

analysis to handle more complex scenarios. Potentially the semiparametric choice model 

could also be combined with some existing approaches in discrete choice analysis to deal 

with complicated scenarios in practice. A thorough investigation for such extensions is beyond 

the scope of this paper and would admit a separate paper. In this subsection, we simply demonstrate 

how it can be combined with an existing approach, mixed multinomial logit model. 

The mixed logit is a generic approach that is conceptually appealing and also 

computationally efficient. It can be derived by allowing a random-coefficients structure 

(Train, 2003; Bhat et al., 2008). Consequently it can address the issue of heterogeneity across 

travelers and does not exhibit the property of independence from irrelevant alternatives (IIA).  

Now for the semiparametric choice model, we follow Train (2003) and Bhat et al. (2008), 

and assume that the coefficients vary across travelers in the population with density      so 

that the heterogeneity across travelers can be taken into account. For each traveler, however, 

it is assumed that the semiparametric choice probability        
          

    

           
        

 still holds. 

Since the researcher observes     but not  , the unconditional choice probability is the 

integral of over all possible variable of  :  

                    . 
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A commonly used model for       is the normal distribution (Train, 2003). Fosgerau and 

Bierlaire (2007) have investigated a practical test for the choice of the mixing distribution.  

It is of interest to compare the mixed logit and the above mixed semiparametric choice 

model. In the existing mixed logit model, the heterogeneity is modeled solely by the mixing 

distribution because the ordinary multinomial logit assumes homogeneity across 

observations. In contrast, in the above mixed semiparametric choice model, the heterogeneity 

across alternatives and the heterogeneity across travelers are dealt with separately: the former 

is addressed via the variance-stabilizing transformation     , whereas the latter is modeled by 

the mixing distribution     . Since different sources of variability are modeled separately, it 

is more straightforward for model specification and interpretation in the mixed 

semiparametric choice model.  

It is also worth noting that although the semiparametric choice model has relaxed, to 

some extents, the assumptions (b) and (c) as mentioned in Section 1, it still retains the IIA 

property which may sometimes be restrictive in practice. The above mixed semiparametric 

model, however, does not exhibit the IIA property and thus is more flexible to accommodate 

the nature of complicated problems in practice.  

 

 

4.   Bayesian inference 

 

In this section we investigate the estimation of the unknown sensitivity function      and 

coefficient vector  . Ichimura (1993), Horowitz (2001), and Fosgerau (2006) investigated 

statistical inference for semiparametric models using the kernel density estimation method. 

On the other hand, Fosgerau and Bierlaire (2007) investigated approximating the unknown 

mixing distribution using Legendre polynomials as a basis. 
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In this paper, we use P-splines to approximate      and perform Bayesian analysis to 

draw statistical inference. The approach of P-splines has been widely used in statistics in 

recent years. The idea of the P-splines is quite similar to that used in Fosgerau and Bierlaire 

(2007), i.e. B-splines are used as the basis functions to approximate an unknown function of 

interest.  

 

4.1.   The Bayesian P-splines approach 

The P-splines approach was developed by Eilers and Marx (1996). Compared to 

smoothing splines, the P-splines approach usually leads to a more parsimonious 

parameterization. Lang and Brezger (2004) have recently considered Bayesian inference for 

additive nonparametric regression models using the P-splines approach.  The major 

advantage of using a Bayesian approach, rather than the maximum likelihood method, is that 

it is still applicable even if the sample size in an analysis is relatively small (Gelman et al., 

2003). In addition, the smoothing parameter can be determined straightforwardly in the 

Bayesian analysis. In contrast, the smoothing parameter has to be determined via cross-

validation when using the maximum likelihood method.  

In the P-splines approach in Eilers and Marx (1996), it is assumed that an unknown 

function      can be approximated by splines of degree l with     equally spaced knots 

over the domain of t. The unknown function      is written in terms of a linear combination 

of        B-spline basis functions       (j=1,…,m),  i.e.              
 
    

      , where                          and             . Since the vector of the 

basis functions       is given and fixed, the estimation of the unknown function      reduces 

to the estimation of the unknown parameter vector  . See De Boor (1978) for the details of 

B-splines.  
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Now we focus on the estimation for model (7). As mentioned earlier, it is assumed that 

vector   has unit length with a positive sign of its first entry due to the issue of identifiability. 

In addition, during the estimation,       is expressed as         so that      has a fixed 

support, say on [0, 1], where u and v are two scaling parameters.  

Let     be 1 if traveler n chose alternative i and 0 otherwise (n=1,...,N). Let X and Y 

denote the data matrices comprising      and     for all i and n. Let        
  . Then the 

likelihood is   

                     
   

    
 
       

             

                  

 
   

    
 
     .                               

Eilers and Marx (1996) suggested a moderately large number of knots in B-splines 

approximation to ensure enough flexibility, and defined a roughness penalty based on 

differences of adjacent B-spline coefficients to guarantee sufficient smoothness of the fitted 

curves. This leads to a penalised log-likelihood given by                         , 

where    is a smoothing parameter to be determined, and K is a given penalty matrix.  K is 

chosen as a symmetric tri-diagonal matrix whose main diagonal is 1, 2, 2, …, 2, 2, 1. The 

diagonal entries immediately above and below the main diagonal are all equal to    (Eilers 

and Marx, 1996; Lang and Brezger, 2004). 

In Bayesian analysis, the penalty term             can be treated as a prior of   for 

given  :                        . The prior of the smoothing parameter    is usually 

assumed to follow an inverse gamma distribution        :                            , 

where a and b are two hyper-parameters (Lang and Brezger, 2004). The prior of   is chosen 

as non-informative:       . Combining the likelihood and the priors, the posterior 

distribution is given by 

                                        .     
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4.2.   Markov chain Monte Carlo simulation  

In this subsection, we investigate using Markov chain Monte Carlo (MCMC) simulation 

to draw samples from the posterior distribution of the unknown parameters,           . The 

algorithm used below is a mixture of the Gibbs sampler and Metropolis-Hasting algorithm 

where the simulation is carried out block-wise, drawing each of   ,    and   in turn. See 

Gelman et al. (2003, Chapter 11) for an overview on MCMC. 

Specifically, let   ,    and    be the values of the parameters in the current iteration. The 

initial guess of  ,    , can be obtained using the ordinary multinomial logit model and then is 

normalized to ensure it has unit length with a positive first entry. For given   , the initial 

guess of  ,   , can be obtained by maximising the penalised likelihood.  

In each subsequent iteration, it is easy to show that, for given   and   at the current 

iteration, i.e.    and   , the full conditional distribution of     is an inverse gamma 

distribution,           with                and              . Hence,   can be 

drawn straightforwardly. 

However, parameter vectors   and   cannot be drawn directly from their conditional 

posterior distributions. Hence, the Metropolis-Hasting algorithm is used below to draw 

vectors   and  .  

First, we consider sampling   for fixed    and   . We draw a proposal    from the 

proposal distribution        
    , where    is a tuning parameter and    is a diagonal matrix 

whose diagonal entries are the squared values of the entries of     . The sampling of proposal 

   from the proposal distribution can be carried out block-wise or component-wise. Then    

is normalized to ensure it has unit length with a positive first entry. We calculate the 

acceptance rate as follows: 

                                        . 
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The proposal    is accepted with probability   .     is then replaced by    if    is accepted; 

otherwise    remains unchanged.  

Similarly, we can draw a sample of   for fixed    and   . We draw a proposal    from 

the proposal distribution        
    , where    is a tuning parameter and    is a diagonal 

matrix whose diagonal entries are the squared values of the entries of   . Note that to ensure 

the support of the function       is on [0, 1],        
    is scaled via two scalar parameters u 

and v  such that              
          for all i and n. The sampling of proposal    

can be carried out block-wise or component-wise. We then calculate the acceptance rate as 

follows: 

                                        . 

The proposal    is accepted with probability   .    is then replaced by    if    is accepted; 

otherwise     remains unchanged.  

Our numerical experience shows that the acceptance rates    and    for   and   are quite 

high by appropriately choosing the tuning parameters.  

 

5.   Empirical applications 

 

Fosgerau et al. (2006) carried out a large-scale Danish value-of-time study comprising 

several surveys, two of which involved single mode public transport experiments where 

interchanges between two vehicles in the experiments were restricted to be of the same type, 

trains or buses. To illustrate the developed method, we apply the developed method in this 

section to analyze these two datasets. The two datasets involved stated preferences about two 

train-related alternatives and two bus-related alternatives respectively. Travel time for public 

transport users in the study was broken down into four components: (a) access/egress time 

(other modes than public transport, including walking, cycling, taxi, etc.); (b) in-vehicle time; 
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(c) headway of the first used mode; and (d) interchange waiting time. The attributes 

considered in their study included these four travel time components, plus the number of 

interchanges and travel expenses. The travelers‟ time values were inferred from binary 

alternative routes characterised by these attributes. Fosgerau and Bierlaire (2009) also 

analyzed these two datasets using the multiplicative choice model.  

Throughout this section, we set l=3 and r=4, thus the B-splines used in the following 

analyses included seven cubic basis functions       (j=1,…,7) on the support [0, 1]. 

Following the suggestion in Lang and Brezger (2004), we chose           for the prior 

of   . The total number of iterations in the MCMC simulation was set as 10,000. The first 

5,000 iterations were considered as burnt-in period and the corresponding draws were 

discarded. The results are reported below using the remaining 5,000 draws. Following 

Gelman et al. (2003), we calculate the posterior means (used as estimates), posterior standard 

deviations, and 95% credible intervals of the unknown parameters to summarise the results of 

the obtained posterior distributions. The original stated preferences are panel data. For 

illustration purposes, we selected only N=100 different travelers from each dataset, and then 

randomly chose one observation for each traveler (hereafter referred to as „train data‟ and 

„bus data‟ respectively) in the following analyses. 

 

5.1.   Analysis for the train data 

We first consider the ordinary multinomial logit model where no transformation is 

involved: 

                                         ,                            (8) 

where         represent the six attributes:  access-egress time, headway, in-vehicle-time, 

waiting time, number of interchanges, and travel expenses. This model is a special case of the 
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more general semiparametric choice model (7) where the sensitivity function is taken as 

         with    a scaling parameter.  

The ordinary multinomial logit model was fitted and the results are displayed in the top 

panel of Table 3 where following Fosgerau and Bierlaire (2009), the coefficient of travel 

expenses was normalized to unit so that other coefficients can be interpreted as willingness-

to-pay indicators. It can be seen that all attributes, except for the headway, were significant at 

5% level. The value of the DIC for the ordinary multinomial logit model was 120.2. 

 

(Table 3 is about here) 

 

Next, the multiplicative choice model developed in Castillo et al. (2008) and Fosgerau 

and Bierlaire (2009) was used to fit the data. This model is a special case of model (7) where 

the sensitivity function is taken as               :   

                                            .                    (9) 

The mid-panel of Table 3 displays the estimates of the coefficients    in model (9). It can be 

seen that all the estimates, except for the headway, were significant at 5% level. The DIC of 

model (9), 122.6, was slightly higher than that of model (8), indicating that overall the data 

were not better fitted via the log-transformation.  

Finally, the semi-parametric model developed in this paper was applied to fit the data:  

                                             ,                (10) 

where no particular functional form of the sensitivity function      was imposed a priori. 

Instead it was determined by the data. The bottom panel of Table 3 displays the estimates of 

the coefficients  . Clearly this model outperformed both models (8) and (9):  it had the lowest 

value of the DIC, 83.1, thus providing much better fitting to the data. Figure 2 displays the 

obtained sensitivity function      on its support [0, 1]. It can be seen that in the middle part 
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of the support, the sensitivity function      is not sensitive to the change of the combined 

travel cost. Towards to the both extreme ends of the support, however, it increases (or 

decreases) rapidly. This suggests that each unit increment in the combined travel cost does 

not impact on the train users equally.  

 

(Figure 2 is about here) 

Figure 2. The estimated sensitivity function      for the train data 

 

Similar to the other two models, all attributes, except for the headway, were significant at 

5% level. The results obtained by model (10) were robust in the sense that the sensitivity 

function in model (10) was data-driven and no particular functional form was imposed simply 

due to mathematical convenience.  

We also note that      in Figure 2 substantially differs from the sensitivity function     

of the Gumbel distribution and from the sensitivity function           of the Weibull 

distribution (see Table 2). Hence, it suggests that the underlying distribution for the train data 

is neither the Gumbel nor the Weibull. This provides empirical evidence that the underlying 

assumption of the Gumbel distribution can be restrictive in some applications.  

 

5.2.   Analysis for the bus data 

Next we briefly discuss the analysis for the bus data. Again we consider three different 

models: (a) the ordinary multinomial logit model without transformation, equation (8); (b) the 

multiplicative choice model with the log-transformation, equation (9); and (c) the 

semiparametric choice model (10). The estimation results are displayed in Table 4.  
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(Table 4 is about here) 

 

It can be seen that all three models provided comparable fittings to the data in terms of 

likelihood, DIC and   . Figure 3 displays the sensitivity function      on its support of [0, 1] 

obtained using the semiparametric choice model. It is clear that the obtained sensitivity 

function is quite close to a linear function, and thus not surprisingly it produced similar 

estimates to that of the ordinary multinomial logit model for this particular data. Due to its 

simplicity, it seems that the ordinary multinomial logit model is a sensible choice. 

 

(Figure 3 is about here) 

Figure 3. The estimated sensitivity function      for the bus data 

 

From this example it can be seen that when the actual underlying distribution is close to 

the Gumbel, the semiparametric model can automatically adapt its sensitivity function to 

produce a result similar to that of the ordinary multinomial logit model.  

 

6.   Discussion and conclusions 

 

This paper has investigated the assumption of the underlying distributions of the random 

terms in the multinomial logit model. The research on this topic can be dated back to the 

early work of Lee (1983) who explored relaxing the assumption of underlying distributions 

by an arbitrary pre-specified distribution. On the other hand, Castillo et al. (2008) and 

Fosgerau and Bierlaire (2009) focused on one particular distribution, the Weibull, and used 

the Weibull distribution as an alternative to the Gumbel distribution to derive a choice model 

from the utility-maximizing behavior.  
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This paper has proposed relaxing the assumption of underlying distributions from the 

Gumbel and Weibull distributions to a wider distribution class, the distribution family (1). In 

comparison with the work of Lee (1983), the assumption of underlying distributions in this 

paper, i.e., the distribution family (1), is slightly more restrictive but still quite flexible to 

accommodate problems arising in different areas. More importantly, unlike Lee (1983), the 

underlying distribution in this paper is not required to be pre-specified in the stage of 

modeling. It also retains a crucial property in discrete decision analysis, i.e., it is closed under 

the minimum operation. Hence, similar to the multinomial logit model, the developed semi-

parametric choice model can be derived from the individual choice behavior via the random 

cost minimization (or utility maximization). In addition, the distributions in family (1) do not 

require the random costs of interest to have homoscedastic variances. The proposed 

distribution family leads to a semiparametric choice model which links the linear 

combination of travel-related attributes to the choice probabilities via an unknown sensitivity 

function.  

This paper has also shown that the sensitivity function plays an important role. Travelers 

may have different sensitivities to different transportation modes. When the sensitivity 

function is nonlinear, it indicates that travelers‟ reaction to the combined travel cost does not 

change in a proportionate manner. Clearly this has practical implications for the policy 

makers of public transportation systems.  

Of the three assumptions made for the multinomial logit model as mentioned in the 

beginning of this paper, the semiparametric choice model has not only substantially relaxed 

the assumption of the Gumbel distribution but also to some extents relaxed the assumption of 

homoscedastic variances, and has addressed the issue of heteroscedastic variances via the 

variance-stabilizing transformation. 
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This paper has mainly focused on the closed form discrete choice models. One of the 

referees has pointed out that another approach to relax the underlying distributions of the 

multinomial logit model is via an open form choice model, i.e. mixed logit (see, e.g. Train 

2003). The mixed logit uses the multinomial logit        
        

   

         
       

 as a kernel, and all 

the remaining variability that cannot be accounted for is captured by a mixing distribution 

    . In practice it is crucial to specify the right mixing distribution so that the variability 

that the multinomial logit kernel cannot explain is modeled by the mixing distribution. This 

may make the specification of the mixing distribution difficult. Although a commonly used 

mixing distribution is normal, Hess et al. (2005) show that it may lead to misleading 

interpretation of the results if the normal distribution is blindly used. In the recent years a 

considerable attention has been paid to this research issue. Fosgerau (2006) considers a 

number of distributions and concludes that a bad choice of the mixing distribution may lead 

to extreme bias. Hess and Axhausen (2005) look at a wealth of parametric distributions to 

investigate if they can reproduce a given target mixing distribution. Fosgerau and Bierlaire 

(2007) develop a practical test for the choice of mixing distribution. As a generic approach, 

the mixed logit may also cause difficulties in interpretation of results because there may be 

more than one source of variability that are modeled using a single mixing distribution. It 

could be hard for a researcher to distinguish between the different sources of variability from 

the obtained mixing distribution.  

This paper tries to derive a flexible model that still maintains the closed form type of 

multinomial logit model. Instead of using a mixing distribution to capture all remaining 

variability, the semiparametric choice model in this paper explains different sources of 

variability more explicitly: it addresses the issue of heteroscedastic variances via the 

transformation and the issue of the nonlinear utility via the sensitivity function. Hence, model 



27 

 

specification is more straightforward and consequently interpretation of results is much 

easier. In practice it is up to the researcher to choose between a more generic or a more 

specific modeling approach on the basis of the purpose of analysis and his/her personal 

preference.  

Finally, it should be noted that this paper has focused on data analysis and modelling. As 

one of the referees pointed out, one issue that the paper does not discuss is forecasting. In 

some applications, forecasting is even more important than modelling. The issue of 

forecasting for the semiparametric choice model will be investigated in the future research. 

 

Appendix. Proofs of theorems 

 

Proof of Theorem 1.  It is trivial to show that      is monotonically increasing. The CDF of 

   are given by                        . Since                      , we 

obtain                                               
 
. This completes the 

proof.  

 

Proof of Theorem 2.  We suppress the subscript j in equation (4) and let      

                                  denote the expectation    which is regarded as a 

function of  . For   being increased to   , where              with     and    , 

we consider  

                                                        

                                           . 

Let      . Then  

                                          . 
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Since        is increasing and    , we have                   . This implies that 

           for any     and    . Hence      is a decreasing function of  . This 

completes the proof.  
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Figure 1. Illustration of sensitivity functions 
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Figure 2. The estimated sensitivity function      for the train data 
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Figure 3. The estimated sensitivity function      for the bus data 
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Table 1. Special cases of the distribution family (1)  

 Underlying distribution 

       

Base distribution 

     

Expectation 

    

            Variance 

   
  

Exponential                              
      

   

Pareto                                                           

Type II generalized logistic                                                                

Gompertz                                                 

Rayleigh              
                             

                  

Weibull              
                  

    
            

    
     

 

 
  

      
 

 
    

  
Gumbel                                                                

 

 

  



35 

 

Table 2. The variance-stabilizing transformations, mean functions, and sensitivity functions for some distributions in family (1)  

 Variance-stabilizing 

Transformation        

Mean function  

     

Sensitivity function  

     

Exponential                           

Pareto                                            

Type II generalized logistic                                        )                      

Gompertz                       

Rayleigh                                 

Weibull                                  

Gumbel t                 
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Table 3. Estimates using different models for the train data* 

  Multinominal logit    model    

  log-likelihood= -54.8           DIC= 120.2       

Attributes  Posterior mean Posterior standard 

deviation 

95% credible 

interval 

Access-egress time  0.70 0.39 (0.11, 1.63) 

Headway  -1.26 7.23 (-14.00, 14.49) 

In-vehicle time  0.32 0.15 (0.04, 0.63) 

Waiting time  0.78 0.30 (0.27, 1.41) 

Interchange  4.41 1.92 (0.68, 8.72) 

     

  Multiplicative choice   model    

  log-likelihood= -57.2             DIC=122.6  

Attributes  Posterior mean Posterior standard 

deviation 

95% credible 

interval 

Access-egress time  1.32 0.49 (0.43, 2.38) 

Headway  22.78 29.90 (-30.69, 74.40) 

In-vehicle time  0.59 0.34 (0.10, 1.50) 

Waiting time  0.97 0.12 (0.77, 1.17) 

Interchange  6.35 3.11 (0.88, 13.63) 

     

  Semiparametric choice   model    

  log-likelihood= -34.4             DIC=83.1      

Attributes  Posterior mean Posterior standard 

deviation 

95% credible 

interval 

Access-egress time  0.36 0.11 (0.16, 0.61) 

Headway  -0.23 3.11 (-5.99, 6.27) 

In-vehicle time  0.07 0.03 (0.01, 0.13) 

Waiting time  0.39 0.11 (0.17, 0.62) 

Interchange  0.87 0.39 (0.13, 1.65) 

* The value of log-likelihood is -69.3 when all the parameters are set equal to zero. 
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Table 4. Estimates using different models for the bus data* 

  Multinominal logit    model    

  log-likelihood= -52.2             DIC=116.4  

Attributes  Posterior mean Posterior standard 

deviation 

95% credible 

interval 

Access-egress time  0.30 0.17 (0.05, 0.68) 

Headway  -4.92 3.53 (-11.54, 1.98) 

In-vehicle time  0.01 0.03 (-0.04, 0.07) 

Waiting time  0.47  0.20 (0.11, 0.88) 

Interchange  1.37 0.51 (0.45, 2.42) 

     

  Multiplicative choice    model    

  log-likelihood= -52.5             DIC=114.3  

Attributes  Posterior mean Posterior standard 

deviation 

95% credible 

interval 

Access-egress time  0.37 0.17 (0.05, 0.66 ) 

Headway  -1.47 1.21 (-2.99, 0.97) 

In-vehicle time  0.13 0.03 (0.09, 0.18) 

Waiting time  0.41 0.12 (0.19, 0.62) 

Interchange  0.97 0.53 (0.03, 1.76) 

     

  Semiparametric choice    model    

  log-likelihood= -52.5             DIC=114.6  

Attributes  Posterior mean Posterior standard 

deviation 

95% credible 

interval 

Access-egress time  0.38 0.21 (0.04, 0.88 ) 

Headway  -2.84 4.66 (-14.05, 4.47) 

In-vehicle time  0.01 0.06 (-0.15, 0.09) 

Waiting time  0.42 0.22 (0.04, 0.91) 

Interchange  1.20 0.74 (0.11, 3.11) 

* The value of log-likelihood is -69.3 when all the parameters are set equal to zero. 

 

 


