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Abstract—The Direct-to-Reverberant Ratio (DRR) is an impor-
tant characterization of a reverberant environment. This work
presents a novel blind DRR estimation method based on the
coherence function between the sound pressure and particle
velocity at a point. First, a general expression of coherence
function and DRR is derived in the spherical harmonic domain,
without imposing assumptions on the reverberation. In this work,
DRR is expressed in terms of the coherence function as well as
two parameters which are related to statistical characteristics
of the reverberant environment. Then, a method to estimate
the values of these two parameters using a microphone system
capable of capturing first order spherical harmonics is proposed,
under three assumptions which are more realistic than the diffuse
field model. Furthermore, a theoretical analysis on the use of
plane wave model for direct path signal and its effect on DRR
estimation is presented, and a rule of thumb is provided for
determining whether the point source model should be used for
the direct path signal. Finally, the ACE Challenge Dataset is used
to validate the proposed DRR estimation method. The results
show that the average full band estimation error is within 2 dB,
with no clear trend of bias.

Index Terms—Direct-to-Reverberant Energy Ratio, higher
order microphone, spherical harmonics, spherical microphone
array.

I. INTRODUCTION

The direct-to-reverberation energy ratio (DRR), defined as
the energy ratio between direct signal and its reverberations,
is an important parameter to characterize a reverberant envi-
ronment, along with other parameters such as reverberation
time. Since reverberation energy affects the speech signal’s
clarity [1], the DRR has an influence on the algorithms
for various applications such as speech dereverberation [2],
teleconferencing [3] and hearing aids [4], both in terms of
algorithm performance and strategy. The minimum audible
difference in DRR has been investigated in [5]. In [6], DRR is
utilized for parametric spatial audio coding. DRR also finds its
application in the field of psychoacoustics, where it is believed
that DRR helps human to determine the distance of the sound
source [7], [8], [1].

DRR estimation methods based on estimating room impulse
responses have been presented by Larsen et al. [9] and Falk et
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al. [10], However, pre-processing is required for both methods.
Mosayyebpour et al. [11] presented a method for blind DRR
estimation based on higher order statistics, where the inverse
filter of the room impulse response is estimated using the
skewness of the speech signal. Parada et. al. presented a single
channel DRR estimation method base on a neural network
learning algorithm [12].

Methods for blind DRR estimation using multiple sensors
have also been proposed in literature. With the goal of esti-
mating source distance, Lu [13] presented a DRR estimation
algorithm using the equalization-cancellation method, where
a binaural microphone system is used to capture sound sig-
nal. The coherence function framework was first introduced
by Vesa [14] for estimating source distance using binaural
signals, where the coherence function of the two input signals
was used as a characterization of source distance. Later, the
coherence function framework was also used by Jeub [15] to
develop a DRR estimation algorithm. In this work, the DRR
is estimated by comparing coherence value computed from
two microphone inputs with theoretical coherence functions
in a diffuse sound field. Thiergart [16] also developed a
DRR estimation algorithm based on the complex coherence
function of two omnidirectional microphones. In [17] a DRR
estimation method based on spectra standard deviation of two
microphones was proposed.

Directional or beam forming microphone arrays have also
been used to estimate DRR, such as the methods presented
in [18] and [19]. In both of these works, the power spectral
density (PSD) of the reverberant field were used to estimate
DRR. Another method [20] uses a circular microphone array
to estimate DRR, the method relies on the spatial correlation
matrix of the microphones’ received signals. The reverberation
is modelled as a diffuse field in that work, while the direct path
is assumed to be a plane wave. The DRR is solved using the
least mean square method. Kuster [21] presented a method
based on coherence function of sound pressure and particle
velocity at the receiver position, measured by a differential
microphone array.

In recent years, the use of higher order microphones and
the technique of spherical harmonic decomposition [22] have
become popular in the field of room acoustic analysis. Jarrett et
al. [23] proposed a method to estimate Signal-to-Diffuse Ratio
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(SDR, equivalent to DRR when assuming diffuse reverberation
field) utilizing spherical harmonic coefficients captured by
a higher order microphone. It is shown that this method
minimizes the SDR estimation bias. In our previous work [24],
we implemented Kuster’s method [21] in spherical harmonic
domain, utilizing the first order spherical harmonic coefficients
to estimate DRR.

In many of the previous works, such as [21], [23], [16] and
our previous work [24], the direct path signal is assumed to
be a plane wave, and the reverberant sound field is assumed
to be diffuse field. In real-life reverberant environments where
these assumptions may not hold, the DRR estimation accuracy
of these algorithms may degrade. For example, the DRR
estimated using Kuster’s method tend to be higher than the
ground truth in reverberant rooms [21].

In this work, we first develop a general expression for
DRR estimation using the coherence function of the sound
pressure and particle velocity, using a point source model for
the direct path signal, and without applying any assumptions
for the reverberation field. Using the relationship between
spherical harmonic coefficients and acoustic particle velocity,
we develop the framework in the spherical harmonics domain.
Then, for the direct path model, we provide a detailed analysis
on the error in DRR estimation results when using the plane
wave model. We propose a rule of thumb for determining
whether the plane wave model can be used without introducing
significant error, based on the source-to-microphone distance
and target frequency. For the reverberation sound field, we
show that the reverberation characteristics related to DRR
estimation can be expressed using two parameters, and that
under the diffused field assumptions, the values of these
parameters can be determined theoretically, which results in
the simplified DRR solutions in [21] and [23]. We also provide
a theoretical analysis on the two parameters, their physical
meanings, and their impact on the DRR estimation, which
explains the positive bias phenomenon of Kuster’s method
[21]. Furthermore, we propose a method to estimate these
two parameters for a given reverberant environment, using a
first order microphone, under a number of assumptions on the
reverberant field which are less strict than the diffuse field
model. The DRR can then be calculated using the estimated
parameters.

The performance of the proposed DRR estimation algorithm
is verified using the ACE Challenge Dataset [25]. It is shown
that the results agree with the theoretical analysis, and that
the proposed method addresses the positive bias problem of
Kuster’s method [21], and the mean DRR estimation error is
less than 2 dB for all recording scenes in the ACE Challenge
Dataset.

II. BACKGROUND THEORY

A. Spatial soundfield decomposition

In this work, the spherical harmonic decomposition is used
to describe the spatial sound field in the proximity of the
microphone system. The sound pressure within a free space
region at a point (7,0, ¢) with respect to an origin O of the

spherical co-ordinate system can be written as [26]

Pr,0,0,k) =3 > Bum(k)jn(kr)Yam(0,0), (1)

n=0m=—n

where S, (k) are soundfield coefficients, k = 27 f/c is the
wave number, f is the frequency, ¢ is the speed of sound
propagation, j, (kr) is the nth order spherical Bessel function
of the first kind, Y},,,(0,¢) are the spherical harmonics,
defined by

A 2 1 - ' m
Ynm(9,¢>=\/( n4: )EZ+:2:;!an|(Cos9)e e

where P, |, (cos 0) are the associated Legendre functions, and
i = +/—1. In literature, the representation (1) is referred to as
spherical harmonic expansion, wave-domain representation,
modal expansion, or multi-pole expansion of a wavefield.

B. First order microphone and acoustic particle velocity

In the general sense, microphones with certain directional
beam patterns, such as cardioid microphones and differential
microphones are commonly referred to as first order micro-
phones. In the context of spatial sound field recording based on
spherical harmonics decomposition, a first order microphone
is a microphone system which is capable of acquiring the Oth
and 1st order spherical harmonic coefficients of its surrounding
sound field, namely, g9, 511,810 and B1,_1 in (1). Specific
directionalities can be realized through applying beam-forming
algorithms on the Oth and 1st order coefficients.

First order microphones are known to have the ability to
pick up the velocity component of the impinging sound [27],
this velocity component is commonly described using the
concept of particle velocity, which refers to the velocity of
particle movement in the medium during wave propagation.
Here, we derive the expressions that relate the 1st order
spherical harmonic coefficients to the acoustic particle velocity
in the z,y and z directions. These expressions are used later
in the paper.

Defining the spherical coordinate system (r, 6, ¢) in relation
to the Cartesian coordinate system, the particle velocity at the
origin is related to the spherical harmonic coefficients by the
following theorem:

Theorem 1: The acoustic particle velocity at the point 0 =
(0,0,0) along the x,y and z axes at a particular frequency
k can be expressed using the first order spherical harmonic
coefficients,

ipocC

Vz(0,k) = \/%(511(/@ + B1,-1(k)) 3)
Vy(0,k) = \_/%(511(@ — B1,-1(k)) 4)
V(0. F) = 2 3y ), )

V127w

where pg is the density of the medium. Proof of Theorem 1
is given in Appendix A.

2329-9290 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TASLP.2016.2601222, IEEE/ACM

Transactions on Audio, Speech, and Language Processing

III. DRR ESTIMATION BASED ON COHERENCE
MEASUREMENTS

A. Representation of reverberant sound field

For convenience, the spherical coordinate system is defined
such that its origin is at the position of the microphone, and its
positive z axis points towards the impinging direction of the
direct path signal. In many scenarios, the natural coordinate
system may have a different orientation than our definition. In
such cases, the spherical harmonics defined under a different
coordinate system (with the same origin) can be transformed
into our desired coordinate system using the spherical har-
monic rotation, which is described in Appendix B.

The sound pressure at a point (1,0, ¢) close to the origin
can be decomposed using (1). For the direct path, we have

Z Z Brum (K)ju(kr)Yam (6, 6),  (6)

n=0m=—n

p(r,0,¢,k) =

where only the first order sound field is considered.
For the sound field due to reverberation, we have

(r,6,¢,k) Z Z (k) i (k1) Yo (0, ), ()

n=0m=—n
where B, (k) and a,,, (k) represent the coefficients of the
direct path and the reverberant sound field, respectively.
The following assumptions are made regarding the direct
path sound:
1: The direct path is due to a point source located at
(T07 197 SO) :
2: The direct path signal Pp(r, 0, ¢, k) is uncorrelated
with the reverberant sound field Pr(r, 0, ¢, k). Using
(6) and (7), this assumption can be expressed as

E{B,ma}, } =0, for all n and m.  (8)

where F{-} denotes the expectation operator.
Since the direct path signal is modelled as sound waves
emitted by a point source, By, (k) can be written using the
following expression [28]

Bum(k) = Ap ik B (kro) Yy, (9, ), )

where Ap indicates the magnitude of the impinging sound,
hg)(kro) is the nth order spherical Hankel function of the
first kind, r( is the distance between the point source and the
microphone with ro > r, (9, J, ¢) denotes the position of the
point source, and (-)* represents complex conjugate. Since the
coordinate system is defined such that ¥ = 0, and due to the
fact that Y71(0,¢) = Y71,_1(0,¢) = 0, we have Bi1(k) =
Bq,_1(k) = 0. Thus the combined sound field coefficients
Bnm (k) can be expressed as follows

Boo(k) = Apik hV (kre)Y:5(0,0) + ago(k),  (10)
Bro(k) = Apik BV (kro)Y75(0,0) + ago(k),  (11)
pri(k) = a1 (k), (12)
Br_1(k) = a1 _1(k). (13)

Equations (10)-(13) shows that in the coordinate system de-
fined in this section, the direct path signal is only present in

Boo(k) and Bio(k), but not in S11(k) and By, 1 (k).

B. Representation of DRR using coherence function

The coherence function between the sound pressure P(0, k)
and particle velocity V,(0,k) along the z direction can be
defined as [21],

|E{P(0, k)V:(0, k)" }|?

2 A

= . (14)
7 B{IP(0, K)PYE{V-(0, K)?}
Note that P(O k/’) 600}/00(0 0) = 1/\/ 270 and V, (O I{Z)
is proportional to B¢ - ' in (5). Substituting P(0, k) and (5)
into (14), and applying (10) (11), we have
2 _ |E{500(/610 ! l)*}|2 (15)

— E{|BoolPYE{|510l?}
_ |E{Ho(H1i)*} + E{aoo(a108)* }?

 (B{|Ho|*} + Eflaoo ) (E{[H1[*} + E{Ialol2}()l’6)

where the assumption that the direct path is uncorrelated with
the reverberations (8) is used, and we denote

Hy 2 Apik bV (kro) Y,
Hy 2 Apik h\Y (kro)Y7s.

a7
(18)

Note that the angle arguments (¢ = 0,¢ = 0) of Y., (9, »)
and the frequency arguments (k) of (,,,,, and c,,, have been
omitted for simplicity.

The linear scale direct-to-reverberant energy ratio is defined
here to be the ratio of measured acoustic energy at the position
of measurement due to the direct path and reverberation, since

P(O) = ﬁOOY()Os we have
E{|Pp(0)]*}  E{|Buol’}
DRR = = . (19)
E{|Pr(0)[*}  E{|aool*}
Using (9) to express Bgg in (19), we have
. 1 "
prR — PUADik R (kro)YGo P E{IHol’} o0
Ef]aool?} Ef]ago|?}
Substituting (20) into (15) yields
B (kro) Y7 E{aoo(a10i)*} |2
,2 = | ~DRR- <h(1)(k O)Yl*o) + = E{lao 7} o
1 (ko) Y E{|aio0]?}
(DRR + 1) DRR|h(1)(kT00)2;§0’ Famz])

which relates the coherence value 2 to the DRR of the room.
For convenience, we define

E{ago(aio - 9)"} Yoo
Effagol?t  Yio

E{laio]*} Y5

E{|agol?} Yo

as the reverberation parameters, and

HE (hil)(kro))*
hél)(k’f'())

Ry £ (22)

Ry £ (23)

(24)

! Although removing the imaginary argument i here does not affect v2, we
keep ¢ for the derivation of further expressions.
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Then (21) can be simplified as

9 | -DRR -i- H + Ry |?
V= 3 (25)
(DRR + 1)(DRR|H |2 + Ry)
_ |DRR[?|H|? + 2DRR - Im{HR}} + | R:1|? 26)

(DRR + 1)(DRR|H|2 + Ry) ’

where I'm{-} denotes imaginary part of the argument. From
(25) it can be seen the characteristics of reverberation which
affects DRR estimation using coherence method can be ex-
pressed using two parameters R; and Ro.

C. Assumptions for the reverberant sound field

1) Plane wave assumption for the direct path: In previous
works, the direct path signal is often assumed to be a plane
wave [21], [23]. Under this assumption, the following approx-
imation can be applied (see Appendix C for the proof)

Wi (krg)

lim ~ —i, 27
70—>00 hgl) (k?’l"o)
and (25) can be simplified into
DRR + R;|?
12 = JORR A T (28)

(DRR + 1)(DRR + R)
_ DRR?+2DRR - Re{R;} + | Ry >

(DRR + 1)(DRR + R») ’ 29)

where Re{-} denotes real part of the argument. The plane
wave assumption leads to bias in the DRR estimation, primar-
ily for lower frequencies and smaller values of ry, which is
shown in Section IV-B.

2) Diffuse reverberation assumptions in previous works:
In many previous works, the sound field due to reverbera-
tion is often modelled as diffused field [21], [23], although
the exact definition of diffused field may vary. In [23], the
diffuse field is defined as an infinite number of uncorrelated
plane waves impinging uniformly from the sphere. Under
this assumption, it is shown that E{agaj,} = 0, and
E{|anm|*} = E{|anm/|?} for all values of n and m [23].
In this case, Ry = 0,Ry = |Yp0|?/|Y10|? = 1/3, and
(29) becomes equivalent to the magnitude-squared version of
Eq.(18) in [23].2

In the case of Kuster’s work [21], the reverberant field
is assumed to be plane waves whose impinging directions
distribute uniformly over 6;, € [0, 27), where 6, is the angle
between direct path and the plane wave impinging direction.
This assumption differs from the reverberant field model used
in [23], where plane waves are distributed uniformly over the
sphere; this assumption can be fulfilled if the plane waves
impinge uniformly over a circle. Under this assumption, Kuster
has derived an expression for 42 which takes the same form
as (29), but with Ry =0, and R, = 0.5 [21].

2For coo and cyg, with Qg = (07 0).

3) Assumptions on reverberation used in this work: In
many real acoustic environments, the diffused field assump-
tions for reverberant field made in [23] and [21] often cannot
be met, which may lead to inaccuracies in the DRR estimation
result. In this work, in order to improve the accuracy of
DRR estimation, we relax some assumptions made on the
reverberant sound field. In particular, we assume that the
reverberant field satisfies the following conditions:

1: The average sound intensity (product of sound pres-
sure and particle velocity) [29] of the reverberant
field has the same magnitude in z, y and z directions.

[E{PV"} = [E{PV;"}| = |[E{P"V,"}]. (30)

where P" and V' denote sound pressure and particle
velocity due to reverberation, respectively.

2: The expected energy of the reverberant field particle
velocity is constant in x,y and z directions.

E{|V;[*} = E{|V,|"} = E{[VZI"}, 3D
3: The reverberant field sound intensity is zero mean
when averaged over a frequency band.
ka
/ E{P"(k)VI(k)"}dk = 0. (32)
k1

where k; and ko represent the boundary of a fre-
quency band.

In (32), the real part of P'V!™ is often referred to as the active
sound intensity, which represents the coherent flow of sound
energy in the z direction [29]. The imaginary part of sound
intensity, on the other hand, is referred to as the reactive sound
intensity, which represents the coherent, but non-propagating,
“standing wave” sound energy. A detailed justification of the
assumption (32) is given in IV-A.

In a diffuse sound field, both active and reactive components
of the sound intensity are equal to zero since the phase
of particle velocity varies randomly. The energy of particle
velocity can be analytically computed [23], [21]. Applying
these results to (28) leads to simplified expressions of 72 as
shown in [23] and [21].

However, this paper does not assume a diffuse field. Hence
the expected energy of the particle velocity and sound inten-
sity cannot be directly computed without the knowledge of
the reverberant field. Therefore, a method to estimate these
characteristics is needed to compute the DRR. The following
subsection describes one such method, using measurements
from a first (or higher) order microphone system.

D. Reverberant field estimation

From (12) and (13), it can be observed that the spherical
harmonic coefficients 811 and 31_1 do not contain the direct
path signal. In fact, 511 and (11 collectively represent the
particle velocity of the reverberations in the directions orthog-
onal to the direct path. The assumptions on the reverberation
(30), (31) and (32) can be expressed using spherical harmonic
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coefficients as

E{Oéoo a10t) }‘ _ ‘E{Oéoo a1t 4+ aq,—1%)* }‘
V12w 247
_ ‘ E{ap (11t — ag,—19)*} " (33)
241

2 E{|a1o)?} = E{|oas + a1 —1*} = E{|a1s — a1 1%},
(34)
and
ko

E{ago(k)(a10(k) - i)*}dk = 0. (35)

k1

Since it is assumed that the direct path signal is uncorrelated
with the reverberation signal, substituting (8), (10), (12) and
(13) into (33), we can write

V2| E{aoo(a0i)* }| = [E{Boo(Brri + B1,-19)"}|

= |E{Boo (P11 — B1,-17)"}[,  (36)
which illustrates a way to indirectly estimate the value of |R; |
in (29). Using (10) and (11), the energy of the reverberation
can be approximated by

Yo

E{\a00|2} = E{|500|2} Y2 | H |2

(E{|B10]*} — E{|a10]*})-
(37
If the plane wave model is used for the direct path, (37) can

be simplified using (27), as

E 2 E 2 E 2
E{|a00\2} ~ ( {|}€00200 } _ ﬂ}/ﬁéﬁﬂ } + {;%Od }>Y020,
(38)

where E{|a10|?} can be estimated using (34). Substituting
(34), (36) and (37) into (22), the estimation expression for
|R1| can be written as

1
R~ ——=-
Bl
|E{Boo(B11i + B1,-1)"}| + | E{Boo (P11t — B1,-17)" }|
E{|Bool?} — E{|ﬂ10|2}yfz;°§2 + Mpwr%

3

(39)

where we define

1
M £ §(E{|511 + 51,71|2} + E{|f11 — 51,71\2}) (40)
similarly, by substituting (12), (13) and (37) into (23), Ro can

be written as

My
Y2

@4
E{|BOO| } E{|ﬂ10| }Yz H2 +Mpwry2 H2

Note that all the coefficients required for the calculation can
be acquired by a first order microphone array directly. The
estimated values of |R;| and Ry can be directly substituted
into (26) or (29) to estimate DRR using 2.

E. DRR estimation procedure

Assuming that the value of DRR is positive, the solution
for DRR can be found by solving (25) or (29). For the plane
wave model, the solution can be derived as

DRR =

v+ Roy? + VAR P(y? — 1) + 97 (Ro — 1) + 4R29?
2 — 22 ’
(42)

where the assumption (32) is used, which leads to Re{R;} =
0. The calculated DRR is in linear scale, and the more
commonly used log-scale DRR|,, is defined as

DRR,, = 10log;, DRR. (43)

From our experience in testing the algorithm using the
ACE Challenge Development Dataset [25], the estimation
of |Ry| and Ry at a single frequency is often unstable.
However, for typical room environments, one can assume that
the characteristics of reverberation do not vary rapidly over
frequencies since sound waves of similar wavelength are likely
to have similar propagation modes. Therefore |R;| and Rs
can be seen as constant if the frequency band of interest is
sufficiently narrow, then one can use the average values of | R; |
and Ry over a particular frequency band for the calculation of
DRR for this frequency band.

For subband and full band DRR estimation, the results are
obtained by taking the average of the single frequency DRR
estimations within the band, then the values are converted to
log scale for convenience.

We recommend the following procedures to estimate the
DRR of a particular frequency band from a recording:

Step 1  Determine the direct path impinging direction using a suitable
Direction-of-Arrival (DOA) algorithm, which can be done
using the signal received by the first order (or higher order)
microphone.

Use an appropriate algorithm to detect the frames of the
recording that contain speech signal and calculate the Oth and
1st order spherical harmonic coefficients for each frequency bin
within the frequency band.

Rotate the spherical harmonics using the method in Appendix
B, such that the z-axis is aligned with the direct path.
Calculate [R1] and R2 for each frequency bin, using (39) and
(41), then average over all the frequency bins to obtain an
estimation for the whole frequency band.

Calculate v for each frequency and using (25) or (42) with the
averaged |R1| and Rz to estimate the DRR for each frequency.
Average the DRR estimations calculated from each frequency
bin to obtain the subband or full band DRR estimation. Convert
the result to log scale.

Step 2

Step 3

Step 4

Step 5

Step 6

A disadvantage of the original coherence method for DRR
estimation is that the angle between the direct path and the
particle velocity measurement direction is generally unknown,
and in a real measurement, the microphone have to be pointed
towards the direct path [21]. In our improved method, since
we use a first order microphone for measurement, which
records the complete sound field, it is possible to derive the
velocity measurement in any direction, through rotation of the
spherical harmonic coefficients. In addition, the data acquired
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Fig. 1. Theoretical 42 versus estimated direct-to-reverberant ratio (DRR)
calculated using (42), under various reverberation parameter settings.

by the microphone can be used to perform Direction-of-Arrival
(DOA) estimation for the direct path, therefore there is no
special requirement for positioning the microphone during
measurements.

IV. IMPACT OF PARAMETERS ON DRR ESTIMATION
A. Reverberation parameter

In order to illustrate the impact of Ry and Ry on
the estimated DRR, we plot the theoretical DRR against
72 using (29) with the diffuse field parameter setting
proposed by Kuster [21] (R1, R2) = (0,0.5) and Jarrett [23]
(R1,R3) = (0,1/3) as well as a number of other values
that were commonly found in our experiment (R;, Ry) =
{(0,0.28); (0.15,0.28); (—0.15,0.28); (0.257,0.28) }, as
shown in Fig. 1. Note that the assumption (32) is not applied
here, in order to illustrate the impact of R; on the DRR
estimation. It can be seen from Fig. 1 that depending on the
values of Ry and R», a deviation of £3dB in estimated DRR
can be observed for low values of 72.

From (22), it can be seen that R, is equivalent to the sound
intensity in the z direction with a certain normalization. Since
all normalization factors are real, the real and imaginary part
of R; correspond to the active and reactive sound intensity,
respectively. When Re{R:} > 0, it indicates that the net
energy flow of reverberation coincides with the direct path
signal, and as a result the reverberation will be “added” to the
direct path, and as a result contributes to coherence function
72 positively. On the other hand, if Re{R;} < 0, the net
reverberation energy flow in the z direction opposites the
direct path, essentially cancelling part of the direct path sound
intensity, therefore it contributes to 72 negatively. As a result
of this, as can be seen in Fig. 1, for the same value of 72, a
positive Re{R;} corresponds to low value of DRR, and vice
versa.

The absolute value of R; represents the overall coherence
of the reverberant field in the z direction. This includes the
reactive part of R;, which corresponds to the resonating
reverberation energy. It can be seen from (29) that |R; | always
contributes to v? positively. Therefore, as seen in Fig. 1, a non-
zero value of | Ry | results in lower value of DRR, for the same
2, this is especially significant at lower values o ~2.

Using a first order microphone, it is possible to estimate
|R1| for each frequency bin, if it is assumed that the rever-

berant sound intensity is uniform in each direction. Unfor-
tunatelly, the sign of Re{R;}, which indicates the direction
of energy flow, cannot be determined through observation
of the sound field in its orthogonal directions. However,
by observing the reverberation sound field from the ACE
Challenge Development Sataset [25], it was found that both
active and reactive sound intensity of the reverberation in
the z and y directions have zero mean when averaged over
each 1/3 octave subband, indicating that the energy flow of
reverberation changes randomly and rapidly with frequency.
Therefore it is reasonable to assume that PV is also zero
mean when observed at multiple frequencies. As as result,
when averaging the estimated DRR over each subband, the
impact of Re{R;} (and Im{H R} in (26)) on each frequency
bin will be cancelled out, and the term can be removed in the
derivation of (42), provided that appropriate frequency aver-
aging is performed after calculating DRR for each frequency
bin.

As can be seen from Fig. 1, Rs does not affect the estimated
DRR as strongly as R;, and a lower value of Rs results
in a slightly lower estimation of DRR. From (23) it can be
seen that Ry reflects the expected energy ratio between sound
pressure and particle velocity. In Jarrett’s diffuse field model
[23], the value of Ry is lower (Ry = 1/3), therefore, we expect
Jarrett’s method to yield a slightly lower estimation of DRR
compared to Kuster’s. From our analysis to the ACE Challenge
Development Dataset, the value of R typically varies between
0.25 — 0.33, which is close to Jarrett’s model (see Table II).

B. Nearfield sound source

In order to analyze the DRR estimation error due to using
a plane wave to approximate the direct path sound field, we
compute the difference in the estimated DRR using (25) and
(29) (ADRR £ 101og; o (DRRpjane/DRRpoint ). It can be seen
by observing (25) that the calculated DRRpine depends on the
product krg. Fig. 2 plots ADRR as a function of krg, for vari-
ous values of «2. In this figure, for simplicity, we assume that
R, =0, Ry = 0.5. The selected values of 72 (0.86,0.65,0.33
and 0.19) correspond to DRRpje = 10dB,5dB,0dB and
—2.5dB, respectively, using the parameter settings described
above.

al

£

w

ADRR (dB)
N

[y

o

Fig. 2. Plot of theoretical DRR versus krg using plane wave model (29) and
point source model (25) with v? = 0.86,0.65,0.33 and 0.19.

From Fig. 2 we can see that the plane wave model results
in higher DRR estimations than that of the point source
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model for smaller values of krg, where ADRR =~ 2 — 4
dB for krq = 0, depending on the value of 2. At higher
frequencies and larger source-microphone distance (higher
kro), the difference between the two methods reduce rapidly,
at krg > 3, the difference in the calculated DRR using the
two models becomes negligible.

Comparing the curves corresponding to each value of 2,
it can be seen that the estimation error of the plane wave
model is smaller when ~?2 is larger, corresponding to higher
values of DRR. The user may select the appropriate model
for their applications, based on the target frequency band and
expected source distance. Here, we propose a rule of thumb
for determining whether to use the point source model or the
plane wave model. When krg > 2, the error caused by plane
wave model is less than 0.5 dB for all values of 72, as can be
observed in Fig. 2. For kry < 2, the use of point source model
is recommended for improving DRR estimation accuracy.

V. VALIDATION USING ACE CHALLENGE DATABASE
A. The ACE Challenge Database

The ACE Challenge Database [25] is used to validate our
algorithm. The database consists of two datasets: the Evalua-
tion dataset, and the Development dataset. The Development
dataset is provided to the ACE Challenge participants as a
training database, using which the participants can train and
fine tune their algorithms. The Evaluation dataset is used to
evaluate the performance of fine-tuned algorithms.

The Evaluation dataset consists of 4500 synthesized record-
ings of various configurations. A total of 5 rooms are used to
record the room impulse responses, with two recording setups
(positions) for each room. The room details are summarized
in Table I. We note that although the impulse responses of 7
rooms were recorded according to [25], only 5 of them are
used to create the Evaluation dataset; the other two rooms
were used to create the Development dataset. The speech and
noise setup for the Development dataset differ from that of the
Evaluation database, therefore in this work, the Development
dataset is only used for developing the DRR algorithm; the
results presented in this section are all generated using the
Evaluation dataset.

The impulse responses are recorded using an Eigenmike,
and the reverberant speech recordings are synthesized by con-
volving the impulse responses with anechoic speech recordings
[25]. The speech recordings consist of voices of 10 talkers, 5
female and 5 male, with 5 separate utterance recordings for
each talker. Three different types of noise (“Ambient”, “Fan”
and “Babble”) are recorded separately under the same room
setup and mixed into the reverberant speech recordings, each
with three SNR settings (—1 dB, 12 dB and 18 dB).

The ground truths for both full band and subband DRR have
been provided. For subband DRR, the central frequencies for
all bands have been chosen according to the ISO standard [25].

B. Algorithm setup

Since the ground truth for direct path DOA is not given,
we have to estimate the DOA for each of the ten scene
setups. This is done by segmenting each speech recording into

multiple short frames, and selecting the frames that correspond
to the beginning of each utterance (where the impinging
signal is almost purely due to the direct path). To find the
frames containing speech, a simple speech detection algorithm
calculates the average signal energy of each frame, and select
the frames with higher energy, which are considered to contain
the speech signal. If the energy of a frame is significantly
higher than the previous one, then this window is considered
to contain the beginning of an utterance. We then calculate the
spherical harmonic coefficients for each selected frame and for
frequencies between 200-2000 Hz, and perform a frequency
averaged MUSIC DOA estimation in the spherical harmonic
domain [30], [31]. The estimated DOA is used for further
calculations.

In order to maintain the highest possible frequency resolu-
tion while at the same time to avoid violating the assumption
that the direct path signal and reverberations are uncorrelated,
we choose the analysis window length to be 10 ms. When fine-
tuning our algorithm using the ACE Development Dataset, it
was found that a window length shorter than 10 ms does not
reduce the average value of v2, therefore we assume that the
chosen window length is appropriate.

For each speech recording, only the windows that contain
the speech signal are used for analysis. For each frequency
subband, we calculate the Oth and 1st order spherical harmonic
coefficients for each selected window and for all the frequency
bins within each subband. We then follow steps 3 through 6
in Section. III-E to estimate DRR for each subband.

Although the ground truth for subband DRR is given for
all frequency bands between 20 Hz and 20 kHz [25], the
recorded speech signal does not cover the complete spectrum.
Therefore, we focus on the subbands with central frequency
between 199.52 Hz and 2511.89 Hz, where there is sufficient
energy in the speech recordings for DRR estimation. For this
reason, we cannot estimate the full band DRR in the complete
sense, instead, we calculate the average DRR over the selected
subbands, which is used as the full band estimation. The full
band ground truth DRR used for comparison is also calculated
by averaging the corresponding subband ground truths, instead
of using the full band DRR provided by the database.

The exact source-to-microphone distance is not provided
by the database. However, according to the organizer of the
ACE Challenge, the microphones are placed at no less than
1 m away from the source for all recording scenarios. Since
we only focus on frequencies above 199.52, using the rule of
thumb proposed in Section IV-B, krg =~ 3.66 > 2, therefore
the plane wave model is sufficiently accurate, hence used for
DRR estimation.

The error of estimated DRR is defined as

DRR
DRRpuin

The mean and standard deviation of DRR estimation error is
then calculated using DRR,,; from each recording.

DRR.;; = 101logy, ( ). (44)

C. Full band results

The full band DRR estimation results for the ACE Database
are shown in Fig. 3. In this figure, we plot the mean and
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TABLE I
ROOM DIMENSIONS (APPROX.) AND MINIMUM/MAXIMUM DRR FOR EACH ROOM RECORDING CONFIGURATION

Room Name Length (m) Width (m) Height(m) Volume (m®) Setup A min DRR Setup A max DRR Setup B min DRR Setup B max DRR
Lecture Room 1 6.9 9.7 3.0 200 -0.82 15 0.87 7.9
Lecture Room 2 13.4 9.2 29 360 -0.37 13 -3.7 6.4
Meeting Room 1 6.6 4.7 3.0 92 -2.0 11 -3.1 7.6
Meeting Room 2 10.3 9.2 2.6 250 -2.6 11 1.1 12
Office 2 5.1 32 29 48 -0.44 13 -2.3 9.5
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Fig. 3. Mean and standard deviation of estimated DRR using the proposed
method (blue), Kuster’s method (red) and Jarrett’s method (pink) for all 5
rooms and 2 locations (A and B) in each room, with 18 dB SNR, averaged
over 3 noise types. Dashed lines indicate ground truth DRR.

standard deviation of the DRR estimations for each of the 10
room configurations. Only the recordings with 18 dB SNR
are used for this analysis. In order to better evaluate the
performance of the proposed method, both Kuster’s [21] and
Jarrett’s [23] methods were implemented for comparison. In
the case of Kuster’s method, since the algorithm requires
a pair of omnidirectional microphones placed very close to
each other for recording, which is not available in the ACE
challenge (other microphone array setups used in the ACE
Challenge have a minimum spacing of 60 mm [25], which is
too large for accurate measurement of particle velocity), we
use the Oth and 1st order spherical harmonics in place of the
sound pressure and particle velocity in calculation. Since it is
shown that the spherical harmonics are equivalent to sound
pressure and particle velocity, this implementation is expected
to be representative of Kuster’s method.

It can be observed from Fig. 3 that all three methods yield
less than 3 dB mean error for all of the 10 room setups. The
method proposed by Jarrett et al. shows a similar trend as
that proposed by Kuster, but with a slightly lower estimation
of DRR in most setups, as can be expected from Fig. 1. The
proposed method, on the other hand, results in 1 — 3 dB lower
estimated DRR for most configurations.

A clear trend of DRR overestimation (estimated DRR higher
than ground truth) can be observed for both methods that as-
sume diffuse reverberant field. This is consistent with Kuster’s
observations from his experiments, where his method tend to
overestimate DRR in real-life recording setups. The proposed
method does not show any clear tendency of overestimation
or underestimation, with 5 of the setups having positive mean
error and the other 5 setups having negative mean error.

In terms of standard deviation, one would expect that

DRR Estimation Error (dB)
o
T
i
i
i
|
|
i
I
I
!
I
i

| | | |
199 251 316 398 501 631 794 1000 1258 1584 1995 2511
Central Frequency (Hz)

Fig. 4. Mean and standard deviation of subband DRR estimation error for
all rooms and configurations with 18 dB SNR, using the proposed method
(blue), Kuster’s method (red) and Jarrett’s method (pink).

the proposed method would yield higher standard deviation
compared to Kuster’s method, since in the proposed algorithm,
both |R;| and Ry need to be estimated for each frequency
band, which would add uncertainty to the distribution of
estimated DRR. However, from Fig. 3 it can be seen that the
proposed algorithm yields almost identical standard deviation
as Kuster’s method, which indicates that the primary contribu-
tor of standard deviation is the coherence function v2, which is
common for both the proposed method and Kuster’s method.

On the other hand, Jarrett’s method results in the lowest
error standard deviation for all scenarios. The reason for
this is that in the other two methods, only the first order
spherical harmonics are used to calculate the coherence 72,
while Jarrett’s method utilizes all of the available spherical
harmonic coefficients to reach a more consistent estimation
of 72, which reduces its deviation due to random interference
and other sources of error.

D. Subband results

The subband estimation results are shown in Fig. 4. In this
figure, we plot the mean and standard deviation of the subband
DRR estimation error using the proposed method as well as the
two baseline methods. The error mean and standard deviation
are averaged over the results from all 10 rooms, and once again
only the 18 dB SNR recordings are used for the analysis. Only
the DRR for the subbands with central frequency between 199
Hz and 2511 Hz are calculated.

From Fig. 4 it can be seen that in general, the mean error
of the proposed method falls within 1 dB of the ground
truth for all frequency bands. furthermore, the subband results
below 1000 Hz show a different pattern than the subbands
above 1000 Hz. Below 1000 Hz, the mean error are all
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Fig. 5. Mean and standard deviation of DRR estimation error with 18dB,
12dB and —1dB SNR.

positive, indicating a slight overestimation of DRR; the error
standard deviation is approximately 3 dB for these subbands.
On the other hand, for frequency bands above 1000 Hz,
the mean error becomes negative; the standard deviation of
estimation error reduces to 2 dB at 1000 Hz, and decreases
further at higher frequencies. On the other hand, both Kuster’s
and Jarrett’s methods show a clear trend of overestimation,
this is especially significant for Kuster’s method at lower
frequencies. Jarrett’s method yields lower DRR estimations
compared to Kuster’s, and in most frequency bands, have the
lowest standard deviation.

Due to the geometry of the Eigenmike, only the 1st order
spherical harmonics can be reliably captured for frequencies
below 1000 Hz [32]. Below 1000 Hz, the 2nd order spherical
harmonics are aliased onto the 1st order coefficients, and the
aliasing error increases with frequency; at 1000 Hz and above,
our algorithm begins to calculate the 2nd order coefficients,
which removes the aliasing and improves the accuracy of the
Ist order coefficients. Furthermore, at higher frequencies, the
wavelength of the sound becomes closer to the dimension
of the Eigenmike (8.4 cm diameter), which further increases
the accuracy of 1st order spherical harmonic acquisition. This
explains why the error standard deviation decreases gradually
at higher frequencies.

Overall it can be seen that compared to the two baseline
algorithms, the proposed method produces an unbiased DRR
estimation. The standard deviation of the proposed algorithm is
on par with Kuster’s method, but slightly higher than Jarrett’s
method.

E. Impact of noise on DRR estimation

In order to examine the impact of noise (interference) on
the result of DRR estimation, the algorithm is run for the
Evaluation dataset recordings of each SNR setting (18dB,
12dB and —1dB), and we calculate the mean and standard
deviation for each SNR setting, the results are shown in Fig. 5.
In this figure,the subband results are separated into three
frequency ranges: low (199-398 Hz), medium (501-1000 Hz)
and high (1258-2511 Hz). Each frequency range covers four
subbands, and the subband results are averaged within each
frequency range, in order to simplify the data representation.

It can be seen from Fig. 5 that the difference between the
estimation results with 18 dB and 12dB SNR is less than 1
dB. At —1 dB SNR, however, the DRR estimation becomes
strongly biased towards underestimation. The cause of this
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Fig. 6. Mean and standard deviation of DRR estimation error in multiple
noisy environments with —1dB SNR.
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Fig. 7. Normalized power spectrum of the “Ambient”, “Babble” and “Fan”
noises in the ACE Evaluation Dataset.

phenomenon is that the interference/acoustic noise, which does
not have the same impinging direction as the direct path signal,
will reduce the coherence between sound pressure and gradient
(particle velocity), resulting in a lower value of 2, thereby
lowering the estimated DRR.

The other impact of high interference level is the increased
error standard deviation. When developing and testing our
algorithm using the ACE Development Dataset, we noticed
that our frequency averaged MUSIC DOA algorithm became
much less reliable at —1 dB SNR, compared to 18 dB and
12 dB SNR. A direct result of inaccurate DOA estimation
is the decreased consistency of DRR estimations at different
utterance/interference configurations in the same room setup,
which is reflected by a higher error standard deviation. It is
expected that if a more interference-robust DOA algorithm is
applied, or if the DOA information can be measured directly,
the proposed algorithm would produce more consistent esti-
mations at low SNR.

How different types of interference affect the performance
of the DRR estimation is also investigated. The three noise
types mixed into the recordings each have different spectral
characteristics, and therefore their effects on the subband DRR
estimation vary. This is illustrated in Fig. 6, which plots the
estimation results for the low, medium and high frequency
ranges and for each of the three noise types. The SNR of all
recordings used in this analysis are —1 dB.

From Fig. 6 it can be seen that the “Ambient” noise type
has the least effect on DRR estimation accuracy causing only a
small bias towards under estimation, while the “Babble” noise
results in more than 3 dB of under estimation for all frequency
ranges. The “Fan” noise has slightly more impact than the
“Ambient” noise type, but less than that of the “Babble” noise.
The cause of this result is due to both the spectral and spatial
characteristics of the different noise types.
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TABLE I
MEAN OF ESTIMATED PARAMETERS IN EACH ROOM CONFIGURATION AND
FREQUENCY RANGE

[R1] Ry
Room Setup Low Med High Low Med High
Lecture Room | A 0.280 0.194 0.219 | 0288  0.251  0.265
B 0.277 0293  0.331 | 0290 0.293  0.332
Lecture Room 2 A 0.232 0201 0.146 | 0316 0.268  0.290
B 0.239  0.189  0.232 | 0337 0.277 0.314
Meeting Room | A 0.191  0.120  0.157 | 0.294 0.248  0.253
B 0.239 0279 0.118 | 0297 0.273  0.291
Meeting Room 2 A 0.226 0265 0.278 | 0201  0.329  0.321
B 0211 0215 0.225 | 0241  0.255  0.281
Office 2 A 0.268  0.167 0.174 | 0252 0.269  0.286
B 0.199 0213 0.193 | 0263 0.282 0278

Fig. 7 plots the normalized power spectrum of the three
noise types, the spectra are acquired by manually selecting
the sections of recordings that contain purely noise signal. It
can be seen that the “Ambient” noise consists of primarily low
frequency signals that do not overlap with the speech signal
spectrum. Therefore, the subbands of interest are most likely
to have higher SNR than the full band SNR of —1 dB. As a
result, the ambient noise has the least effect on the accuracy
of DRR estimation. On the other hand, the “Babble” noise
is essentially a speech recording by itself, therefore it almost
completely overlaps with the spectrum of the speech of the
talker, resulting in the lowest SNR in the speech spectrum
of the three noise types. The “Fan” noise has very similar
spectral characteristics as the “Ambient” noise type, although
its higher frequency components have more energy than that
of the “Ambient” noise, which leads to slightly more impact
on DRR estimation.

According to the ACE Challenge description [25], the “Fan”
noise is generated using one or two fans inside the recording
environment, while the “Babble” noise records the voices of
up to 7 people talking around the recording location. The
“Ambient” noise is a recording of the ambient noise within
the room. Due to the larger number of uncorrelated sources,
each with a different DOA, the “Babble” noise is likely to
have a lower coherence level than that of the “Fan” noise.
Therefore when mixed into the speech recording, the “Babble”
noise would lower 2 further than the “Fan” noise. Although
the nature of the “Ambient” noise is unclear, in typical room
environments its source is likely to be AC vents or windows,
both of which can be considered as localized sources, thus
creating a more coherent sound field than the “Babble” noise.
In addition, due to its spectral characteristics, its impact on
DRR estimation is the smallest of all three noise types.

F. Estimated parameters from the ACE Evaluation Dataset

The parameters |R;| and Ry estimated for each subband
of every speech recording in the ACE Evaluation Dataset has
been recorded and is presented in Table. II, where we have
taken the average values of |R;| and Ry for the low, medium
and high frequency ranges and for all the recordings from each
room configuration, only the data from recordings with 18 dB
SNR are used for this calculation.

As can be seen from Table II, although the values of R; and
Ry vary for each room configuration and frequency range, in

general, | Ry | falls within the range of 0.15-0.25, while Ry lies
in between 0.25-0.33 in the majority of cases. From Fig. 1,
it can be seen that the values of |R;| and Ry shown in Table
IT would lead to our proposed algorithm yielding lower DRR
estimations than assuming R; = 0, Ry = 0.5, which is indeed
the case in our estimation results.

From the above results, we believe that setting |R;| = 0.2
and Ry, = 0.28 provides a more reasonable and accurate
model for a general reverberant sound field within room
environments, compared to the diffuse model where it is
assumed that Ry = 0, and Ry = 1/2 or 1/3. It is sometimes
easier to acquire or implement differential microphone pairs
than complete first order microphone systems (such as the
Eigenmike), and when a differential array is to be used to
estimate room DRR, we suggest using (25) or (42) to calculate
DRR, and assume |R;| = 0.2, Rs = 0.28, which is likely to
yield more accurate estimation results.

VI. CONCLUSION

In this work, we present a novel algorithm for estimating
DRR using a first order microphone system. We show that
the proposed algorithm is a generalization of previous DRR
estimation methods based on sound pressure-particle veloc-
ity coherence function. Using the proposed algorithm, it is
possible to estimate the characteristics of a reverberant sound
field which are relevant to DRR estimation, thereby improving
the estimation accuracy of the method. We also show that at
low frequency and small source-to-microphone distance, using
the plane wave model for the direct path signal can result
in a positive bias on the estimated DRR. Through validating
the proposed algorithm using the ACE Challenge Dataset, it
was found that the proposed algorithm provides +2 dB mean
estimation error for the frequency range of human speech
(200-2500 Hz), and shows no obvious bias.

APPENDIX A
PROOF OF THEOREM 1

The particle velocity V. (xo,k) at position g, in the
direction z, is related to the sound pressure by

o 1 8P(w0,k)
~ kpoc  Ox

Ve (20, k) (45)
For the proof of (3), we consider the sound pressure at a point
on the x-axis, whose coordinate in the spherical coordinate
system is (r,7/2,0), the sound pressure can be decomposed
using (1),

P(r,go,k):z 3 Bnm(k)jn(kr)Ynm(g,O). (46)

n=0m=-—n

Taking the partial derivative of P(r,7/2,0, k) in the direction
of 7, which is equivalent to %, we have

OP(r,Z,0,k) = Qjn (kr) w

n=0m=-—n

47
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Since we consider the partial derivative at the origin, we let
7 — 0. Using the recurrent relationship [33]

. ) d jn(x
Mina@) = (4 V(@) = 20+ DD gy
and the fact that
1, ifn=0
n(0) =< "’ 49
in(0) 0, ifn=1,23.. “49)
It can be shown that
k ifn=1
lim 6],L(kr) _ /3, ifn ’ (50)
r—0  Or 0, otherwise.

In addition, Y1(7/2,0) = 0. Therefore from (47) we have

OP(r,3,0,k)
m

r—0 or

k T
*(5113/11( 0) + 51,713/1,71(5, 0))

(51)
Substituting (51) into (45) with the values Yy;(7/2,0) =

Y1 _1(7/2,0) = 1/3/8m completes the proof.

For the proof of (4), we consider the partial derivative of
sound pressure at (r,7/2,7/2). The derivation is identical
to that of %—I:, except that Yj,,,,(m/2,0) are replaced by
Yom(7/2,7/2).

In the case of (5), we consider the partial derivative of sound
pressure at (7,0, ¢) along r. Similar to (47), we can write

S IP I AL

n=0m=—n

OP(r,0, ¢,
(7 —— Y (0,¢).

(52)
Due to the fact that Y71(0,¢) = 0 and Y; _1(0,¢) = 0, and
utilizing (50), we can simplify (52), such that

. OP(r,0,9,k) k
}1_1)% o gﬁlon(Oa })

Substituting (53) into (45) with Yi0(0,¢) = /3/47 into
completes the proof.

(53)

APPENDIX B
SPHERICAL HARMONICS ROTATION

A method to rotate the calculated spherical harmonics so
that the rotated coefficients correspond to the desired coordi-
nate system is given as follows.

Our goal is to derive a transformation matrix M, so that the
original and transformed coefficients can be expressed using

Boo MOO MY My MY, Coo
B | | Mg M Mg M, Cii
B | Mm Mlo Mlo MO, Cio |’
8 Ml —1 M1 —1 e —1 Ml’,—l C
1,-1 00 11 10 1,-1 1,-1
(54)

where (,,, and C,,,, represent the spherical harmonic coef-
ficients after and before rotation, respectively. The values of
M ™ can be calculated using numerical integration [34],

.(8)ds

MY = / Yo (RS)Y (55)
S

where R denotes the rotation matrix for the spherical coor-
dinates. Since we are only concerned with the direction of
the z-axis, we can decompose the rotation into two steps: a
rotation along the z-axis by —¢, followed by a rotation along
the y-axis by —¢, where (¢, ¢) denote the impinging direction
of the direct path in the original coordinate system.

APPENDIX C
PROOF OF EQUATION (27)

The closed form expression of spherical Hankel functions
of the first kind is [33]

— N 1271 zzE n+

The expression of hél)(z) and hgl)(z) can then be written as

A (z) (—=2iz)7F.  (56)

1
hV(z) = - ie'*~ (57)
L2+
m(@) == e, (58)
substituting (57) and (58) into (27) yields
h{Y (k kro + i 1
im 711 (kro) _ 7j0+2 = lim (71+—) = —i,
r0—00 hé )(k?"o) ro—oo  1krg ro—00 kro
(59)
which completes the proof.
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