
Anytime anyspace probabilistic inference

Fabio Tozeto Ramos, Fabio Gagliardi Cozman *

Universidade de S~ao Paulo, Escola Polit�ecnica, Cidade Universit�aria, Av. Prof. Mello Moraes 2231,
05508-900 S~ao Paulo, SP, Brazil

Received 1 April 2003; received in revised form 1 October 2003; accepted 1 April 2004

Available online 19 May 2004

Abstract

This paper investigates methods that balance time and space constraints against the

quality of Bayesian network inferences––we explore the three-dimensional spectrum of

‘‘time · space ·quality’’ trade-offs. The main result of our investigation is the adaptive con-

ditioning algorithm, an inference algorithm that works by dividing a Bayesian network into

sub-networks and processing each sub-network with a combination of exact and anytime

strategies. The algorithm seeks a balanced synthesis of probabilistic techniques for bounded

systems. Adaptive conditioning can produce inferences in situations that defy existing

algorithms, and is particularly suited as a component of bounded agents and embedded

devices.

� 2004 Elsevier Inc. All rights reserved.

1. Introduction

One of the central characteristics of bounded systems is their flexibility to cope

with simultaneous limitation in several resources [31,60]. In this paper we concen-

trate on probabilistic reasoning for bounded systems, exploring algorithms for

Bayesian network inference under time and space constraints. We require that such

algorithms produce a solution at any given stopping time (they must be anytime) and

that they make the best possible use of available memory (they must be anyspace).

We therefore look into a three-dimensional spectrum of ‘‘time · space ·quality’’
trade-offs. Existing methods, reviewed in Section 4, usually face either ‘‘time · space’’

* Corresponding author. Tel.: +55-113-091-5755; fax: +55-113-091-5471.

E-mail addresses: fabioram@usp.br (F.T. Ramos), fgcozman@usp.br (F.G. Cozman).

0888-613X/$ - see front matter � 2004 Elsevier Inc. All rights reserved.

doi:10.1016/j.ijar.2004.04.001

www.elsevier.com/locate/ijar

International Journal of Approximate Reasoning

38 (2005) 53–80

trade-offs or ‘‘time · quality’’ trade-offs, typically fixing one of the dimensions as

more important. This paper tries to build a more complete picture of bounded

probabilistic inference––we want to encode a number of trade-offs in an organized

set of rules.

The main result of our investigation is the adaptive conditioning algorithm, de-

scribed in Section 5. The algorithm decomposes a Bayesian network into smaller
networks and combines conditioning, clustering and anytime operations in the sub-

networks. These strategies are used together to explore, in an organized fashion, the

vast space of ‘‘time · space ·quality’’ trade-offs. In doing so, adaptive conditioning

provides a useful panoramic view covering many facets of Bayesian network algo-

rithms.

Adaptive conditioning is particularly suited for bounded agents that engage in

time-sensitive negotiations, and to embedded devices found in robots and smart

appliances. As every computing system has limitations in memory and available
time, our methods should be of use in connection to any ‘‘large’’ probabilistic model.

In fact, we show later that adaptive conditioning can produce exact inferences for

Bayesian networks that defy existing algorithms.

The paper is organized as follows. Sections 2–4 review concepts, ideas and rele-

vant literature; together these sections present the background against which the

adaptive conditioning algorithm is developed. Section 5 describes the adaptive

conditioning algorithm itself. Section 6 contains several experiments with the algo-

rithm, and Section 7 presents our concluding comments.

2. Probabilistic reasoning with Bayesian networks

Bayesian networks provide both a compact method to represent probability

distributions and a powerful tool for uncertainty management. Examples of

Bayesian networks can be found in expert systems for medical decisions [1,2],

technical support troubleshooters [34], decision-theoretic systems to interpret live
telemetry [33], genetic research [24], speech recognition systems [67], data compres-

sion methods [17], and diagnostic systems in industrial plants [53].

A Bayesian network N consists of a directed acyclic graph, a set of variables and

a set of conditional probability distributions (a few graph-theoretic concepts are used

in this paper: nodes, edges, directed and undirected graphs, paths and cycles, and

polytrees). Given a directed acyclic graph, the parents of node a (the nodes with

directed edges pointing to a) are indicated by paðaÞ.
In a Bayesian network every node is associated with a variable Xi. In this paper

every variable is categorical (has a finite number of values), and we use the terms

‘‘node’’ and ‘‘variable’’ interchangeably. Every variable in a Bayesian network is

assumed to be independent of its nonparents nondescendants given its parents,

implying the following joint probability distribution [48]:

PrðX1; . . . ;XnÞ ¼
Yn
i¼1

PrðXijpaðXiÞÞ: ð1Þ

54 F.T. Ramos, F.G. Cozman / Internat. J. Approx. Reason. 38 (2005) 53–80

That is, a Bayesian network represents a unique joint distribution that factorizes
as Expression (1). Every variable is thus associated with a single conditional distri-

bution PrðXijpaðXiÞÞ. Fig. 1 shows an example network and indicates the probability

distributions.

Given a Bayesian network, the computation of a posterior probability distribu-

tion is usually called an inference. That is, we select a set of query variables XQ and a

set of observed variables XE, and we must compute

PrðXQjXEÞ ¼
P

Xi 62fXQ;XEg
Q

i PrðXijpaðXiÞÞP
Xi 62fXEg

Q
i PrðXijpaðXiÞÞ

/
X

Xi 62fXQ;XEg

Y
i

PrðXijpaðXiÞÞ:
ð2Þ

We assume that XQ are XE are disjoint, and we note that in Expression (2) the

values of variables in XE are observed and therefore fixed. For any given inference, it

is possible to identify in polynomial time a set of variables that do not affect

Expression (2), using d-separation [27].

The general problem of computing inferences (even approximate ones) in

Bayesian networks is NP-hard [7,12]. Significant special cases are inference in

polytrees [48] and approximate inference by sampling methods in networks with
non-zero probabilities [12].

Inference algorithms are reviewed in Section 4. Several of these algorithms rely on

junction trees [10,36]. Take a directed acyclic graph G with a set of nodes V . A

junction tree of G is an undirected graph where nodes are subsets of V , such that

every node a of G and the parents of a are contained in some node of the junction

tree, and such that the following property holds: Given nodes ci and cj of the

junction tree, the intersection ci \ cj is contained in every node of the junction tree in

the unique path from ci to cj. Each node of a junction tree is called a cluster; if an
edge directly connects nodes c1 and c2 in a junction tree, then c1 \ c2 is a separator.

Fig. 3 shows a number of junction trees.

3. Anytime anyspace behavior

Bounded systems have been the object of much attention in the artificial intelli-

gence literature. A general observation is that bounded systems must settle for

C D

E

F
G

A

B

Fig. 1. A Bayesian network associated with distributions PrðAÞ, PrðBÞ, PrðCjA;BÞ, PrðDjCÞ, PrðEjDÞ,
PrðF jD;GÞ, and PrðGjBÞ.

F.T. Ramos, F.G. Cozman / Internat. J. Approx. Reason. 38 (2005) 53–80 55

satisfying solutions [60]. To obtain such satisfying solutions, one strategy is to em-

ploy meta-reasoning [54], for example to select reasoning algorithms using decision

theoretic principles [31]. Another strategy is to produce a list of algorithms that can

solve a problem (each algorithm representing different trade-offs between time,

space, and quality), and then to choose the algorithm that seems best suited for any

set of constraints [26]. Yet another strategy to cope with boundedness is to design
algorithms that can adapt themselves to varying levels of computational resources––

anytime algorithms follow this strategy [18]:

Definition 1. An algorithm is anytime if it can produce a solution in a given time T
and the quality of solutions improve with time after T .

An anytime algorithm may need some ‘‘bootstrapping’’ time T , but after T , the

more time, the better [18]. Anytime algorithms seem particularly well suited for real-
time systems and embedded devices, where soft and hard time constraints are rou-

tinely employed [26].

In many situations, memory may be as scarce as time, either because we must

solve a large problem, or because we can only use small computing devices (such as

handhelds or industrial controllers). We must therefore consider algorithms that use

their available space with flexibility (again we allow a ‘‘bootstrapping’’ quantity M):

Definition 2. An algorithm is anyspace if it can improve its performance with
increasing space, assuming that the available memory is larger than some minimal

amount M .

Definitions 1 and 2 capture important differences in the concepts of anytime and

anyspace behavior. An anytime algorithm must dynamically improve results as time

becomes available, while an anyspace algorithm is usually informed about memory

availability in its starting phase, and does not have to handle memory changes

during operation.
The focus of this paper is a combination of the previous situations. We assume

that a bounded system must perform an inference within a given time T using

memory M , with the understanding that more time may become available as the

inference is processed. An approximation may be generated at first, but the quality of

the approximation should improve with time. Time, space, and quality should be

properly balanced.

4. Inferences in Bayesian networks

This section presents a review of existing inference algorithms from the perspec-

tive of bounded systems, as we will later use ideas from most algorithms in our own
methods (Section 5). We start with a brief overview of general exact and approxi-

mate algorithms; in Sections 4.4 and 4.5 we discuss a few algorithms that are closely

related to this work.

56 F.T. Ramos, F.G. Cozman / Internat. J. Approx. Reason. 38 (2005) 53–80

4.1. Exact algorithms

Exact algorithms can be classified in two groups: algorithms based on condi-

tioning, and algorithms based on clustering––with a ‘‘third group’’ represented by

Pearl’s propagation algorithm for polytrees, the only polynomial exact inference

algorithm for Bayesian networks [48].
The cutset conditioning algorithm, also known as the loop cutset algorithm, ex-

ploits the fact that edges out of a node are ‘‘broken’’ if the node is observed (Section

5.2 formalizes such operations). The algorithm selects a set of nodes (the loop cutset)

that, once observed, ‘‘breaks’’ every cycle in a graph. Every instantiation of the

cutset is then considered; for each one of them, Pearl’s propagation algorithm is

employed. The result is an algorithm that uses a relatively small amount of memory,

but takes exponential time on the size of the loop cutset. A few algorithms address

this exponential growth by organizing loop cutsets in various forms [14,22,50,58]. All
of them essentially compute probability values of the form Prðx; cÞ, where x is an

instance of variables of interest and c is an instance of the loop cutset; the probability

PrðxÞ is then computed throughX
c

Prðx; cÞ: ð3Þ

In clustering algorithms, variables are grouped in potentially large clusters, a

junction tree is built, and a propagation scheme on the junction tree produces

inferences. The Lauritzen–Spiegelhalter algorithm [43] and the Shafer–Shenoy

algorithm [59] are two different ways to organize this propagation. Many vari-

ants of clustering methods have appeared since these two basic algorithms were

derived (several variants are discussed in [29]); all of them use considerable

memory to cut processing time. A few algorithms also proceed by ‘‘grouping’’
variables but are not directly related to the Lauritzen–Spiegelhalter or the Shafer–

Shenoy algorithms: the family of variable elimination algorithms (discussed in

Section 4.4), Li and D’Ambrosio’s SPI algorithm [44], Shachter’s arc-reversal/

node-reduction algorithm [57], and differential inference algorithms [15] are

examples.

4.2. Approximate algorithms

Approximate algorithms for Bayesian network inference can be divided in a few

groups. Most approximate algorithms have an ‘‘anytime’’ character, as results can be

refined when additional time is available.

• Stochastic approximations are widely used in large, dense networks. Methods are

generally divided into forward sampling and MCMC methods [6,12,23,25,28,55].

They can offer polynomial time approximations when probability values are non-

zero [12], but they display poor performance when probability values are extreme.
• Model simplifications range from the removal of weak dependencies [40] to cardi-

nality reduction in probability distributions [5,62]. Simplifications may also affect

F.T. Ramos, F.G. Cozman / Internat. J. Approx. Reason. 38 (2005) 53–80 57

secondary structures such as junction trees, as demonstrated by the the mini-

buckets framework [20].

• Partial instantiation algorithms approximate the summation in Expression (2)

using only a number of terms. Examples are bounded conditioning [32], and term

computation [13] (which we use and discuss in more detail later), Poole’s conflict-

based [51] and Henrion’s search-based methods [30].
• Loopy propagation uses Pearl’s propagation algorithm in networks with cycles,

attempting to gradually improve the quality of inferences [47,61,64]. Little is

known about convergence of loopy propagation, and lack of convergence has

been observed in some situations [47,61].

4.3. Combinations of exact and approximate inferences

There has been some effort in combining exact and approximate algorithms; for
example, the use of Gibbs sampling inside clusters [41], the combination of clustering

and stochastic approximations in dynamic models [23], and some of the anytime

algorithms discussed later.

4.4. Variable elimination and adaptive variable elimination

Given our later use of the variable elimination algorithm, we briefly sketch the
algorithm and its associated terminology. This algorithm has appeared in artificial

intelligence in several forms [19,66], and has roots in pedigree analysis in genetics [4].

Variable elimination computes Expression (2) by interchanging summations and

products. First, select an ordering for all variables that must be summed out in

Expression (2). Eliminate one of these variables at a time; to eliminate the first

variable, select all those probability distributions that contain the first variable,

multiply these functions together and sum the first variable out. Repeat this process

until all variables in the ordering have been eliminated. We can imagine that every
variable is associated with a bucket of functions and the buckets are processed

sequentially [19]. The complexity of these operations depends on the ordering of

variables; finding the best ordering is NP-hard, so heuristic methods are used in

practice [37,65]. Variable elimination can be generalized to incorporate properties of

the Shafer–Shenoy algorithm [3] and of the Lauritzen–Spiegelhalter algorithm [11].

Variable elimination potentially consumes large amounts of memory. The first

attempt to explicitly trade time and space in probabilistic inference was Dechter’s

conditioning-plus-variable-elimination scheme, which we call adaptive variable

elimination [21]. The idea of adaptive variable elimination is simple: if the size of the

functions in a bucket becomes too large, we must condition on some of the variables

and handle smaller functions [21]. 1 In the limit, the algorithm is reduced to brute

force enumeration of instances. Adaptive variable elimination offers a ‘‘time · space’’

1 Dechter also proposes an interesting variant: we can run a loop cutset algorithm inside a bucket, to

save as much memory as possible for that bucket.

58 F.T. Ramos, F.G. Cozman / Internat. J. Approx. Reason. 38 (2005) 53–80

trade-off: For a given space, it takes a certain time; the more space, the less time is

needed.

4.5. Conditioning with anytime and anyspace behavior

Bounded conditioning is inspired by the fact that Expression (3) can be approxi-

mated by an incomplete summation [32]; after computing a number of instances, we

can bound Expression (3). This procedure is anytime as terms can always be com-

puted and added to the summation if time is available. Term computation follows the

same basic strategy, even though it does not directly rely on conditioning [13]: term

computation uses heuristic techniques to find the ‘‘best’’ instantiations to compute,

as we do in Section 5.6.

The most radical use of conditioning is represented by the recursive decomposition
[46] and recursive conditioning [16] algorithms. These algorithms split a network into

sub-networks, using conditioning to ‘‘break’’ edges (as in Section 5.2). The sub-

networks are recursively split, until networks containing a single variable are

reached. The algorithm organizes the combination of conditioned sub-networks

using tree structures called dtrees. Recursive decomposition is particularly relevant

as it has been extended to bounded recursive decomposition, an anytime algorithm

that produces probability bounds. The algorithm has an initialization phase, where

intermediate results are produced and stored in caches; when an inference is re-
quested, the algorithm uses some of the values in the caches to produce bounds. It

would actually be possible to add anyspace behavior to anytime bounded condi-

tioning by a more intense use of caches––in fact, the present paper can be understood

as taking this very route.

Recursive conditioning expands the basic ideas of recursive decomposition, with a

focus on anyspace behavior. If a dtree is ‘‘balanced’’, recursive conditioning use OðnÞ
space and Oðn expðwÞÞ time (n is the number of variables and w corresponds to the

size of the largest separator in a clustering algorithm). Note that this time complexity
is smaller than the time complexity of brute force instantiation, so that the intro-

duction of balanced dtrees does present advantages. Second, if space beyond OðnÞ is

available, recursive conditioning uses caches to store intermediate conditioning re-

sults, attaining complexity Oðn expðwÞÞ when Oðn expðwÞÞ space is available––exactly

the complexity of standard variable elimination. The algorithm offers a ‘‘time ·
space’’ trade-off: For a given time, it takes a certain space; the more time, the less

space is needed. Recursive conditioning is a truly flexible algorithm, possibly the

most successful application of conditioning in an exact algorithm.

5. Adaptive conditioning

We cannot arbitrarily constrain time and space and then ask for exact answers; to

look into situations that simultaneously require anytime and anyspace behavior, we

must be prepared to trade inference quality for time and space.

F.T. Ramos, F.G. Cozman / Internat. J. Approx. Reason. 38 (2005) 53–80 59

The algorithms reviewed in Section 4 suggest an endless number of strategies to

trade time, space and quality. For example: we could use adaptive variable elimi-

nation to save space and, if we also had constraints in time, we could use sampling

approximations in some buckets. Or we could start with recursive conditioning and

add anytime behavior to it. Is there any way to organize this maze of options and

produce a compact and coherent framework?

5.1. Sketch of adaptive conditioning

We wish to produce an inference algorithm that receives a Bayesian network, a

constraint on space and a constraint on time, and produces an inference. The

algorithm must adapt its operations to the available amount of space and promptly
produce an answer (possibly of low quality) that can be improved if more time is

available. The adaptive conditioning algorithm attempts to address these require-

ments in an organized fashion. In short, the idea is to divide a network using con-

ditioning (to guarantee that memory constraints are met), and then to use clustering

algorithms and anytime techniques to process sub-networks (to guarantee that time

constraints are met). The following sketch is a starting point:

1. Use d-separation to discard variables that cannot affect the inference, obtaining a
network with requisite variables only [56].

2. Based on space constraints, use conditioning to decompose the resulting network

into sub-networks. The decomposition must guarantee that clustering algorithms

can be run in every sub-network within available memory, but it need not decom-

pose up to single nodes. The decomposition process is discussed in Section 5.3.

3. If there is some memory left after the division of the network, create caches to

store intermediate results. The caching procedure is discussed in Section 5.4.

4. Now consider time constraints. If all sub-networks can be exactly processed, for
all instantiations of conditioning variables, in the available time, process them

with a clustering algorithm. Otherwise, process some sub-networks and instanti-

ations in an anytime scheme for the available time (these comments are discussed

in detail in Sections 5.5 and 5.6).

5. Combine instantiations, returning an exact or approximate answer.

The algorithm basically operates in two phases. The planning phase is responsible

for steps 1, 2 and 3 (Sections 5.3 and 5.4). The execution phase is responsible for steps
4 and 5 (Sections 5.5 and 5.6). Before we look into these matters, Section 5.2 dis-

cusses some mathematical facts about conditioning.

5.2. The mathematics of adaptive conditioning

It is convenient to consider conditioning as an abstract operation that can
‘‘break’’ edges and ‘‘split’’ networks. When a node is observed, the edges off of the

node are said to be broken. If an edge starts at node X , then the edge is broken by X .

A Bayesian network N can be split in two sub-networks N1 and N2 when we

60 F.T. Ramos, F.G. Cozman / Internat. J. Approx. Reason. 38 (2005) 53–80

identify a set of nodes C such that every edge between N1 and N2 is broken by C.

The set C is called the cutset for N1 and N2, or simply the cutset, if no ambiguity

can occur. The cutset C splitsN into N1 and N2. For a sub-network Ni, obtained

by splitting a network N with cutset C, the local cutset Ci is the set of variables in C

and in Ni. The symbol PrNið�Þ denotes the probability Prð�jC n CiÞ––that is, the
probability in the sub-network Ni taken as a unit. Fig. 2 shows an example.

The following theorem is a direct generalization of Expression (3).

Theorem 1. Let C be a cutset that splits a Bayesian network N into sub-networks Ni,
and Ci be the local cutset for Ni. If Q and E are disjoint and contain respectively the
query variables and the observed variables, with Qi and Ei indicating the variables in Q
and in E in Ni, then

PrNðQjEÞ ¼
X

CnQ\C

Y
i

PrNiðQi [CijEiÞ: ð4Þ

This theorem indicates precisely the operations that must be repeated by adaptive

conditioning. The first step of adaptive conditioning is to find a cutset; then, for each

instantiation of the cutset, take each sub-network, compute PrNiðQi [CijEiÞ, and

multiply these probabilities; at the end, add all products.

The theorem is completely general in that query variables can be distributed

among various sub-networks; the result can be easily generalized to handle observed
variables in the various sub-networks (compare this discussion to recursive decom-

position and recursive conditioning, where an inference is centered in a single

variable).

Fig. 2. Decomposing a simple network by conditioning: (a) network before conditioning and (b) network

split after conditioning on B ¼ bc.

F.T. Ramos, F.G. Cozman / Internat. J. Approx. Reason. 38 (2005) 53–80 61

5.3. Planning phase: computing a cutset

We now look into the planning phase of adaptive conditioning. This phase takes a

Bayesian network and a memory constraint, and produces a cutset. We assume that

our target is a cutset such that sub-networks can be processed by clustering algo-

rithms. The rationale is that clustering algorithms are efficient in terms of running
time; by guaranteeing that these algorithms can be used in sub-networks, we make

the best use of available memory. We also avoid the trap of ‘‘saving too much

memory’’ (using less than the available memory while incurring a large penalty in

running time).

Our strategy is to form cutsets from the separators of the junction tree for the

whole network, as separators do have the property of splitting networks. This

strategy effectively controls memory consumption, as the memory required by

clustering algorithms can be restricted to some constant amount plus the largest
separator in the junction tree. 2 Suppose then that, while building the whole junction

tree, we find that a separator violates memory constraints. We then include the

separator in the cutset, and recursively analyze the resulting sub-networks. The

cutset is produced when this process does not find any violating separator. The result

is a set of sub-networks with the property that every sub-network can be processed

by a clustering algorithm within the space constraints. Even though finding an

optimal cutset and an optimal junction tree are NP-hard problems [8,38,63], good

heuristics are available [37]; we have found in our tests that finding a good cutset
takes about 0.5% of overall running time.

Fig. 3 shows a small junction tree and the sub-networks obtained from it,

assuming a constraint on separators (maximum size of just 4 floating point values)

and supposing all variables are binary. The separator ADF violates the constraint, so

ADF are included in the cutset. Two networks are generated by this cut; one of them

induces clusters ABC and ACDF, while the other contains the remainder of the

original network. The decomposition process is then applied to these two sub-net-

works recursively until no separator has size larger than 4.

5.4. Planning phase: handling caches

Even though the goal of the decomposition process is to use as much memory as

possible in the sub-networks (within memory constraints), it may happen that the

sub-networks do not use exactly all available memory. For example, we may have a

million floating-point values at our disposal and a network where the largest sepa-

rator requires ten million floating-point values; we then condition on this separator

and realize that the remaining separators require at most five hundred thousand

2 It is possible to code the variable elimination algorithm so that memory consumption is linearly

related to the largest separator. The implementation of adaptive conditioning discussed in Section 6 uses

an implementation of variable elimination that satisfies this linear relationship.

62 F.T. Ramos, F.G. Cozman / Internat. J. Approx. Reason. 38 (2005) 53–80

floating-point values––we now can use the remaining five hundred thousand values

as we please. Following the basic anyspace technique used in recursive conditioning

[16], we could use available memory to cache and reuse inferences.

Consider a simple example. Suppose that a network N is decomposed into N1,

N2, and N3, such that N2 and N3 do not have common variables. Suppose also

that N1 contains the query variable, and N2 and N3 contain observed variables.

We could then cache inferences from N3 while we go over instantiations of N1 and
perform inferences in N2.

Caches lead to a fine control of memory use, but finding a method for efficient

cache allocation is a very challenging problem in itself. We have tested several

strategies for cache allocation and found that the following method is quite satis-

factory. We simply assign a cache unit to each sub-network in decreasing order of

network size (number of variables), where a cache unit contains the amount of

memory necessary to store PrNiðQi [CijEiÞ (the result of a particular inference in the

sub-network Ni given a configuration of C n Ci; remember that sub-networks may
contain query variables in adaptive conditioning). This process is repeated until we

IJK

EHIJ

ADF

ACDF

ABC

AC

EHI

IJ

ADEFHIM

ADFEL

ADFE

AE

AE

EGH

EH
AC

ACDF

ABC

IJK

EHIJ

EGH

IJ EH

adefhiM

adfe

adfeL

ae

ae

1

2

3

Fig. 3. Junction tree and resulting decomposition.

F.T. Ramos, F.G. Cozman / Internat. J. Approx. Reason. 38 (2005) 53–80 63

exhaust available memory. 3 If we find that every cutset instantiation can be stored

in memory, we essentially obtain a clustering method where the separators among

sub-networks are gradually computed and stored.

As shown in Section 6, caching is an extremely effective strategy to refine anyspace

behavior. Adaptive conditioning benefits greatly from the ‘‘smoothness’’ in memory

consumption provided by caches––however, adaptive conditioning tries to minimize
the importance of caches by using as much memory as possible for separators of sub-

networks, thus easing the difficult problem of generating a caching strategy.

Another problem in handling caches is how to update the information stored

when new results become available. For instance, suppose a sub-network has a cache

unit (storing the result of an inference for a particular configuration of the cutset),

and an inference (with a different configuration) is requested by the execution phase.

Should the cache unit store the new result or keep the previous one? If the result is

kept, when should it be updated? This problem is also complex and is closely related
to how cutset instantiations are organized (discussed in Section 5.6). To tackle this

problem, we use a simple heuristic that has proved to be efficient, particularly when

combined to the strategy we use to organize cutset instantiations. Basically, we

update the information of cache units as soon as new inferences become available for

the sub-network.

To get a sense of the relevant cache · separator · time trade-offs, consider the

following experiment with the Alarm network, shown in Fig. 4. Consider the vari-

able BP and no evidence (this is the query that requires most computational effort
without evidence), and suppose that a very small amount of memory is available––

only 36 floating-point values. The time required for inference is much more sensitive

to the amount of memory allocated to separators than to caches––as the amount of

memory for separators increases, the time for inference drops sharply; this is not

observed as the amount of memory for caches increases. We leave for future work a

precise quantification of the complex trade-offs involved in strategies for caching

probabilistic inference.

5.5. Execution phase: anytime inference in sub-networks

After adaptive conditioning decomposes a network and assigns caches to sub-

networks, the algorithm must decide how to process each sub-network. If there are

no constraints on processing time, the obvious choice is to run a clustering algorithm

in each sub-network. If instead there are limitations on processing time, several

possibilities can be conceived.
Consider the possibility that some sub-networks must be assigned exact algo-

rithms, while other sub-networks must be assigned approximate algorithms. A

simple anytime procedure is to assign clustering algorithms to as many sub-networks

3 In our implementation, the space available for caches is essentially the difference between the largest

possible separator and the maximum separator actually obtained through decomposition.

64 F.T. Ramos, F.G. Cozman / Internat. J. Approx. Reason. 38 (2005) 53–80

as possible, and to leave approximate algorithms to other sub-networks. We have

tested this idea with approximations based on stochastic algorithms.

We have found, after extensive tests, that Gibbs sampling algorithms take longer

to produce a reasonably accurate inference than variable elimination takes to pro-

duce an exact inference, even in rather large networks [52]. 4 Clearly these statements

should be taken in the proper context. First, Gibbs sampling and other stochastic

algorithms are particularly valuable in the presence of continuous variables; we

stress that here we deal only with categorical variables. Second, there is a limit to the
applicability of variable elimination; for very dense and large networks, one cannot

hope to use straight variable elimination––however we have observed that in those

cases the anytime conditioning strategies we discuss next can yield accurate

approximations faster than stochastic algorithms do.

The alternative we have pursued is to use a search-based algorithm, such as

bounded conditioning, in some sub-networks. Here we are left with several prob-

lems. Bounded conditioning uses very little memory; we may end up ‘‘saving too

much memory’’ in the process, leaving too many memory for complex caching
decisions. For example: If we combine bounded conditioning and caching, should

the decomposition step be revised once memory is available? Another question is,

Which sub-networks should run exact algorithms and which should run bounded

4 Such findings were corroborated by empirical evidence mentioned by Bruce D’Ambrosio at the

Workshop on Real-time Decision Support and Diagnostic Systems at AAAI2002. We feel that the average

performance of other stochastic algorithms should be comparable to the performance of Gibbs sampling.

051015202530
Cache Size

5 10 15 20 25 30 35
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Separator Size

T
im

e
(s

)

Fig. 4. A cache· separator· time trade-off in the Alarm network, querying variable BP without evidence.

The same fixed amount of memory is distributed between separators and caches.

F.T. Ramos, F.G. Cozman / Internat. J. Approx. Reason. 38 (2005) 53–80 65

conditioning? It seems very difficult to answer such questions in any sort of optimal

manner.

Instead of using exact and approximate algorithms in different sub-networks, we

have concluded that there exists a simpler yet more effective strategy. Observe that

adaptive conditioning can be directly turned into an anytime algorithm by running a

subset of all possible instantiations, thus generating bounds for the complete sum-
mation in Expression (4)––the same idea used in bounded conditioning and bounded

recursive decomposition. If we stop instantiating cutset variables, we obtain lower

bounds for probabilities, denoted by PrðXQ;XEÞ. To produce an upper bound, we

use:

PrðXQ ¼ xQ;XEÞ ¼ 1 �
X
XQ 6¼xQ

PrðXQ;XEÞ: ð5Þ

As an example, suppose that we wish to compute the marginal probability for

a ternary variable X , and we stop computation when PrðX ¼ x0Þ ¼ 0:12,

PrðX ¼ x1Þ ¼ 0:56, PrðX ¼ x2Þ ¼ 0:17. Probability bounds are: PrðX ¼ x0Þ 2
½0:12; 0:27�, PrðX ¼ x1Þ 2 ½0:56; 0:71�, PrðX ¼ x2Þ 2 ½0:17; 0:32�.

Bounds for conditional probability can be easily obtained [46]:

PrðXQ ¼ xQjXEÞ ¼
PrðXQ ¼ xQ;XEÞ

PrðXQ ¼ xQ;XEÞ þ
P

XQ 6¼xQ PrðXQ;XEÞ
;

PrðXQ ¼ xQjXEÞ ¼
PrðXQ ¼ xQ;XEÞ

PrðXQ ¼ xQ;XEÞ þ
P

XQ 6¼xQ PrðXQ;XEÞ
:

ð6Þ

As an alternative approach, we have observed that a straightforward normali-

zation of incomplete results often provides an excellent approximation to the com-

plete inference. To illustrate this possibility, suppose again we have
PrðX ¼ x0Þ ¼ 0:12, PrðX ¼ x1Þ ¼ 0:56, PrðX ¼ x2Þ ¼ 0:17. An approximate inference

can be produced by normalization: PrðX ¼ x0Þ � 0:13, PrðX ¼ x1Þ � 0:62,

PrðX ¼ x2Þ � 0:18.

The main problem is how to organize cutset instantiations, so that most of the

probability mass is quickly generated. 5 The next section describes a method that is

suited to adaptive conditioning. Note that the order of cutset instantiations makes

inferences in some sub-networks to be updated more often than in others––thus we

obtain a method that automatically distributes the computational effort among sub-
networks.

5 Bounded conditioning has a built-in mechanism to order instantiations [32], while bounded recursive

decomposition resorts to Gibbs sampling to decide which instantiations must be computed and which

must be retrieved from an initialization phase [46].

66 F.T. Ramos, F.G. Cozman / Internat. J. Approx. Reason. 38 (2005) 53–80

5.6. Execution phase: generating cutset instantiations

To generate instantiations, we exploit the intuition that the ‘‘farther’’ a sub-net-

work is from the query variables, the smaller the effect of the sub-network in the

inference of interest. If a sub-network Ni has little effect on the inference, relatively

few instances of Ni should be visited when producing probability bounds. Such an
effect is obtained by varying the cutset variables of Ni more slowly than the cutset

variables for more critical sub-networks. The following procedure emerges: (i) order

the sub-networks from ‘‘closest’’ to ‘‘farthest’’ from the query variables; (ii) order the

cutset variables so that the variables for the ‘‘closest’’ network vary more quickly;

(iii) generate and process instances until time is exhausted.

The challenge in this procedure is to formalize a ‘‘distance’’ between sub-net-

works. Our solution is inspired by results on conditional mutual information [40].

Take a Bayesian network N over variables X. The conditional mutual information of
variables X and Y in N, denoted by IðX ; Y Þ, quantifies uncertainty reduction by

random variables [9]:

IðX ; Y Þ ¼
X
X ;Y

PrðX ; Y Þ log
PrðX ; Y Þ

PrðX Þ � PrðY Þ :

The mutual information is symmetric and represents a measure of the dependence

between two random variables. A natural idea is to evaluate the ‘‘distance’’ between

a sub-network and query variables by computing the mutual conditional informa-

tion between query variables and variables in the sub-network cutsets (keeping all

variables conditional on observed variables). However, mutual conditional infor-

mation is very expensive to compute (time spent is Oðm expðnÞÞ for n variables, m of

which are query variables). We thus propose a heuristic method that relies on the

monotonic relationship between mutual conditional information and shortest-path
distance: Kjaerulff has proved that mutual conditional information between X and Y
decreases with increases in the shortest path (in N) between X and Y [39]. Suppose

then that we want to measure the influence of X in a query variable Y . A quick metric

is to take the shortest-path algorithm, and find the number of edges between X and

Y . If instead we have a set of variables X and a set of query variables Y, we take the

average of all shortest-paths between variables in X and the set Y––we call the

resulting quantity by Minimal Mean Distance (MMD):

MMDðX;YÞ ¼
XjXj
i

dðXi;YÞ
jXj ;

where dðX ; Y Þ is length of the shortest-path between X and Y .

Once we obtain the MMD of every cutset variable, we sort the variables so that

variables with larger MMD are modified less often than variables with smaller MMD.

In addition to sorting cutset variables, we can improve the speed of convergence of
probability bounds by paying attention to the order of instantiations for categories in

each cutset variable. For example, if a cutset contains binary variables X and Y , we

may choose to visit x1 before x0, regardless of the order in which we visit y0 and y1. We

F.T. Ramos, F.G. Cozman / Internat. J. Approx. Reason. 38 (2005) 53–80 67

must first visit instantiations that potentially contain the most probability mass,

looking for good instantiations (as in Henrion’s search method [30]). To find an order

for the values of a cutset variable X we compute the posterior probability of X with

respect to the sub-network that contains X ; we then visit first the values of X with

highest posterior probability. We have observed that this technique often increases

dramatically the speed of convergence for probability bounds.
At this point, the original network has been decomposed, caches have been

allocated, cutset variables and their categories have been properly sorted. Should we

now consider distributing caches after sorting instantiations? One could argue that

the cache allocation strategy should take into account the order of cutset instanti-

ations––caches should be more useful for those variables that change less often.

However we have found empirically that it is more important to allocate caches

based on the size of sub-networks than on cutset orderings. Again we face a situation

where many alternatives could be conceived, with no obvious ‘‘optimal’’ solution for
the caching strategy. We conjecture that the most efficient (in terms of time) scheme

should dynamically modify caches during inference, assigning memory to those large

cutsets that change more often. In any event, we have decided to follow the simple

yet efficient caching strategy described in Section 5.4.

5.7. The complete algorithm

Section 5.1 sketched the main steps of adaptive conditioning, leaving undefined

several aspects of the algorithm. In fact, it is profitable to think of adaptive condi-

tioning as a generic strategy: divide a network to satisfy space constraints, then

process sub-networks as required to meet time constraints. However at this point we

can present a more detailed description of several design decisions that, by analysis
and experimentation, we regard as most adequate for implementation. Fig. 5 con-

tains a detailed description.

The execution phase is responsible for instantiating the cutset variables in the

predefined order, running clustering algorithms in each sub-network, caching results

whenever possible, and computing Expression (4). When time is exhausted, proba-

bility bounds are produced. Note that the number of inferences grows exponentially

with the number of variables in cutsets; given a Bayesian network with n variables

and cutsets of width wc that decompose the network into ws sub-networks, the
number of inferences performed by adaptive conditioning is Oðws � expðwcÞÞ.

As an example, consider the network N in Fig. 6, containing only binary

variables. The figure shows a decomposition of N into three sub-networks, by con-

ditioning on C and B. Dashed nodes represent ‘‘dummy’’ variables that are

always observed and do not change the complexity of inferences in the corre-

sponding sub-networks. We wish to compute the joint probability of E and F . We

have to compute the following probabilities: PrN1ðCjB0 ¼ b0Þ (computed twice),

PrN2ðE; F jC0 ¼ c0;B0 ¼ b0Þ (computed four times), and PrN3ðBÞ (computed only
once).

As discussed in Section 5.5, we have discarded the possible strategy of distributing

different exact and approximate algorithms through sub-networks. We have found

68 F.T. Ramos, F.G. Cozman / Internat. J. Approx. Reason. 38 (2005) 53–80

D

C

B

G

E F

A

N

N

N

B’

C’

B’

1

3

2

Fig. 6. A decomposition for the Bayesian network in Fig. 1.

Fig. 5. Adaptive conditioning.

F.T. Ramos, F.G. Cozman / Internat. J. Approx. Reason. 38 (2005) 53–80 69

mixture-of-algorithms strategies to be less effective, for anytime purposes, than just

applying the same variable elimination algorithm across sub-networks. However, we

conjecture that such a strategy could be interesting in various situations, for example

in parallelized engines with different processing characteristics.

5.8. Comparison to anyspace algorithms

A comparison between adaptive conditioning and adaptive variable elimination

or recursive conditioning necessarily depends on how we are to introduce anytime

behavior into the latter two algorithms. These comparisons can illuminate several
aspects of adaptive conditioning.

The obvious way to obtain anytime behavior with adaptive variable elimination is

to run approximate algorithms inside buckets––for example, to run Gibbs sampling

(as in [41]) or bounded conditioning (similarly to Dechter’s loop cutset suggestion

[21]). However, we are left with a problem: if intermediate results in one bucket are

improved, how should the new results be propagated to other buckets? The solution

would be to apply anytime algorithms in such a way that different portions of a

network could be processed independently––a solution that paves the way to
adaptive conditioning. It is actually easier to think of adaptive variable elimination

as a derivative of adaptive conditioning, because the first algorithm is a special case

of the second one (obtained when the conditioning operations are not ‘‘wide’’ en-

ough to actually ‘‘cut’’ the network into sub-networks). We have found that adaptive

conditioning is easier to understand and implement than other possible combina-

tions of adaptive variable elimination plus anytime algorithms.

Recursive conditioning is a clever algorithm with many possible variants. It could

become an anytime algorithm by computing a limited number of terms in Expression
(2). However this partial computation scheme is not easy to implement in recursive

conditioning, as the power of the algorithm comes just from the way the compu-

tation of many terms is ‘‘entangled’’ in a dtree. We are again led to the conclusion

that we must ‘‘cut’’ some portions of the network from others, so as to organize

partial sums. That is, instead of splitting networks until single-node sub-networks,

we must stop splitting earlier. In fact, adaptive conditioning can be understood as a

close cousin of recursive conditioning in the following sense: the inference process in

adaptive conditioning can be represented as a dtree where leaves are sub-networks
(and sub-networks are processed in an anytime fashion).

Despite the similarity between adaptive and recursive conditioning, there are

significant differences between them. The obvious, and possibly the most important

difference is that adaptive conditioning directly allows anytime behavior, as dis-

cussed in the previous paragraph. Note that there is a price to pay for anytime

behavior: while adaptive conditioning degrades, in the limit of scarce memory,

to brute force instantiation of Expression (2), recursive conditioning takes

Oðn expðw log nÞÞ time in the same circumstances. A second notable difference be-
tween adaptive and recursive conditioning is that the first algorithm can handle

arbitrary sets of query variables, while the second one focuses on the computation of

a single probability value for a single variable. A third difference is that adaptive

70 F.T. Ramos, F.G. Cozman / Internat. J. Approx. Reason. 38 (2005) 53–80

conditioning tries to use as much memory as possible before it considers the use of

caches (networks are divided until memory constraints are satisfied, but not more

than that); recursive conditioning instead moves the whole inference to a very thin

structure and then uses the available memory for caching. Because finding a rea-

sonable caching strategy is a non-trivial problem, it makes sense to reduce its

importance.

5.9. Comparison to anytime algorithms

Adaptive conditioning offers some significant advantages over existing anytime

algorithms. The algorithm produces enclosing bounds as approximations, unlike

stochastic approximations and loopy propagation algorithms. Experiments show that

convergence of these bounds is very fast, even within relatively stringent memory

constraints (Section 6). We should add that adaptive conditioning is much faster than

standard stochastic approximation algorithms, at least for the kinds of ‘‘large’’ net-

works that can be found in the literature; that is, in our tests we observed that
excellent bounds were obtained long before a similar approximation was produced by

Gibbs sampling and similar schemes. Adaptive conditioning also fares well against

bounded conditioning and search-based anytime techniques, because adaptive con-

ditioning essentially contains such methods and adds various improvements. Instead

of raw bounded conditioning, adaptive conditioning tries to use all the available

memory; instead of searching for probability terms in the whole network, adaptive

conditioning tries to distribute the search on sub-networks in an organized fashion.

Adaptive conditioning can be easily employed if a purely anytime inference
algorithm is required (that is, if there are no memory constraints, just time con-

straints). The planning phase now has to select a cutset so as to obtain the fastest

convergence of bounds. Our strategy in such situations is to simply divide a network

in its largest separator (more refined strategies can be devised in future work). We

note an important property of such explicit decomposition: as we obtain truly

independent sub-networks, we can easily apply different levels of computational

effort to distinct portions of a network. It would be difficult to do so using any

straightforward anytime variant of adaptive variable elimination.

6. Tests and results

We have implemented adaptive conditioning as described in Section 5.7, using the

standard variable elimination algorithm to process sub-networks. We have tested

real and simulated networks with a variety of space and time constraints. 6 We

illustrate our results with inferences in real networks. For each network, we produce

6 We run tests in a Pentium 4 1.7 Ghz with 1 GByte of memory running Linux 2.4.7-10; the algorithm

was coded in the Java language and tested with the JVM 1.3.1_01 from Sun Microsystems. Libraries for

the variable elimination algorithm are based on the inference engine for the JavaBayes system, freely

available at http://www.cs.cmu.edu/~javabayes.

F.T. Ramos, F.G. Cozman / Internat. J. Approx. Reason. 38 (2005) 53–80 71

inferences for the variables whose set of d-connected variables are the largest––that

is, we select the hardest queries without observations. The inclusion of observations

does not change the properties of the algorithm but would introduce several com-

plexities into the testing procedure (which variables to observe, which values to set as

observed), so we decided not to take observations into account.

6.1. The Alarm network

Consider first the Alarm network [2], with memory constraints on separators. We

limited separators to contain from 3 to 24 floating point values (note the very

stringent constraints). We also imposed time constraints from 1 to 3 s (time con-
straints are imposed on overall running time, just as it would be the case in a real-

time system). For the Alarm network we run tests with almost every possible

memory configuration, as this network is relatively small and serves well as a

benchmark. In the Alarm network, exact inference for BP requires a separator of size

25––that is, memory beyond this quantity is useless. However we observed that

excellent answers can be obtained if size larger than 13 is allowed.

Fig. 7 is a graph of ‘‘quality · space · time’’ for the marginal probability of var-

iable BP. ‘‘Quality’’ is represented by the interval between lower and upper proba-
bility bounds for one of the categories of BP. Note the dramatic increases in quality

(decreases in interval length) for some small differences in memory––a little more

memory sometimes leads to great improvements in the decomposition process.

We would like to stress that a graph such as the one in Fig. 7 can hardly be built

with existing techniques, and the great appeal of adaptive conditioning is exactly the

possibility of balancing time and space constraints simultaneously while controlling

quality.

Fig. 8 shows a different ‘‘quality · space · time’’ graph; here we plot the Kullback–
Leibler divergence or relative entropy DðPr kcPrÞ between the probability of the exact

inference PrðXqÞ and the approximation based on normalizing an incomplete infer-

ence cPrðXqÞ:

DðPr kcPrÞ ¼
X
Xq

PrðXqÞ log
PrðXqÞ
cPrðXqÞ

In the case of the Alarm network, Xq ¼ BP . Note the quality of inferences for rel-

atively scarce memory and time resources. Again we see that quality varies somewhat
discontinuously.

6.2. The Link network

Consider now the Link network [35], a large network with 724 nodes (almost all
of them binary), representing linkage between two genes. Fig. 9 shows interval length

for query variable DO_56_d_p. This variable is appropriate because inferences with

it require a very large number of requisite variables. Fig. 10 shows the error in

72 F.T. Ramos, F.G. Cozman / Internat. J. Approx. Reason. 38 (2005) 53–80

approximating by normalization of incomplete results, again for variable

DO_56_d_p.

Our tests were run with memory constraints that should be close to stripped-down

embedded systems. We varied separator size from only 65 floating point values to

129 floating point values. We note the enormous memory savings that can be ob-

tained with adaptive conditioning: we can obtain almost exact answers within 3 s

with a maximum separator of just 80 floating point values.

Fig. 8. Relative entropy for the Alarm network (query variable is BP).

Fig. 7. Interval width for inferences with the Alarm network (query variable is BP).

F.T. Ramos, F.G. Cozman / Internat. J. Approx. Reason. 38 (2005) 53–80 73

In Figs. 9 and 10 we observe regions where errors increase dramatically. They

indicate operation points that should be avoided in real applications with stripped

down bounded agents and embedded systems. We can also observe the effect of

caches in the inference process. In Fig. 7 for example, for separator sizes bigger
than 12 we see a smooth region where the performance increases with time and

memory. As the decomposition of the network remains almost the same for sep-

Fig. 9. Bound width for Link inferences.

Fig. 10. Relative entropy for Link inferences.

74 F.T. Ramos, F.G. Cozman / Internat. J. Approx. Reason. 38 (2005) 53–80

arator sizes wider than 12, the performance increases with memory is due to cache

allocation.

6.3. The Diabetes network

The experiments just reported used very stringent space constraints; it could be

argued that typical probabilistic inference employs larger memory resources. In this

section we move to networks with huge memory requirements for inference.

We have conduct tests with models that follow the usual pattern of dynamic

Bayesian network; that is, networks with a regular structure containing repeating

blocks. Our results are illustrated using the Diabetes network. 7 The structure we

used was an expansion of Diabetes into 24 slices, each containing 17 variables. The
model is particularly interesting because Diabetes contains some ‘‘linking’’ variables

that are connected to all slices, and is therefore harder to handle than purely

repeating dynamic Bayesian networks. The goal was to produce inferences for the

variable bg_24 (at the ‘‘bottom’’ of the 24th slice). The largest separator for this

network (using a maximum weight heuristic) contains 64 variables. As variables have

six categories on average, we would need an astronomically large amount of memory

to conduct exact inference with standard variable elimination. Adaptive conditioning

instead faces no difficulties, and can produce the exact answer in less than 3 s, using a
separator size of 1500 floating point values. We ran tests in Diabetes using separator

sizes of 1300–4000 and time constraints from 1000 to 5000 ms. As we see in Figs. 11

and 12, changes in separator sizes from 1500 to 4000 did not affect the quality

7 Diabetes is available for download on Bayesian Network Repository: http://www.cs.huji.ac.il/labs/

compbio/Repository/networks.html.

Fig. 11. Bound width for Diabetes inferences.

F.T. Ramos, F.G. Cozman / Internat. J. Approx. Reason. 38 (2005) 53–80 75

significantly. However, for separator sizes less than 1500, the network decomposi-

tions changed and the quality degraded considerably.

We close by noting that the experiments reported here are not the only ones we

have conducted, and were not selected as successful cases––rather, similar behavior

was met in a large variety of tests.

7. Conclusion

This paper presents a discussion of algorithms that simultaneously display any-

time and anyspace characteristics in Bayesian network inference. We have attempted

to provide a relatively broad description of the many factors involved in such

inferences, while keeping the exposition as simple and didactic as possible. Our goal

was to construct algorithms that can add flexibility to probabilistic reasoning,

without explicitly getting into issues of meta-reasoning.
The main contribution of this work is the adaptive conditioning algorithm. We

certainly make no claims that adaptive conditioning is the only way to attain anytime

anyspace behavior in Bayesian network inference. Given the large number of factors

involved in such inferences, it is likely that no optimal algorithm exists, whatever is

meant by optimal; we should instead focus on algorithms that exercise a balanced

combination of trade-offs. We suggest that the adaptive conditioning algorithm

provides a sensible balance between the necessary compromises in anytime anyspace

probabilistic reasoning; we have tried several other combinations of techniques, only
to find that they have marginal gain, if any, while enormously complicating matters.

In this context, we feel that adaptive conditioning is an algorithm with clear

strengths, as it:

Fig. 12. Relative entropy for Diabetes inferences.

76 F.T. Ramos, F.G. Cozman / Internat. J. Approx. Reason. 38 (2005) 53–80

1. Allows simultaneous space and time constraints, and incorporates techniques that

allow fine usage of available memory and time.

2. Smoothly combines the most effective known techniques for inference (clustering

and conditioning).

3. Is relatively easy to motivate and to understand; it is not too difficult to implement

and does not rely on wildly diverse theoretical facts; it can be taught and appre-
ciated with mild effort.

4. Can easily explore three-dimensional trade-offs involving ‘‘quality · space · time’’;

we are not aware of previous work that has faced these trade-offs explicitly.

5. Is ready for parallel implementation (several techniques for network decomposi-

tion in parallel systems are rather close to adaptive conditioning [42,45,49]),

and can be directly used in ‘‘hybrid’’ implementations that combine exact and

approximate algorithms in sub-networks.

The algorithm should be a particularly valuable tool for probabilistic reasoning in

embedded systems (for example in robots with limited resources) and in multi-agent

communities (for example in sensor networks).

A notable characteristic of adaptive conditioning is that it can handle networks

large enough to overwhelm existing exact algorithms. In fact, many of our tests with

large networks cannot be reproduced with existing clustering algorithms. Only

anyspace algorithms such as recursive conditioning can offer exact solutions to the

larger networks, but such algorithms do not have the anytime dimension that
adaptive conditioning offers as well.

Overall, we see that the landscape of trade-offs between quality, time and space is

rather discontinuous: in some cases, relatively small changes in memory can lead to

large differences in running time. Such a behavior suggests that a meta-reasoner

could be quite effective in analyzing intermediate steps of the computation and

determining that more memory or time would be highly profitable and worth paying

for. Such a meta-reasoner would be an interesting piece of work.

Adaptive conditioning can certainly be improved in many ways. There are several
possible decomposition and caching strategies, (particularly dynamic caching strat-

egies), and several methods to order variables and instantiations, that could improve

the performance of the algorithm. We have not captured and tested the whole

spectrum of alternatives in this paper, and we leave many open avenues for future

research.

Acknowledgements

This work has received generous support from HP Labs; we thank Marsha Duro

from HP Labs for establishing this support and Edson Nery from HP Brazil for

managing it. The work has also been partially supported by CNPq and FAPESP. We
thank two reviewers who gave important suggestions, and the editor, who oversaw

this long process with great patience––particularly when waiting for us to produce

the final version.

F.T. Ramos, F.G. Cozman / Internat. J. Approx. Reason. 38 (2005) 53–80 77

References

[1] S. Andreassen, R. Hovorka, J. Benn, K.G. Olesen, E.R. Carson, A model-based approach to insulin

adjustment, in: M. Stefanelli, A. Hasman, M. Fieschi, J. Talmon (Eds.), Proceedings of the Third

Conference on Artificial Intelligence in Medicine, Springer-Verlag, 1991, pp. 239–248.

[2] I. Beinlich, H.J. Suermondt, R.M. Chavez, G.F. Cooper, The ALARM monitoring system: A case

study with two probabilistic inference techniques for belief networks, in: Second European

Conference on Artificial Intelligence in Medicine, 1989, pp. 247–256.

[3] M. Bloemeke, M. Valtorta, A hybrid algorithm to compute marginal and joint beliefs in Bayesian

networks and its complexity, in: G.F. Cooper, S. Moral (Eds.), Proceedings of the Fourteenth

Conference on Uncertainty in Artificial Intelligence, 1998, pp. 16–23.

[4] C. Cannings, E.A. Thompson, M.H. Skolnick, Probability functions in complex pedigrees, Advances

in Applied Probability 10 (1978) 16–23.

[5] A. Cano, S. Moral, Using probability trees to compute marginals with imprecise probabilities,

International Journal of Approximate Reasoning 29 (2002) 1–46.

[6] J. Cheng, M.J. Druzdzel, AIS-BN: An adaptive importance sampling algorithm for evidential

reasoning in large Bayesian networks, Journal of Artificial Intelligence Research 13 (2000) 155–188.

[7] G.F. Cooper, The computacional complexity of probabilistic inference using Bayesian belief

networks, Artificial Intelligence 42 (1990) 393–405.

[8] G.F. Cooper, Bayesian belief-network inference using recursive decomposition, Technical Report

KSL-90-05, Knowledge Systems Laboratory, Stanford, CA 94305, 1990.

[9] T.M. Cover, J.A. Thomas, Elements of Information Theory, John Wiley & Sons Inc, New York,

1991.

[10] R.G. Cowell, A.P. Dawid, S.L. Lauritzen, D.J. Spiegelhalter, Probabilistic Networks and Expert

Systems, Springer-Verlag, New York, 1999.

[11] F.G. Cozman, Generalizing variable elimination in Bayesian networks, in: Workshop on Probabilistic

Reasoning in Artificial Intelligence, S~ao Paulo, Brazil, 2000. Tec Art, pp. 27–32.

[12] P. Dagum, M. Luby, Approximating probabilistic inference in Bayesian belief networks is NP-hard,

Artificial Intelligence 60 (1993) 141–153.

[13] B. D’Ambrosio, Incremental probabilistic inference, in: Proceedings of the Ninth Conference on

Uncertainty in Artificial Intelligence, Washington, DC, 1993, pp. 301–308.

[14] A. Darviche, Conditioning methods for exact and approximate inference in causal networks, in:

Proceedings of the Eleventh Conference on Uncertainty in Artificial Intelligence, Morgan Kaufmann,

San Francisco, California, 1995, pp. 99–107.

[15] A. Darwiche, Any-space probabilistic inference, in: Proceedings of the Sixteenth Conference on

Uncertainty in Artificial Intelligence, Morgan Kaufmann, San Francisco, California, 2000, pp. 133–

142.

[16] A. Darwiche, Recursive conditioning, Artificial Intelligence 126 (1–2) (2001) 5–41.

[17] S. Davies, Fast Factored Density Estimation and Compression with Bayesian Networks, PhD thesis,

School of Computer Science, Carnegie Mellon University, May 2002.

[18] T.L. Dean, M. Boddy, An analysis of time-dependent planning, in: Proceedings of Seventh National

Conference on Artificial Intelligence, AAAI Press/The MIT Press, Menlo Park, California, 1988, pp.

49–54.

[19] R. Dechter. Bucket elimination: A unifying framework for probabilistic inference, in: Proceedings of

the Twelfth Conference on Uncertainty in Artificial Intelligence, Morgan Kaufmann, San Francisco,

California, 1996, pp. 211–219.

[20] R. Dechter, Mini-buckets: A general scheme for generating approximations in automated reasoning in

probabilistic inference, in: Proceedings of the Fifteenth International Joint Conference on Artificial

Intelligence, Nagoya, Japan, 1997, pp. 1297–1302.

[21] R. Dechter, Topological parameters for time-space tradeoff, in: Proceedings of the Twelfth

Conference on Uncertainty in Artificial Intelligence, Morgan Kaufmann, San Francisco, California,

1996, pp. 220–227.

[22] F.J. D�ıez, Local conditioning in Bayesian networks, Artificial Intelligence 87 (1996) 1–20.

78 F.T. Ramos, F.G. Cozman / Internat. J. Approx. Reason. 38 (2005) 53–80

[23] A. Doucet, N. de Freitas, K. Murphy, S. Russell, Rao-Blackwellised particle filtering for dynamic

Bayesian networks, in: Proceedings of the Sixteenth Conference on Uncertainty in Artificial

Intelligence, 2000, pp. 176–183.

[24] S. Dwarkadas, A. Schaffer, R.W. Cottingham, A.L. Cox, P. Keleher, W. Zwaenepoel, Parallelization

of general linkage analysis problems, Human Heredity 44 (1994) 127–141.

[25] G.S. Fishman, Monte Carlo: Concepts, Algorithms, and Applications, Springer-Verlag, 1995.

[26] A.J. Garvey, V. Lesser, Design-to-time real-time scheduling, IEEE Transactions on Systems, Man and

Cybernetics 23 (6) (1993) 1491–1502.

[27] D. Geiger, T. Verma, J. Pearl, Identifying independence in Bayesian networks, Networks 20 (1990)

507–534.

[28] W.R. Gilks, S. Richardson, D.J. Spiegelhalter, Markov Chain Monte Carlo in Practice, Chapman and

Hall, London, England, 1996.

[29] H. Guo, W. Hsu, A survey of algorithms for real-time Bayesian network inference, in: AAAI/KDD/

UAI-2002 Joint Workshop on Real-Time Decision Support and Diagnosis Systems, 2002, pp. 1–12.

[30] M. Henrion, Search-based methods to bound diagnostic probabilities in very large belief nets, in:

Proceedings of the Seventh Conference on Uncertainty in Artificial Intelligence, Morgan Kaufmann,

1991, pp. 142–150.

[31] E. Horvitz, Principles and applications of continual computation, Artificial Intelligence 126 (2001)

159–196.

[32] E. Horvitz, H.J. Suermondt, G.F. Cooper, Bounded conditioning: Flexible inference for decisions

under scarce resources, In Proceedings of the Fifth Conference on Uncertainty in Artificial

Intelligence, Morgan Kaufmann, 1989, pp. 182–193.

[33] E. Horvitz, M. Barry, Display of information for time-critical decision making, in: Proceedings of the

Eleventh Conference on Uncertainty in Artificial Intelligence, Morgan Kaufmann, Montreal, Canada,

1995, pp. 286–305.

[34] E. Horvitz, J. Breese, D. Heckerman, D. Hovel, K. Rommelse, The Lumiere project: Bayesian user

modeling for inferring the goals and needs of software users, in: Proceedings of the Fourteenth

Conference on Uncertainty in Artificial Intelligence, Morgan Kaufmann, San Francisco, 1998, pp.

256–265.

[35] C.S. Jensen, A. Kong, Blocking Gibbs sampling for linkage analysis in large pedigrees with many

loops, Research Report R-96-2048, Department of Computer Science, Aalborg University, Denmark,

Fredrik Bajers Vej 7, DK-9220 Aalborg Ø, 1996.

[36] F.V. Jensen, An Introduction to Bayesian Networks, Springer Verlag, New York, 1996.

[37] U. Kjaerulff. Triangulation of graphs––algorithms giving small total state space, Technical Report R-

90-09, Department of Mathematics and Computer Science, Aalborg University, Denmark, March

1990.

[38] U. Kjaerulff, Optimal decomposition of probabilistic networks by simulated annealing, Statistics and

Computing 1 (2) (1992) 7–17.

[39] U. Kjaerulff, Approximation of Bayesian networks through edge removals, Technical report,

Department of Mathematics and Computer Science, Aalborg University, 1993.

[40] U. Kjaerulff, Reduction of computational complexity in Bayesian networks through removal of weak

dependencies, Technical Report R94-2009, Aalborg University, February 1994.

[41] U. Kjaerulff, Combining exact inference and Gibbs sampling in junction trees, in: Proceedings of the

Eleventh Conference on Uncertainty in Artificial Intelligence, Morgan Kaufmann, San Francisco,

California, 1995.

[42] A.V. Kozlov, J.P. Singh, Parallel implementations of probabilistic inference, Computer 29 (12) (1996)

33–40.

[43] S.L. Lauritzen, D.J. Spiegehalter, Local computations with probabilities on graphical structures and

their application to expert systems, Journal of Royal Statistics Society, Series B 50 (2) (1988) 157–224.

[44] Z. Li, B. D’Ambrosio, Efficient inference in Bayes networks as a combinatorial optimization problem,

International Journal of Approximate Reasoning 11 (1994).

[45] A.L. Madsen, F.V. Jensen, Parallelization of inference in Bayesian networks, Technical Report DK-

9220, Department of Computer Science, Aalborg University, Denmark, 1999.

F.T. Ramos, F.G. Cozman / Internat. J. Approx. Reason. 38 (2005) 53–80 79

[46] S. Monti, G.F. Cooper, Bounded recursive decomposition: a search-based method for belief network

inference under limited resources, International Journal of Approximate Reasoning 15 (1) (1996) 49–

75.

[47] K.P. Murphy, Y. Weiss, M.I. Jordan. Loopy belief propagation for approximate inference: An

empirical study, in: Proceedings of the Fifteenth Conference on Uncertainty in Artificial Intelligence,

1999, pp. 467–475.

[48] J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference, Morgan

Kaufmann, San Mateo, California, 1988.

[49] D.M. Pennock, Logarithmic time parallel Bayesian inference, in: Proceedings of the Fourteenth

Conference on Uncertainty in Artificial Intelligence, Morgan Kaufmann, 1998, pp. 431–438.

[50] M.A. Peot, R.D. Shachter, Fusion and propagation with multiple observations in belief networks,

Artificial Intelligence 48 (3) (1991) 299–318.

[51] D. Poole, Probabilistic conflicts in a search algorithm for estimating posterior probabilities in

Bayesian networks, Artificial Intelligence 88 (1996) 69–100.

[52] F.T. Ramos, F.G. Cozman, J.S. Ide, Embedded Bayesian networks: Anytime anyspace inference, in:

AAAI/KDD/UAI-2002 Joint Workshop on Real-Time Decision Support and Diagnosis Systems,

2002, pp. 13–19.

[53] F.T. Ramos, F. Mikami, F.G. Cozman, Implementac�~ao de redes Bayesianas em sistemas embarcados,

In Proceedings of the IBERAMIA/SBIA 2000 Workshops (Workshop on Probabilistic Reasoning in

Artificial Intelligence), Editora Tec Art, 2000, pp. 65–69 (in Portuguese).

[54] S. Russell, E. Wefald, Principles of metareasoning, Artificial Intelligence 49 (1991) 361–395.

[55] A. Salmer�on, A. Cano, S. Moral, Importance sampling in Bayesian networks using probability trees,

Computational Statistics and Data Analysis 34 (2000) 387–413.

[56] R. Shachter, Bayes-ball: The rational pastime (for determining irrelevance and requisite information

in belief networks and influence diagrams), in: G.F. Cooper, S. Moral (Eds.), Proceedings of the

Fourteenth Conference in Uncertainty in Artificial Intelligence, Morgan Kaufmann, San Francisco,

1998, pp. 480–487.

[57] R.D. Shachter, Evaluating influence diagrams, Operations Research 34 (6) (1986) 873–882.

[58] R.D. Shachter, S.K. Andersen, P. Szolovits, Global conditioning for probabilistic inference in belief

networks, in: Proceedings of the Tenth Conference on Uncertainty in Artificial Intelligence, Morgan

Kaufmann, Seattle, WA, 1994, pp. 514–522.

[59] G. Shafer, P.P. Shenoy, Probability propagation, Annals of Mathematics and Artificial Intelligence 2

(1990) 327–352.

[60] H.A. Simon, Models of Bounded Rationality 2, MIT Press, Cambridge, MA, 1982.

[61] Y. Weiss, W.T. Freeman, Correctness of belief propagation in Gaussian graphical models of arbitrary

topology, Technical Report CSD-99-1046, CS Department, UC Berkeley, 1999.

[62] M.P. Wellman, C.L. Liu, State-space abstraction for anytime evaluation of probabilistic networks, in:

Proceedings of the Tenth Conference on Uncertainty in Artificial Intelligence, 1994, pp. 567–574.

[63] W.X. Wen, Optimal decomposition of belief networks, in: Proceedings of the Sixth Conference on

Uncertainty in Artificial Intelligence, Morgan Kaufmann, 1990, pp. 245–256.

[64] J.S. Yedidia, W.T. Freeman, Y. Weiss, Bethe free energies, Kikuchi approximations, and belief

propagation algorithms, Technical Report TR 2001-16, 2001.

[65] N.L. Zhang, D. Poole, Exploiting causal independence in Bayesian network inference, Journal of

Artificial Intelligence Research (1996) 301–328.

[66] N.L. Zhang, D. Poole, A simple approach to Bayesian network computations, in: Proceedings of the

10th Canadian Conference on Artificial Intelligence, Banff, Alberta, Canada, May 1994, pp. 16–22.

[67] G. Zweig, S.J. Russell, Speech recognition with dynamic Bayesian networks, in: AAAI/IAAI, 1998,

pp. 173–180.

80 F.T. Ramos, F.G. Cozman / Internat. J. Approx. Reason. 38 (2005) 53–80

