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Abstract

In this paper, we consider various classes of (in)nite-state) automata generated by simple
rewrite transition systems. These classes are de)ned by two natural hierarchies, one given by
interpreting concatenation of symbols in the rewrite system as sequential composition, and the
other by interpreting concatenation as parallel composition. In this way, we provide natural def-
initions for commutative (parallel) context-free automata, multiset (parallel, or random access,
pushdown) automata, and Petri nets. We provide example automata which demonstrate the strict-
ness of this hierarchy. In particular, we provide a proof of an earlier conjecture by Moller: that
multiset automata form a proper subset of Petri nets. This result contrasts with the result of
Caucal for the analogous question in the sequential case where the hierarchy collapses. c© 2001
Elsevier Science B.V. All rights reserved.
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1. Introduction

The behaviour of a system is modelled semantically in a variety of ways. It may
be de)ned for example by the in)nite traces or executions which it may perform, or
by the entirety of the properties which it satis)es in some particular temporal logic,
or as a particular algebraic model of some equational speci)cation. In any case, a
fundamental unifying view is to interpret a system as a labelled transition system, an
edge-labelled directed graph whose nodes represent the states in which the system may
exist, and whose transitions represent the possible behaviour of the system originating
in the state represented by the node from which the transition emanates. The label on
a transition represents an event corresponding to the execution of that transition, which
will typically represent an interaction with the environment.
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In this paper, we shall consider various classes of such graphs as generated by two
related hierarchies de)ned by simple rewrite transition systems. These two hierarchies
di=er only in the interpretation of the concatenation of symbols: in the )rst hierarchy
concatenation is interpretted in the usual fashion as sequential composition, whereas
in the second hierarchy concatenation is interpretted as parallel composition. Within
these hierarchies, we )nd natural classes of automata such as the )nite-state automata,
context-free automata, pushdown automata, and Petri net automata; as well, we are
provided with natural de)nitions for commutative (parallel) context-free automata and
for multiset automata.
When considering the usual notion of language equivalence, this hierarchy collapses

in certain places. For example, the classes of context-free automata and pushdown
automata coincide with respect to the languages which they de)ne: they both give rise
to the class of context-free languages. However, while the context-free automata are
but a restricted form of pushdown automata, there exist pushdown automata which are
not isomorphic to any context-free automata. This result is originally due to Caucal
and Montfort [8, 11], who demonstrated that the class of normed context-free automata
is closed under bisimulation collapse (the identi)cation of bisimilar states) while the
class of normed pushdown automata is not. This )nal result exploits a characterisation
of pushdown automata described by Muller and Schupp [44].
In this paper, we explore such questions within our double hierarchy. As part of

this exploration, we provide a simple direct demonstration of the above result con-
cerning the existence of the gap between context-free automata and pushdown auto-
mata. We give similarly simple demonstrations of the existence of gaps at various
other borders. In particular, we settle positively a conjecture from Moller [42] that
the class of multiset automata is strictly contained within the class of Petri nets. This
result contrasts interestingly with the result of Caucal [9] (which we brieAy demon-
strate in this paper) that we have a collapse at the analogous point in the sequential
hierarchy.

2. Rewrite transition systems

The starting point for our study will be automata, or labelled transition systems, as
de)ned as follows.

De�nition 1. A labelled transition system is a tuple 〈S; �;→; �0; F〉 where
• S is a set of states.
• � is a )nite set of labels.
• → ⊆ S ×�× S is a transition relation, written � a→ � for 〈�; a; �〉 ∈ →.

• �0 ∈ S is a distinguished start state.
• F ⊆S is a )nite set of 9nal states which are terminal: for each �∈F there is no
a∈� and �∈ S such that � a→ �.
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This notion of a labelled transition system di=ers from the standard de)nition of a
)nite-state automaton (as for example given in [27]) in that the set of states need not
be )nite, and )nal states must not have any outgoing transitions. This last restriction is
mild and justi)ed in that a )nal state refers to the successful termination of a concurrent
system. This contrasts with unsuccessful termination (i.e., deadlock) which is repre-
sented by all non-)nal terminal states. We could remove this restriction, but only at
the expense of Theorem 6 below which characterises a wide class of labelled transition
systems as pushdown automata which accept on empty stack. (An alternative approach
could be taken to recover Theorem 6 based on PDA which accept by )nal state.)
In this overview, we follow the example set by Caucal [9] as extended in [42],

and consider the families of labelled transition systems de)ned by various rewrite
systems.

De�nition 2. A sequential labelled rewrite transition system is a tuple 〈V; �; P; �0; F〉
where
• V is a )nite set of variables; the elements of V∗ are referred to as states.
• � is a )nite set of labels.
• P⊆V∗ ×�×V∗ is a )nite set of rewrite rules, written � a→ � for 〈�; a; �〉 ∈P,

which are extended by the pre9x rewriting rule: if � a→ � then �
 a→ �
.
• �0 ∈V∗ is a distinguished start state.
• F ⊆V∗ is a )nite set of 9nal states which are terminal.
A parallel labelled rewrite transition system is de)ned precisely as above, except that
the elements of V∗ are read modulo commutativity of concatenation, which is thus
interpretted as parallel, rather than sequential, composition.

We shall freely extend the transition relation → homomorphically to )nite sequences
of actions w∈�∗ so as to write � �→ � and � aw→ � whenever � a→ 
 w→ � for some state

∈V∗. Also, we shall refer to the set of states � into which the initial state can be
rewritten, that is, such that �0

w→ � for some w∈�∗, as the reachable states. Although

we do not insist that all states be reachable, we shall assume that all variables in V
are accessible from the initial state, that is, that for all X ∈V there is some w∈�∗
and �; �∈V∗ such that �0

w→ �X�.

This de)nition is slightly more general than that given by Caucal, which does not
take into account )nal states nor the possibility of parallel rewriting as an alternative
to sequential rewriting. By doing this, we expand the study of the classes of transition
systems which are de)ned, and extend some of the results given by Caucal, notably
in the characterisation of arbitrary sequential rewrite systems as pushdown automata.
A natural hierarchy of families of transition systems can be de)ned by restricting

the forms of the rewrite systems. This hierarchy is based loosely on the Chomsky
hierarchy. (In this respect, type 1 – context-sensitive – rewrite systems do not feature
in this hierarchy since the rewrite rules by de)nition are only applied to the pre-
)x of a composition.) This hierarchy provides an elegant classi)cation of several
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Table 1

Restriction Restriction Sequential Parallel
on the rules on F composition composition

�
a→ � of P

Type 0 None None PDA PN
�∈Q� and

Type 1 1
2 �∈Q�∗ where F =Q PDA MSA

V =Q � �
Type 2 �∈V F = {�} BPA BPP

�∈V and

Type 3 �∈V ∪ {�} F = {�} FSA FSA

important classes of transition systems which have been de)ned and studied indepen-
dent of their appearance as particular rewrite systems. This classi)cation is presented in
Table 1.
In the remainder of this section, we explain the classes of transition systems which

are represented in this table, working upwards starting with the most restrictive classes.
In drawing labelled transition systems, initial states will be pointed to by a short arrow,
and states will be presented either as single circles (for non-)nal states) or as double
circles (for )nal states).
FSA represents the class of 9nite-state automata. Clearly, if the rules are restricted

to be of the form A a→B or A a→ � with A; B∈V , then the reachable states of both the
sequential and parallel transition systems will be a subset of the )nite set of variables
V . (We assume here that the initial state itself is a member of V , though this is clearly
not necessary to demonstrate )niteness.)

Example 3. In the following we present two type 3 (regular) rewrite systems along
with the FSA transition systems which the initial states X and A, respectively, denote.

As language recognisers in the usual sense, these automata both recognise the same
regular language (set of strings): {ab; ac}. However, they are substantially di=erent
automata.
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BPA represents the class of Basic Process Algebra processes of Bergstra and Klop
[4], which are the transition systems associated with Greibach normal form (GNF)
context-free grammars in which only left-most derivations are permitted.

Example 4. In the following we present a type 2 (GNF context-free grammar) rewrite
system along with the BPA transition system which the initial state X denotes.

This automaton recognises the context-free language {ancbn: n¿0}.

BPP represents the class of Basic Parallel Processes introduced by Christensen [12]
as a parallel analogy to BPA, and are de)ned by the transition systems associated with
GNF context-free grammars in which arbitrary grammar derivations are permitted.

Example 5. The type 2 rewrite system from Example 4 gives rise to the following
BPP transition system with initial state X .

This automaton recognises the language consisting of all strings from (a + b)∗cb∗
which contain an equal number of a’s and b’s in which no pre)x contains more b’s
than a’s.

PDA represents the class of pushdown automata which accept on empty stack. To
present such PDA as a restricted form of rewrite system, we )rst assume that the
variable set V is partitioned into disjoint sets Q ()nite control states) and � (stack
symbols). The rewrite rules are then of the form pA a→ q� with p; q∈Q; A∈� and
�∈�∗, which represents the usual PDA transition which says that while in control
state p with the symbol A at the top of the stack, you may read the input symbol
a, move into control state q, and replace the stack element A with the sequence �.
Finally, the set of )nal states is given by Q, which represent the PDA con)gurations
in which the stack is empty.
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Caucal [9] demonstrates that, disregarding )nal states, any unrestricted (type 0) se-
quential rewrite system can be presented as a PDA, in the sense that the transition
systems are isomorphic up to the labelling of states. The stronger result, in which
)nal states are taken into consideration, actually holds as well. The idea behind the
encoding is as follows. Given an arbitrary rewrite transition system, take n to be at
least as large as the length of any sequence appearing on the left-hand side of any
of its rules, and strictly larger than the length of any )nal state. Let Q= {p� : �∈V∗
and length(�)¡n} and �=V ∪ {Z� : �∈V∗ and length(�)6n}. Every )nal transition
system state � is represented by the PDA state p�, that is, by the PDA being in control
state p� with an empty stack denoting acceptance; and every non)nal transition system
state ��
 with length(�)¡n; length(�
)¿0 only if length(�)= n−1, and length(�)¿0
only if length(
)= n, is represented in the PDA by p��Z
, that is, by the PDA being
in control state p� with the sequence �Z
 on its stack. Then every transition system
rewrite rule gives rise to appropriate PDA rules which mimic the transition system and
respect this representation. Thus we arrive at the following result.

Theorem 6. Every sequential labelled rewrite transition system can be represented
(up to the labelling of states) by a PDA transition system.

Example 7. The BPP transition system of Example 5 is given by the following se-
quential rewrite system:

X a→XB X c→ � B b→ � XB b→X

By the above construction, this gives rise to the following PDA with initial state pXZ�.
(We omit rules corresponding to the unreachable states.)

pXZ�
a→pXZB pX ZBB

a→pXBZBB pBZ�
b→p�

pX Z�
c→p� pX ZBB

b→pXZB pBZB
b→pBZ�

pX ZBB
c→pBZB pBZBB

b→pBZB
pBB

b→pB
pXZB

a→pXZBB pXB
a→pXBB

pXZB
b→pXZ� pXB

b→pX
pXZB

c→pBZ� pXB
c→pB

This can be expressed more simply by the following PDA with initial state pZ .

pZ a→pBZ pB a→pBB qZ c→ q

pZ c→ q pB b→p qB b→ q
pB c→pBB

Note that, as is reAected in the above construction, every BPA is given by a single-
state PDA; the reverse identi)cation is also immediately evident. However, we shall see
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in Section 4 that any PDA presentation of the BPP transition system of Example 5 must
have at least two control states: this transition system is not represented by any BPA.
MSA represents the class of multiset automata, which can be viewed as “parallel”

or “random access” pushdown automata. They are de)ned as above except that they
have random access capability to the stack. Thus a MSA transition rule pA a→ q� with
p; q∈Q, A∈� and �∈�∗, says that while in control state p with the symbol A
anywhere in the stack, you may read the input symbol a, move into control state q,
and replace the stack element A with the sequence �.

Example 8. The BPA transition system of Example 4 is isomorphic to that given by
the following MSA with initial state pX :

pX a→pBX pX c→ q qB b→ q

Note that when the stack alphabet has only one element, PDA and MSA trivially
coincide. Also note that BPP coincides with the class of single-state MSA. However,
we shall see in Section 4 that any MSA presentation of the BPA transition system of
Example 4 must have at least 2 control states: this transition system is not represented
by any BPP.
PN represents the class of ()nite, labelled, weighted place=transition) Petri nets, as

is evident by the following interpretation of unrestricted parallel rewrite systems. The
variable set V represents the set of places of the Petri net, and each rewrite rule � a→ �
represents a Petri net transition labelled a with the input and output places represented
by � and �, respectively, with the weights on the input and output arcs given by the
relevant multiplicities in � and �. Note that a BPP is a communication-free Petri net,
one in which each transition has a unique input place.

Example 9. The following unrestricted parallel rewrite system with initial state X and
)nal state Y :

X a→XA XAB c→X YA a→Y

X b→XB X d→Y YB b→Y

describes the Petri net which in its usual graphical representation would be rendered
as follows. (The weight on all the arcs is 1.)
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The automaton represented by this Petri net recognises the language consisting of all
strings from (a+b+c)∗d(a+b)∗ in which the number of c’s in any pre)x is bounded
above by both the number of a’s and the number of b’s; and in which the number of
a’s (respectively b’s) before the occurrence of the d minus the number of c’s equals
the number of a’s (respectively b’s) after the occurrence of the d.

Although in the sequential case, PDA constitutes a normal form for unrestricted
rewrite transition systems, this result does not hold in the parallel case. For example,
in [42] it was conjectured that there is no MSA which represents an isomorphic tran-
sition system to that of the PN in Example 9. In Section 4 we prove an even stronger
negative result.

3. Languages and bisimilarity

Apart from isomorphism between transition systems, there are several other weaker
notions of equivalence which are commonly studied. We shall be interested in two of
these: language equivalence and bisimilarity. We have in fact already been describing
the languages accepted by the automata in the examples of the previous section.
Given a labelled transition system T with initial state �0, we can de)ne its language

L(T ) to be the language generated by its initial state �0, where the language generated
by a state is de)ned in the usual fashion as the sequences of actions which label rewrite
transitions leading from the given state to a )nal state.

De�nition 10. L(�)= {w∈�∗ : � w→ � for some �∈F}, and L(T )=L(�0): � and � are
language equivalent, written �∼L �, i= they generate the same language: L(�)=L(�).

Thus, for example, the languages generated by FSA are precisely the (�-free) regular
languages; and the languages generated by both BPA and by PDA are the (�-free)
context-free languages.
With respect to the languages generated by rewrite systems, if a rewrite system is

in the process of generating a word, then the partial word should be extendible to a
complete word. That is, from any reachable state of the transition system, a )nal state
should be reachable. If the transition system satis)es this property, it is said to be
normed.

De�nition 11. We de)ne the norm of any state � of a labelled transition system,
written norm(�), to be the length of a shortest rewrite transition sequence which takes
� to a )nal state, that is, the length of a shortest word in L(�). By convention, we
de)ne norm(�)=∞ if there is no sequence of transitions from � to a )nal state, that is,
L(�)= ∅. The transition system is normed i= every reachable state � has a )nite norm.

Note that, due to our assumption following De)nition 2 on the accessibility of all of
the variables, if a type 2 rewrite transition system is normed, then all of its variables
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must have )nite norm. The following then is a basic fact about the norms of BPA and
BPP states.

Lemma 12. Given any state �� of a type 2 rewrite transition systems (BPA or
BPP); norm(��)= norm(�) + norm(�).

A further common property of transition systems is that of determinacy.

De�nition 13. T is deterministic i= for every reachable state � and every label a there
is at most one state � such that � a→ �.

For example, the two )nite-state automata presented in Example 3 are both normed
transition systems, while only the )rst is deterministic. All other examples which we
have presented have been both normed and deterministic.
In the realm of concurrency theory, language equivalence is generally taken to

be too coarse an equivalence. For example, it equates the two transition systems of
Example 3 which generate the same language {ab; ac} yet demonstrate di=erent dead-
locking capabilities due to the non-deterministic behaviour exhibitted by the second
transition system. Many )ner equivalences have been proposed, with bisimulation
equivalence being perhaps the )nest behavioural equivalence studied. (Note that we
do not consider here any so-called ‘true concurrency’ equivalences such as those based
on partial orders.) Bisimulation equivalence was de)ned by Park [46] and used to great
e=ect by Milner [38, 39]. Its de)nition, in the presence of )nal states, is as follows.

De�nition 14. A binary relation R on states of a transition system is a bisimulation
i= whenever 〈�; �〉 ∈R we have that
• if � a→ �′ then � a→ �′ for some �′ with 〈�′; �′〉 ∈R;
• if � a→ �′ then � a→ �′ for some �′ with 〈�′; �′〉 ∈R;
• �∈F i= �∈F .
� and � are bisimulation equivalent or bisimilar, written �∼ �, i= 〈�; �〉 ∈R for some
bisimulation R.

Lemma 15. ∼ =
⋃ {R: R is a bisimulation relation} is the largest bisimulation relation;

and is an equivalence relation.

Bisimulation equivalence has an elegant characterisation in terms of certain two-
player games [50]. Starting with a pair of states 〈�; �〉, the two players alternate moves
according to the following rules.
(1) If exactly one of the pair of states is a )nal state, then player I is deemed to be the

winner. Otherwise, player I chooses one of the states and makes some transition
from that state (either � a→ �′ or � a→ �′). If this proves impossible, due to both
states being terminal, then player II is deemed to be the winner.

(2) Player II must respond to the move made by player I by making an identically
labelled transition from the other state (either � a→ �′ or � a→ �′). If this proves
impossible, then player I is deemed to be the winner.
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(3) The play then repeats itself from the new pair 〈�′; �′〉. If the game continues
forever, then player II is deemed to be the winner.

A strategy for one of the players for this game is a rule for determining which move
that player should make at any point during the play of the game; and a winning
strategy is one which guarantees a win regardless of the moves of the other player.
Clearly, any bisimulation relation de)nes a winning strategy for player II for the game
starting from a pair in the relation: the second player merely has to respond to moves
by the )rst in such a way that the resulting pair is contained in the bisimulation.
Furthermore, a winning strategy for player II for the game starting from a particular pair
of states de)nes a bisimulation relation containing that pair, namely the collection of all
pairs which appear after every exchange of moves during any and all games in which
player II uses this strategy. This observation leads immediately to the following result.

Fact 16. �∼ � i< Player II has a winning strategy in the bisimulation game starting
with the pair 〈�; �〉.

Conversely; � �∼ � i< Player I has a winning strategy in the bisimulation game
starting with the pair 〈�; �〉.

Also immediately evident then is the following lemma with its accompanying corol-
lary relating bisimulation equivalence to language equivalence.

Lemma 17. If �∼ � and � w→ �′ with w∈�∗; then � w→ �′ such that �′ ∼ �′.

Corollary 18. If �∼ � then �∼L �.

Apart from being the fundamental notion of equivalence for several process algebraic
formalisms, bisimulation equivalence has several pleasing mathematical properties, not
least of which being that it is decidable over classes of transition systems for which
all other common equivalences, including language equivalence, remain undecidable.
Furthermore, as given by the following lemma, language equivalence and bisimilarity
coincide over the class of normed deterministic transition systems.

Lemma 19. For states � and � of a normed deterministic transition system; if �∼L �
then �∼ �. Thus; taken along with Corollary 18; ∼L and ∼ coincide.

Hence, it is sensible to concentrate on the more mathematically tractable bisimula-
tion equivalence when investigating decidability results for language equivalence for
deterministic language generators. In particular, by studying bisimulation equivalence
we can rediscover old theorems about the decidability of language equivalence, as
well as provide more eOcient algorithms for these decidability results than have pre-
viously been presented. We expect that the techniques which can be exploited in the
study of bisimulation equivalence will prove useful in tackling other language theoretic
problems, notably the problem of )nding a simple proof of the decidability of deter-
ministic pushdown automata, for which a lengthy proof was recently demonstrated by
SPenizergues [48].
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4. Expressivity results

Our hierarchy from above gives us the following classi)cation of processes.

In this section we demonstrate the strictness of this hierarchy by providing example
transition systems which lie precisely in the gaps indicated in the classi)cation. We in
fact do more than this by giving examples of normed deterministic transition systems
which separate all of these classes up to bisimulation (and sometimes even up to
language) equivalence.
(a) The )rst transition system in Example 3 provides a normed deterministic FSA.

(b) Type 2 rewrite system with the two rules A a→AA and A b→ � gives rise to the same
transition system regardless of whether the system is sequential or parallel; this is
an immediate consequence of the fact that it involves only a single variable A.
This transition system is depicted as follows.

This is an example of a normed deterministic transition system which is both
a BPA and a BPP but not an FSA.

(c) Examples 5 and 7 provide a transition system which can be described by both
a BPP (Example 5) and a PDA (Example 7). However, it cannot be described
up to bisimilarity by any BPA. To see this, suppose that we have a BPA which
represents this transition system up to bisimilarity, and let m be at least as large
as the norm of any of its variables. Then the BPA state corresponding to XBm in
Example 5 must be of the form A� where A∈V and �∈V+. But then any sequence
of norm(A) norm-reducing transitions must lead to the BPA state �, while the
transition system in Example 5 has two such non-bisimilar derived states, namely
XBk−1 and Bk where k =norm(�).
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(d) The following BPP with initial state X

X a→XB X c→XD X e→ � B b→ � D d→ �

is not language equivalent to any PDA, as its language is easily con)rmed not to
be context-free. (The words in this language from a∗c∗b∗d∗e are exactly those of
the form akcnbkdne, which is clearly not a context-free language.)

(e) Examples 4 and 8 provide a transition system which can be described by both
a BPA (Example 4) and a MSA (Example 8). However, the context-free language
which it generates, {ancbn: n¿0}, cannot be generated by any BPP, so this tran-
sition system is not even language equivalent to any BPP. To see this, suppose
that L(X )= {ancbn: n¿0} for some BPP state X . (As the process has unit norm,
the state must consist of a single variable X .) Let k be at least as large as the
norm of any of the )nite-normed variables of this BPP, and consider a transition
sequence accepting the word akcbk :

X ak→Y� c→ �� bk→ �;

where the c-transition is generated by the transition rule Y c→ �. We must have

norm(Y�)= k + 1¿norm(Y ), so � �= �; hence � bi→ � and � b
k−i

→ � for some i¿0.
Thus, we have

X ak→Y� bi→Y c→ � b
k−i

→ �

from which we get our contradiction: akbicbk−i ∈L(X ) for some i¿0.
(f) The following PDA with initial state pX

pX a→pXX pX b→ q pX c→ r qX b→ q rX c→ r

coincides with the MSA which it de)nes, since there is only one stack symbol.
This transition system is depicted as follows:

However, this transition system cannot be bisimilar to any BPA, due to a similar
argument as for (c), nor language equivalent to any BPP, due to a similar argument
as for (e).
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(g) The following MSA with initial state pX

pX a→pA pA a→pAA qA b→ qB rA c→ r

pA b→ qB qB c→ r rB c→ r

generates the language {anbkcn: 0¡k6n}, and hence cannot be language equiv-
alent to any PDA, as it is not a context-free language, nor to any BPP, due to
a similar argument as for (e).

(h) The following BPA with initial state X

X a→XA X b→XB X c→ � A a→ � B b→ �

generates the language {wcwR: w∈{a; b}∗} and hence is not language equivalent
to any PN [47].

(i) The following PDA with initial state pX

pX a→pAX pA a→pAA pB a→pAB qA a→ q rA a→ r

pX b→pBX pA b→pBA pB b→pBB qB b→ q rB b→ r

pX c→ qX pA c→ qA pB c→ qB qX a→ q rX b→ r

pX d→ rX pA d→ rA pB d→ rB

is constructed by combining the ideas from (f) and (h). It can be schematically
pictured as follows.

In this picture, e; f; g; : : : ∈{a; b} and E; F;G; : : : ∈{A; B} correspond in the obvious
way. The language this PDA generates is {wcwRa; wcwRb: w∈{a; b}∗} and hence
as in (h) above it is not language equivalent to any PN; and as in (c) above it is
not bisimilar to any BPA.

(j) The Petri net from Example 9 cannot be language equivalent to any PDA, as its
language is easily con)rmed not to be context-free. (The words in this language
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of the form a∗b∗c∗d are exactly those of the form anbncnd, which is clearly not
a context-free language.)
More importantly, this Petri net cannot be bisimilar to any MSA. To see this,

suppose that the net is bisimilar to the MSA state pA. (As the process has unit
norm, the stack must consist of a single symbol A.) Consider performing an in-
de)nite sequence of a-transitions from pA. By Dickson’s Lemma [17], we must
eventually pass through two states q� and q�� in which the control states are equal
and the stack of the )rst is contained in the stack of the second. This implies is
that we can perform the following execution sequence.

pA ak→ q� ak→ q�� ak→ q��2 ak→· · · :

(We can assume that the period of the cycle is of the same length as the initial
segment. If this is not already given by the lemma, then we can merely extend the
initial segment to the next multiple of the length of the cycle given by the lemma,
and use this multiple as the cycle length.) Considering now an inde)nite sequence
of b-transitions from q�, a second application of Dickson’s Lemma gives us the
following execution sequence.

q� bk→ r 
 b
k

→ r 
& bk→ r 
&2 bk→· · · :

(We can assume again by the same reasoning as above that the period of the cycle
is of the same length as the initial sequence. Furthermore, we can assume that this
is the same as the cycle length of the earlier a-sequence, by rede)ning the cycle
lengths to be a common multiple of the two cycle lengths provided by the lemma.)
Now there must be a state s( such that

pA ak→ q� bk→ r 
 c
k

→ s(
c9 :

Consider then the following sequence of transitions:

pA a2k→ q�� b
2k

→ r 
&� ck→ s(&� c→ :

There must be a rule for sX c→ for some X which appears in either & or �. But
considering the following sequence of transitions

pA ak→ q� b
2k

→ r 
& ck→ s(&
c9

we must deduce that this X cannot appear in &. Equally, considering the following
sequence of transitions

pA a2k→ q�� bk→ r
� ck→ s(�
c9

we must deduce that this X cannot appear in �. We thus have our contradiction.
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We here summarize again these separation results in the following theorem.

Theorem 20. There exist (normed and deterministic) labelled transition systems lying
precisely in the gaps (a)–(i) in the 9gure above. In particular; there is a Petri net
which is not even bisimilar to any MSA.

This )nal result answers positively the conjecture made in [42], demonstrating that
the class of Petri nets strictly contains the class of MSA. Intuitively, this is due to the
ability of Petri nets – as demonstrated in the example – to maintain two independent
unbounded counters which can cooperate in synchronisation transitions. This ability is
absent from MSA. We have not demonstrated any gap between MSA and Petri nets
within the class of PDA, as the above ability of Petri nets is also missing from PDA.
Hence, we leave it as a conjecture that this gap collapses: that any Petri net which can
be rendered as a PDA can also be rendered as a MSA.

5. Related work

The classes of transition systems represented within our double hierarchy have all
occurred naturally in independent contexts. Indeed this is one of the beauties of the
hierarchies: it gives a uni)ed presentation of many classes that have been a=orded
a great deal of research. Some avenues of intense interest are as follows.

5.1. Further separability results

In this paper we have been interested in separating classes with respect to isomor-
phism between automata. We have however managed to demonstrate even stronger
results, showing that classes could be separated up to bisimulation equivalence, and
sometimes even up to language equivalence.
Of course, when we weaken the equivalence and equate more and more automata,

this hierarchy will tend to collapse in expressivity. For example, BPA and PDA both
express exactly the (�-free) context-free languages, and hence the gap between BPA
and PDA vanishes with respect to language equivalence. The question then is: which
gaps are preserved with respect to language equivalence.
We have demonstrated in the previous section that most gaps are maintained apart

from the BPA-PDA gap. For example, (h) shows that there are BPA languages which
are not Petri net languages; (d) shows that there are BPP languages which are not
BPA languages; and (g) shows that there are MSA languages which are not BPP
languages. The only gap which remains to investigate is that between MSA and Petri
nets. Recently, Hirshfeld [22] has settled this question by demonstrating that this gap
vanishes with respect to language equivalence. He thus provides a new characterisation
of Petri net languages in terms of MSA.
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5.2. Equivalence checking

The )rst decidability result of relevance here regards language equivalence
between )nite-state automata [43]. The decidability of bisimulation is also readily
established; but whereas the language equivalence problem is co-PSPACE-complete,
bisimulation equivalence can be determined in time O(k lg n), where n and k are
the total number of states and edges, respectively, of the two automata being com-
pared [45, 36].
The )rst relevant result related to in)nite-state automata is the undecidability of

language equivalence between context-free automata BPA [3]. Groote and HSuttel [20]
extend this undecidability result to all of the equivalences in van Glabbeek’s cata-
logue of equivalences [18] except for bisimulation. Baeten et al. [1, 2] were the )rst
to demonstrate that bisimulation is decidable for normed BPA. Their lengthy proof
exploits the periodicity which exists in normed BPA transition systems, and several
simpler proofs exploiting structural decomposition properties as introduced by Milner
and Moller [40, 41] were soon recorded, notably by Caucal [8], HSuttel and Stirling [29],
and Groote [19]. Huynh and Tian [30] demonstrate that this problem has a complex-
ity of �P

2 by providing a non-deterministic algorithm which relies on an NP oracle;
Hirshfeld et al. [23, 24] re)ne this result by providing a polynomial algorithm, thus
showing the problem to be in P. As a corollary of this, we get a polynomial-time al-
gorithm for deciding language equivalence of simple grammars, thus improving on the
original doubly exponential algorithm of Korenjak and Hopcroft [37], and the singly
exponential algorithm of Caucal [10]. A generally more eOcient, though worst-case
exponential, algorithm is presented by Hirshfeld and Moller [26]. Finally, Christensen
et al. [15, 16] demonstrate the general problem to be decidable, whilst Burkart et al. [5]
provide an elementary decision procedure.
For the case of commutative context-free automata BPP, we get similar results.

Hirshfeld [21] demonstrates the undecidability of language equivalence, and HSuttel [28]
extends this undecidability result to all of van Glabbeek’s equivalences except bisim-
ilarity. Christensen et al. [13, 14] demonstrate the decidability of bisimilarity, )rst for
the normed case and then in the general case; and Hirshfeld et al. [25] provide a
polynomial-time algorithm for the normed case.
For PDA, we note the recent positive solution of SPenizergues [49] to the long-

standing question as to the decidability of language equivalence for deterministic PDA.
(Note that this case includes the possibility of �-transitions, which we have ignored in
the present study.) A further recent result is the proof of Stirling [51] of the decidability
of bisimilarity over normed PDA. The former proof is enormously long (exceeding
70pp. in its full, as yet unpublished form [49]); it would be worthwhile looking for
an extension of the latter proof to provide a simpler demonstration of the classical
problem, exploiting the coincidence of language and bisimulation equivalences over
normed and deterministic automata.
Finally, for MSA and Peti nets, the results are more negative. JanUcar [31, 32] demon-

strates the undecidability of bisimilarity for Petri nets, and this result is re)ned in [42]
to apply to the more restricted class MSA.
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5.3. Minimizing automata and regularity checking

A further interesting question is that of regularity checking, that is, determining if
an automaton is equivalent to some (unspeci)ed) )nite-state automaton. Often this
question is addressed in conjunction with the question of minimizing automata, that is,
collapsing equivalent states; the question then is if the collapsed automaton is )nite,
or if it even stays within the class of automata from which the original is taken.
Burkhart et al. [6] study the problem of bisimulation collapse for many of the classes

of automata that we are considering. They determine that the classes are typically not
closed under bisimulation collapse. However, one positive result which they obtain
from their study is that regularity checking for BPA is decidable.
Valk and Vidal-Naquet [52] consider the regularity checking problem for Petri nets

with respect to language (and trace) equivalence; and Esparza et al. [33–35] recon-
sider this problem particularly with respect to bisimulation equivalence, as well as the
closely-related question of checking equivalence between a Petri net and a given )nite-
state automaton. The latter show that trace equivalence is decidable, even in the more
general setting including �-transitions, but that regularity checking with respect to trace
equivalence is undecidable; this contrasts with the former’s decidability result in the
case that all labels on transitions (as appearing in the production rules) are unique.
Finally, the latter demonstrate that the equivalence problem and regularity checking
are both decidable with respect to bisimulation equivalence, but that both of these
problems become undecidable when �-transitions are permitted.

5.4. Model checking

The last topic we mention, but only brieAy, is that of model checking: determining
if a property expressed in some temporal logic holds of a given automaton. Typically,
the logic in question is some subset of monadic second-order logic, such as the modal
)-calculus. As this paper has not addressed such questions, rather than list the myriad of
results, we instead merely refer to the overview paper [7] which accompanied Esparza’s
invited lecture on the topic for In)nity’96.
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