
Visual Comput (2005) 21: 629–638
DOI 10.1007/s00371-005-0346-7 O R I G I N A L A R T I C L E

Michael Waschbüsch
Stephan Würmlin
Daniel Cotting
Filip Sadlo
Markus Gross

Scalable 3D video of dynamic scenes

Published online: 31 August 2005
© Springer-Verlag 2005

M. Waschbüsch (�) · S. Würmlin ·
D. Cotting · F. Sadlo · M. Gross
Computer Graphics Laboratory
Department of Computer Science
Swiss Federal Institute of Technology
(ETH), Zurich
Switzerland
{waschbuesch, wuermlin, dcotting, sadlof,
grossm}@inf.ethz.ch

Abstract In this paper we present
a scalable 3D video framework for
capturing and rendering dynamic
scenes. The acquisition system is
based on multiple sparsely placed
3D video bricks, each comprising
a projector, two grayscale cameras,
and a color camera. Relying on
structured light with complemen-
tary patterns, texture images and
pattern-augmented views of the
scene are acquired simultaneously
by time-multiplexed projections and
synchronized camera exposures.
Using space–time stereo on the
acquired pattern images, high-quality
depth maps are extracted, whose
corresponding surface samples are

merged into a view-independent,
point-based 3D data structure. This
representation allows for effective
photo-consistency enforcement and
outlier removal, leading to a signifi-
cant decrease of visual artifacts and
a high resulting rendering quality
using EWA volume splatting. Our
framework and its view-independent
representation allow for simple and
straightforward editing of 3D video.
In order to demonstrate its flexibility,
we show compositing techniques and
spatiotemporal effects.

Keywords 3D video · Free-
viewpoint video · Scene acquisition ·
Point-based graphics

1 Introduction

As one of the many promising emerging technologies for
home entertainment and spatiotemporal visual effects, 3D
video acquires the dynamics and motion of a scene dur-
ing recording while providing the user with the possi-
bility to change the viewpoint at will during playback.
Free navigation regarding time and space in streams of
visual data directly enhances the viewing experience and
interactivity. Unfortunately, in most existing systems vir-
tual viewpoint effects have to be planned precisely and
changes are no more feasible after the scene has been
shot. As an example, Digital Air’s Movia R© systems com-
prise high-speed, high-definition digital cinema cameras
that are placed accurately such that no software view inter-
polation is needed. But as a consequence, postprocessing
and editing possibilities are restricted.

A number of multiview video systems allow for real-
istic rerenderings of 3D video from arbitrary novel view-
points. However, for producing high-quality results, the
capturing systems are confined to configurations where
cameras are placed very close together. As an example,
Zitnick et al. [38] covered a horizontal field of view of 30◦
with 8 cameras, where only linear arrangements were pos-
sible. For configurations that cover an entire hemisphere
with a small number of cameras, either model-based ap-
proaches need to be employed (e.g., Carranza et al. [6]
with 8 cameras) or degradation in visual quality has to be
accepted (e.g., Würmlin et al. [33] with 16 cameras). The
latter two systems are also limited by the employed recon-
struction algorithms to the capture of foreground objects
or even humans only, and scalability in terms of camera
configurations and data structures is not addressed. More-
over, the underlying representations and processes typic-
ally do not allow for convenient editing.



630 M. Waschbüsch et al.

Our work is motivated by the drawbacks of the afore-
mentioned systems and by the vision of bringing 3D video
to a new level where not only capturing and subsequent
high-quality rerendering is cost-effective, convenient, and
scalable, but also editing of the spatiotemporal streams is
easy to perform. We envision 3D video editing to become
as convenient as 2D home video editing. For this pur-
pose, we rely on view-independent 3D geometry streams,
which allow for similar authoring and editing techniques
as carried out in common 3D content creation and mod-
eling tools. Inserting novel objects to a scene or adding
spatiotemporal effects is becoming straightforward with
simple postprocessing methods, and one no longer has to
cope with the common limitations of image-based repre-
sentations.

Specifically, we make the following contributions in
this paper:

– We introduce sparsely placed, scalable 3D video bricks
that act as low-cost z-cameras and allow simultaneous
texture and depth map acquisition using space–time
stereo on structured light.

– We propose a view-independent point-based represen-
tation of the depth information acquired by the 3D
video bricks. Different postprocessing algorithms en-
able image generation from novel viewpoints with ap-
pealing quality.

– We present a probabilistic rendering technique based
on view-dependent EWA volume splatting, providing
clean images by smoothly blending noise from the re-
construction process.

– We demonstrate the suitability of our view-independent
3D representation for authoring and editing and show
several results of 3D video, including effects like ob-
ject cloning and motion trails.

2 Related work

This paper extends or integrates previous work in areas
like point-based computer graphics, depth-from-stereo,
and 3D video. For the sake of conciseness, we refer the
reader to the ACM SIGGRAPH 2004 course on point-
based computer graphics [1] and to relevant depth-from-
stereo publications [27, 37]. In the following discussion,
we will confine ourselves to related work in the area of 3D
video.

In 3D video, multiview video streams are used to
rerender a time-varying scene from arbitrary viewpoints.
There is a continuum of representations and algorithms
suited for different acquisition setups and applications.
Purely image-based representations [18] need many densely
spaced cameras for applications like 3D-TV [21]. Dy-
namic light field cameras [32, 35], which have camera

baselines of a couple of centimeters, do not need any
geometry at all. Camera configuration constraints can be
relaxed by adding more and more geometry to image-
based systems, as demonstrated by Lumigraphs [10].
Voxel-based representations [30] can easily integrate in-
formation from multiple cameras but are limited in
resolution. Depth-image-based representations [2, 28] use
depth maps that are computed predominantly by stereo
algorithms [9, 35, 38]. Stereo systems still require rea-
sonably small baselines and, hence, scalability and flexi-
bility in terms of camera configurations is still not
achieved. Redert et al. [26] use depth images acquired
by Zcams [13] for 3D video broadcast applications. Ap-
propriate representations for coding 3D audio/visual data
are currently investigated by the MPEG-4 committee [29].
On the other end of the continuum are model-based rep-
resentations that describe the objects or the scene by
time-varying 3D geometry, possibly with additional video
textures [6, 14]. Almost arbitrary camera configurations
become feasible, but most existing systems are restricted
to foreground objects only.

Besides data representations, one has to distinguish be-
tween online and offline applications. Matusik et al. [19,
20] focus on real-time applications, e.g., 3D video con-
ferencing or instant 3D replays. However, they are re-
stricted to capturing foreground objects only due to the
nature of their silhouette-based depth reconstruction algo-
rithms. Gross et al. [11] use a 3D video system based on
a point sample representation [33] for their telecollabora-
tion system blue-c and share the same limitation of only
being able to reconstruct foreground objects. Mulligan et
al. [22] also target telepresence. They compute geomet-
ric models with multicamera stereo and transmit texture
and depth over a network. Carranza et al. [6] present an
offline 3D video system that employs an a priori shape
model that is adapted to the observed outline of a human.
However, this system is only able to capture predefined
shapes, i.e., humans. The 3D video recorder [34] han-
dles point-sampled 3D video data captured by silhouette-
based reconstruction algorithms and discusses data stor-
age issues. No full scene acquisition is possible with the
last two systems, but almost arbitrary camera configura-
tions are possible. Zitnick et al. [38] proposed a layered
depth image representation for high-quality video view
interpolation. Reconstruction errors at depth discontinu-
ities are smoothed out by Bayesian matting. However,
this approach again needs a quite dense camera setup
to generate high-quality renderings in a limited viewing
range. Scalability to larger setups is not addressed by the
authors.

Cockshott et al. [7] also propose a 3D video studio
based on modular acquisition units and pattern-assisted
stereo. For concurrent texture acquisition, the patterns are
projected using strobe lights requiring custom-built hard-
ware. Only foreground objects are modeled using implicit
surfaces.



Scalable 3d video of dynamic scenes 631

3 Overview

Our 3D video acquisition system consists of several so-
called 3D video bricks that capture high-quality depth
maps from their respective viewpoints using calibrated
pairs of stereo cameras (Fig. 1). The matching algorithm
used for depth extraction is assisted by projectors illu-
minating the scene with binary structured light patterns.
Alternating projection of a pattern and its inverse allows
for concurrent acquisition of the scene texture using ap-
propriately synchronized color cameras.

Fig. 1. Overview of 3D video framework

The depth maps are postprocessed to optimize discon-
tinuities, and the results from different viewpoints are uni-
fied into a view-independent, point-based scene represen-
tation consisting of Gaussian ellipsoids. During merging,
we remove outliers by ensuring photoconsistency of the
point cloud with all acquired images from the texture cam-
eras. Editing operations like compositing and spatiotem-
poral effects can now be applied to the view-independent
geometry. Novel viewpoints of the dynamic scene are ren-
dered using EWA volume splatting.

4 Scalable 3D video bricks

In this section we present the concept of our low-cost
z-cameras realized by 3D video bricks allowing simultan-
eous acquisition of textures and depth maps.

4.1 Acquisition setup

The basic building blocks of the 3D video setup are
movable bricks containing three cameras and a projec-
tor illuminating the scene with alternating patterns. Two
grayscale cameras are responsible for depth extraction,
while a color camera acquires the texture information of
the scene. Figure 2 shows a single brick prototype with
its components. In our current implementation, we op-
erate with three bricks, each consisting of a standard
PC with a genlock graphics board (NVIDIA Quadro
FX3000G), a projector synchronizing to the input sig-
nal (NEC LT240K), and cameras having XGA resolution

Fig. 2. 3D video brick with cameras and projector (left), simul-
taneously acquiring textures (middle), and structured light patterns
(right)

(Point Grey Dragonfly). The components are mounted on
a portable aluminum rig as shown in Fig. 2. The system
is complemented by a synchronization microcontroller
(MCU) connected to the cameras and the genlock-capable
graphics boards.

At a certain point in time, each brick can only capture
depth information from a particular fixed position. In order
to span a wider range of viewpoints and reduce occlu-
sion effects, multiple movable bricks can be combined and
individually oriented to cover the desired working space
as illustrated in Fig. 3). Scalability of multiple bricks is
guaranteed because overlapping projections are explic-
itly allowed by our depth reconstruction and because the
computation load of each brick does not increase dur-
ing real-time recording. Each brick performs the grabbing
completely independently of the other bricks with the ex-
ception of the frames being timestamped consistently by
using a common synchronization device.

Fig. 3. Configuration of our 3D video prototype system

In order to compute valid depth maps and merge the
information gained from several bricks, all cameras in
the 3D video system must be calibrated intrinsically and
extrinsically. We determine imaging properties of all cam-
eras using the MATLAB camera calibration toolbox [3].
The projectors do not need to be calibrated.

4.2 Simultaneous texture and depth acquisition

Each brick concurrently acquires texture information with
the color camera and depth information using the stereo



632 M. Waschbüsch et al.

Fig. 4. Camera exposure with inverse pattern projection

pair of grayscale cameras. Stereovision (Sect. 4.3) gener-
ally requires a highly texturized scene to find good corre-
lations between different views. It generally fails in recon-
structing simple geometry of uniformly colored objects,
e.g., white walls. Additionally, the textures should be non-
periodic to guarantee unique matches. As a consequence,
we add artificial textures to the scene by projecting struc-
tured light patterns, as originally proposed by Kang et
al. [16]. We use a binary vertical stripe pattern with ran-
domly varying stripe widths. It supports strong and unique
correlations in the horizontal direction and is at the same
time insensitive to vertical deviations that may occur from
inaccuracies in the camera calibration. To avoid untextur-
ized shadows, the scene is illuminated by patterns from all
bricks at the same time. Our approach has the advantage
of being insensitive to interferences between the different
projections and does not need a projector calibration, un-
like pure structured light approaches or stereo matching
between cameras and projectors.

Alternating projections of structured light patterns, and
the corresponding inverses allow for simultaneous acqui-
sition of the scene textures using an appropriately syn-
chronized texture camera as illustrated in Fig. 4. Note that
this camera does not see the patterns emanating from the
projector, but only a constant white light, which preserves
the original scene texture (Fig. 2).

Since the patterns are changing at a limited rate of
60 Hz (projector input frequency), flickering is slightly
visible to the human eye. Alternative solutions using im-
perceptible structured light [8] do not show any flickering,
but require faster, more sensitive, and, therefore, more ex-
pensive cameras for reliable stereo depth extraction.

4.3 Stereo matching on structured light

Each brick acquires the scene geometry using a depth-
from-stereo algorithm. Depth maps are computed for the
images of the left and right grayscale cameras by search-
ing for corresponding pixels. To reduce occlusion prob-
lems between the views, the cameras are mounted at
a small horizontal baseline of 20 cm.

In recent decades, a large variety of stereo algorithms
has been developed. A survey of different methods and
their implementations can be found in Scharstein et
al. [27]. Recently, Zitnick et al. [38] used a segmentation-
based algorithm to generate high-quality 3D video. Ex-
periments have shown that the approach works well for

conventional passive stereo but fails on structured light
patterns, where segments seem to become too small and
too similar to result in unique correlations. According to
the authors, their method is more suited for multibaseline
stereo applications.

Our work is based on space–time stereo [36, 37] that
exploits time coherence to correlate the stereo images and
computes disparities with subpixel accuracy. The authors
formulate stereo matching as a maximization problem
over an energy E(d, du, dv, dt) that defines a matching
criterion of two pixel correlation windows. The solution
delivers both the disparity d and its derivatives du, dv in
image space and dt in the time domain. In contrast to
the original work, we employ the maximum normalized
cross correlation (MNCC) as similarity measure, which
is robust against global color variations between the left
and right image. In our implementation, we optimize E
using the downhill-simplex method. To prevent the algo-
rithm from converging to a local minimum, we use the
disparities of neighboring pixels as a starting guess for the
optimization and additionally repeat the process with sev-
eral random starting values. We consider the maximum
value of E as a measure of the correlation quality and
reject all disparities with an energy below a certain thresh-
old.

The number of potential outliers can be decreased by
extending the correlation window in the temporal dimen-
sion to cover three or more images. However, because
correlation assumes continuous surfaces, there arise some
artifacts at depth discontinuities. For moving scenes, dis-
continuities in the image space are extended into the tem-
poral domain, making correlation computation even more
difficult. For complex dynamic scenes, we therefore use
an adaptive correlation window covering multiple time
steps only in static parts of the images that can be de-
tected by comparing successive frames. Remaining errors
are smoothed out with our discontinuity optimization ap-
proach presented in the next section.

4.4 Discontinuity optimization

We smooth discontinuity artifacts by applying a two-phase
postprocessing to the disparity images. First, we conser-
vatively identify the regions of wrong disparities. Second,
we extrapolate new disparities into these regions from
their neighborhoods.

In the first phase, the detection of occluded parts is per-
formed by a simple cross checking. We perform the stereo
correlation twice, between the left and right image and
vice versa. Corresponding pixels in both disparity maps
should have the same values, otherwise they belong to
occlusions. This way we mask out all pixels whose dispar-
ities differ about more than one pixel.

The second phase operates on depth images computed
from the disparity maps. We detect remaining outliers and



Scalable 3d video of dynamic scenes 633

fill all missing depths by extrapolating from their neigh-
bors. To recover the correct discontinuities we block the
extrapolation at texture edges of the color images. As the
color textures are acquired by another camera, we first
warp the depth map into the texture camera. Then, we de-
compose the texture image into segments of similar colors
using simple color quantization. With a high probability,
all pixels in one color segment belong to one continuous
surface and therefore have similar depths. Differing depths
can be considered as outliers, which are identified by clus-
tering the depths in each color segment: the biggest cluster
is assumed to represent the correct surface; pixels of all
smaller clusters are removed. The holes in the depth map
are then filled by a moving least squares extrapolation [17]
constrained by the current color segment.

Figure 5 shows a comparison of the original depth
image with an image computed by our discontinuity op-
timization algorithm. For illustration we embedded the
edges of the texture images. Notice how holes are filled
and the depth discontinuities tightly fit to the color edges.
Nevertheless, errors in the color segmentation can still
lead to some outliers at discontinuities. However, most of
them are eliminated during view merging as discussed in
Sect. 5.2.

Fig. 5. Discontinuity optimization. Upper left: color image, up-
per right: color segmentation. Comparison of original depth image
(lower left) with the one after our discontinuity optimization (lower
right). For illustration, color edges have been embedded

5 View-independent scene representation

To model the resulting 3D scene, we propose a view-
independent, point-based data representation. By merg-
ing all reconstructed views into a common world refer-
ence frame, we achieve a convenient, scalable representa-
tion: additional views can be added very easily by back-

projecting their image pixels. Our model is in principle
capable of providing a full 360◦ view if the scene has
been acquired from enough viewpoints. Unlike image-
based structures, it is possible to keep the amount of
data low by removing redundant points from the geom-
etry [24]. Compared to mesh-based methods, points pro-
vide advantages in terms of scene complexity because
they reduce the representation to the absolutely neces-
sary data and do not carry any topological information,
which is often difficult to acquire and maintain. As each
point in our model has its own assigned color, we also
do not have to deal with texturing issues. Moreover, our
view-independent representation is very suitable for 3D
video-editing applications since tasks like object selection
or relighting can be achieved easily with standard point-
processing methods [1].

5.1 Point-based data model

Our point-based model consists of an irregular set of sam-
ples, where each sample corresponds to a point on a sur-
face and describes its properties such as location and color.
The samples can be considered as a generalization of con-
ventional 2D image pixels toward 3D video. If required,
the samples can be easily extended with additional at-
tributes like surface normals for relighting.

To avoid artifacts in rerendering, we have to ensure full
surface coverage of the samples. Thus, our samples cannot
be represented by infinitesimal points but need to be con-
sidered as small surface or volume elements. One obvious
representation are surfels [25], which are small elliptical
disks aligned tangentially to the surface. However, surfels
do not handle noise due to inaccurate 3D reconstruction or
camera calibration very well and require accurate geome-
tries and therefore stable surface normals.

Therefore, we have chosen a different approach, simi-
lar to that of Hofsetz et al. [12]. Every point is modeled by
a 3D Gaussian ellipsoid spanned by the vectors t1, t2, and
t3 around its center p. This corresponds to a probabilistic
model describing the positional uncertainty of each point
by a trivariate normal distribution

pX(x) = N(x; p, V)

= 1
√

(2π)3|V|e− 1
2 (x−p)TV−1(x−p) , (1)

with expectation value p and covariance matrix

V = ΣT ·Σ = (
t1 t2 t3

)T · (t1 t2 t3 ,
)

(2)

composed of 3×1 column vectors ti .
To estimate V, Hofsetz et al. [12] have chosen an ap-

proach based on the quality of the pixel correlation of the
stereo matching. It turns out that these resulting heuristic
uncertainties are quite large compared to the high-quality



634 M. Waschbüsch et al.

Fig. 6. Construction of a 3D Gaussian ellipsoid

disparities we are able to obtain from our structured-light-
assisted approach. Consequently, we propose a different
approach that constrains the uncertainties to cover only
small but well-defined acquisition errors. We assume that
most disparities are correctly estimated up to small errors
caused by deviations in the camera calibration and com-
pute point sizes that just provide full surface coverage.

Assuming a Gaussian model for each image pixel un-
certainty, we first compute the back-projection of the pixel
into three-space, which is a 2D Gaussian parallel to the
image plane spanned by two vectors tu and tv. Extrusion
into the third domain by adding a vector tz guarantees
a full surface coverage under all possible views. This is
illustrated in Fig. 6.

Each pixel (u, v) is spanned by orthogonal vectors
σu(1, 0)T and σv(0, 1)T in the image plane. Assuming
a positional deviation σc, the pixel width and height under
uncertainty are σu = σv = 1+σc. σc is estimated to be the
average reprojection error of our calibration routine.

The depth z of each pixel is inversely proportional to
its disparity d as defined by the equation

z = − fL · ‖cL − cR‖
d + pL − pR

, (3)

where fL is the focal length of the left rectified camera, cL
and cR are the centers of projection, and pL and pR the u-
coordinates of the principal points. The depth uncertainty
σz is obtained by differentiating Eq. 3 and augmenting the
gradient ∆d of the disparity with its uncertainty σc:

σz = fL · ‖cL − cR‖
(d + pL − pR)2 · (∆d +σc) . (4)

Now, we can construct for each pixel its Gaussian in
ray space with

ΣR =
(

σu · z 0 σz ·u
0 σv · z σz ·v
0 0 σz

)

. (5)

This is transformed into the world coordinate system by

Σ = P−1 ·ΣR (6)

using the camera projection matrix P.
The centers p of the ellipsoids are constructed by back-

projection as

p = P−1 · (u, v, 1)T · z + c , (7)

where c is the center of projection of the camera.

5.2 Photoconsistency enforcement

After back-projection, the point model still contains out-
liers and falsely projected samples. Some points originat-
ing from a specific view may look wrong from extrap-
olated views due to reconstruction errors, especially at
depth discontinuities. In the 3D model, they may cover
correct points reconstructed from other views, disturbing
the overall appearance of the 3D video. Thus, we remove
those points by checking the whole model for photocon-
sistency with all texture cameras.

After selecting a specific texture camera, we succes-
sively project each ellipsoid (as computed in Sect. 5.1)
into the camera image in increasing depth order, starting
with the points closest to the camera. We determine all
pixels of the original image that are covered by the pro-
jection and not yet occluded by previously tested, valid
ellipsoids. We compare the average color of those pixels
with the color of the ellipsoid. If both colors differ too
much, the point sample is removed. Otherwise, we raster-
ize the ellipsoid into a z-buffer that is used for occlusion
tests for all subsequent points.

As a result, enforcing photoconsistency considerably
improves the seamless fit of multiple acquired depth maps
in our model. The reduction of artifacts can be clearly
seen in Fig. 7. Nevertheless, there remain some issues with
mixed pixels, i.e., silhouette pixels possessing a color in-
terpolated from different surfaces. These tend to produce
holes in the cleaned model. This may be solved using
boundary-matting techniques [15]. Currently, we apply
our consistency check conservatively and tolerate remain-
ing outliers which are not detected.

Fig. 7. Enforcing photo consistency during view merging: Without
(left) and with (right) enforcement



Scalable 3d video of dynamic scenes 635

6 Rendering

We render novel viewpoints of the scene using the GPU
and CPU cooperatively. Smooth images are generated
using the uncertainties of the Gaussian ellipsoids. Our
method combines the advantages of two probabilistic
image generation approaches described in Broadhurst et
al. [4]. Additionally we perform a view-dependent blend-
ing similar to Hofsetz et al. [12].

6.1 Probabilistic rendering

Broadhurst et al. [4] use probabilistic volume ray casting
to generate smooth images. Each ray is intersected with
the Gaussians of the scene model. At a specific intersec-
tion point x with sample i , the evaluation N(x; pi; Vi)
of the Gaussian describes the probability that a ray will
hit the corresponding surface point. To compute the final
pixel color, two different approaches are described. The
maximum likelihood method associates a color with the
ray using only the sample with the most probable inter-
section. The second approach employs the Bayes rule: It
integrates all colors along each ray weighted by the proba-
bilities without considering occlusions. Thus, the color of
a ray R is computed as

cR =
∫

x∈R

∑
i ci N(x; pi, Vi)∫

x∈R

∑
i N(x; pi, Vi)

. (8)

The maximum likelihood method generates crisp im-
ages, but it also sharply renders noise in the geometry. The
Bayesian approach produces very smooth images with
fewer noise but is incapable of handling occlusions and
rendering solid surfaces in an opaque way.

We propose a rendering method that combines both
approaches in order to benefit from their respective advan-
tages. Our idea is to accumulate the colors along each ray
as in the Bayesian setting but to stop as soon as a max-
imum accumulated probability has been reached. Reason-
ably, a Gaussian sample should be completely opaque if
the ray passes its center. The line integral through the cen-
ter of a 3D Gaussian has a value of 1

2π
and for any ray R it

holds that
∫

x∈R

N(x; p, V) ≤ 1

2π
. (9)

Thus, we accumulate the solution of the integrals of Eq. 8
by traversing along the ray from the camera into the scene
and stop as soon as the denominator of Eq. 8 reaches 1

2π
.

Assuming that solid surfaces are densely sampled, the
probabilities within the surface boundaries will be high
enough so that the rays will stop within the front sur-
face.

Fig. 8. Comparison of maximum likelihood (left) and Bayesian ren-
dering (center) with our approach (right)

We compare the maximum likelihood and Bayesian
rendering with our approach on noisy data in Fig. 8. No-
tice the large distortions in the maximum likelihood image
that get smoothed out by the other two methods. How-
ever, the Bayesian renderer blends all the points includ-
ing those from occluded surfaces, while our method ren-
ders opaque surfaces and maintains the blending. Thus,
our renderer provides the advantages of both previous
methods.

In our implementation, we replace the ray caster by
a volume splatter [39] running on graphics hardware.
After presorting the Gaussians according to their depths
by the CPU, the GPU splats them from front to back. The
pixel colors are blended according to the Gaussian alpha
masks until the accumulated alphas reach a level of satu-
ration. This is directly supported by the OpenGL blending
function GL_SRC_ALPHA_SATURATE.

6.2 View-dependent blending

One specific sample usually looks most accurate from the
view it has been acquired from. As the angle between the
acquisition and the virtual view becomes larger, the qual-
ity decreases depending on the depth uncertainty of the
Gaussian. Projections of samples with high uncertainty
become more and more stretched, introducing visible ar-
tifacts, while samples with low uncertainties look good
from all views. We treat this issue by applying the view-
dependent blending of Hofsetz et al. [12]. The authors
compute an alpha value representing the maximum opac-
ity of each Gaussian in its center using the view-dependent
criteria of Buehler et al. [5] weighted by the individual
depth uncertainty σz.

Compared to a conventional surfel-based approach our
combination of blending methods is able to better smooth
out geometry noise in the model. This is clearly visible in
Fig. 9.

7 Results and discussion

For the results presented in this section, we have recorded
a dynamic scene with our setup consisting of three
sparsely placed bricks covering an overall viewing angle
of 70◦ horizontally and 30◦ vertically. Figure 10 shows



636 M. Waschbüsch et al.

Fig. 9. Rendering using surfels (left) and our view-dependent uncer-
tainty blending (right)

novel views of the acquired scene in Fig. 2, rendered from
our reconstructed 3D model.

Our rerenderings have a decent look with a high-
quality texture. Acquisition noise is smoothed out by
our blending method. We are even able to reconstruct
highly detailed geometry like the folds in the tablecloth
shown in Fig. 11. However, there are still some artifacts
at silhouettes that we would like to eliminate in the fu-

Fig. 10. Re-renderings of the 3D video from novel viewpoints

Fig. 11. Geometric detail in the tablecloth. For illustration we re-
computed smooth surface normals and rendered the scene with
Phong lighting under two different illumination conditions

Fig. 12. Special effects: actor cloning (left), motion trails (right)

ture. This is possible by using matting approaches as
done by Zitnick et al. [38]. Some remaining outliers are
also visible in the images. They could be reduced using
a combination of multiple outlier removal algorithms [31]
and by enforcing time coherence in the whole recon-
struction pipeline. Big clusters of outliers tend to grow
in our discontinuity optimization stage if they dominate
the correct depths in a color segment. We are investi-
gating hierarchical segmentation approaches as a pos-
sible solution. Furthermore, enforcing time coherence
may help in filling remaining holes caused by occlu-
sions.

With our system we are able to acquire a large viewing
range with a relatively low amount of cameras. To sup-
port increasingly large ranges, our system is scalable up to
full spherical views. To fully cover 360◦ in all dimensions
about 8 to 10 3D video bricks are needed. Note that this
is not constrained to convex views. Although overlaps in
the geometry can help to improve the overall quality due
to the photoconsistency enforcement, they are not required
as each brick reconstructs its own scene part indepen-
dently.

The use of projectors still imposes some practical con-
straints because of the visible light spots and shadows
that are created in the scene. We accept this limitation for
the sake of a maximum 3D reconstruction quality. Using
calibrated projectors it would be possible to compute the
incident light at each surface point and compensate for the
artifacts.

Our view-independent data model provides possibil-
ities for novel effects and 3D video editing. Due to its
point-based structure we are able to employ any kind of
available point processing algorithms [1]. Once the 3D in-
formation is available, selection and compositing issues
become straightforward and can be easily implemented
using spatial clustering or bounding box algorithms. Such
tasks are much harder to achieve on both conventional 2D
video and view-dependent 3D video approaches based on
light fields or depth maps only. Apart from the well-known
time freeze we show two example effects in Fig. 12. We
clone the actor by copying its corresponding point cloud
to other places in the scene. Motion trails are generated
by compositing semitransparent renderings of moving ob-
jects from previous timesteps.



Scalable 3d video of dynamic scenes 637

8 Conclusions and future work

We presented a system for recording, processing, and
rerendering 3D video of dynamic scenes. We are able to
obtain high-quality depth maps using space–time stereo
on structured light while concurrently acquiring textures
of the scene. The brick concept combined with a view-
independent data model allows for scalable capturing of
a large viewing range with sparsely placed components.
Decent-quality images of novel views are achieved using
Gaussian ellipsoid rendering with view-dependent blend-
ing methods. Our point-based, view-independent data rep-
resentation is well suited for spatiotemporal video editing.
The representation can directly benefit from a large var-
iety of available point-based processing algorithms, e.g.,
normal estimation [23] for relighting effects or simplifi-
cation [24] for further redundancy elimination or level-of-
detail rendering.

In the future, we will further investigate the editing
capabilities of our representation. The ultimate goal is to
provide a tool for spatiotemporal editing that is as easy to
use as today’s 2D video software and at the same time pro-
vides all novel possibilities that arise from a time-varying
3D scene representation. Furthermore, we would like to
improve the resulting image quality by exploiting inter-
brick correlation and eliminating remaining artifacts at
silhouettes using matting approaches. It would also be de-
sirable to achieve a comparable rendering quality using
passive reconstruction algorithms only, which would make
our system suitable for large outdoor scenes. In addition,
we want to address compression of time-varying point-
sampled 3D video streams.

Acknowledgement We would like to thank Stefan Rondinelli for
implementing the stereo algorithm and Tim Weyrich for the fruitful
discussions. This work is carried out in the context of the blue-
c-II project, funded by ETH Grant No. 0-21020-04 as an internal
polyproject.

References
1. Alexa, M., Gross, M., Pauly, M., Pfister,

H., Stamminger, M., Zwicker, M.:
Point-Based Computer Graphics.
SIGGRAPH ’04 Course Notes (2004)

2. Bayakovski, Y., Levkovich-Maslyuk, L.,
Ignatenko, A., Konushin, A., Timasov, D.,
Zhirkov, A., Han, M., Park, I.K.: Depth
image-based representations for static and
animated 3D objects. In: ICIP ’02, 3, 25–28
(2002)

3. Bouguet, J.Y.: Camera calibration toolbox
for matlab,
http://www.vision.caltech.edu/
bouguetj/calib_doc

4. Broadhurst, A., Drummond, T., Cipolla, R.:
A probabilistic framework for the space
carving algorithm. In: ICCV ’01,
pp. 388–393 (2001)

5. Buehler, C., Bosse, M., McMillan, L.,
Gortler, S., Cohen, M.: Unstructured
lumigraph rendering. In: SIGGRAPH ’01,
pp. 425–432 (2001)

6. Carranza, J., Theobalt, C., Magnor, M.,
Seidel, H.P.: Free-viewpoint video of
human actors. In: SIGGRAPH ’03,
pp. 569–577 (2003)

7. Cockshott, W.P., Hoff, S., Nebel, J.C.: An
experimental 3D digital TV studio. In:
Vision, Image & Signal Processing ’03,
pp. 28–33 (2003)

8. Cotting, D., Naef, M., Gross, M., Fuchs,
H.: Embedding imperceptible patterns into
projected images for simultaneous
acquisition and display. In: ISMAR ’04,
pp. 100–109 (2004)

9. Goldlücke, B., Magnor, M., Wilburn, B.:
Hardware-accelerated dynamic light field
rendering. In: VMV ’02, pp. 455–462
(2002)

10. Gortler, S.J., Grzeszczuk, R., Szeliski, R.,
Cohen, M.F.: The lumigraph. In:
SIGGRAPH ’96, pp. 43–54 (1996)

11. Gross, M., Würmlin, S., Näf, M.,
Lamboray, E., Spagno, C., Kunz, A.,
Moere, A.V., Strehlke, K., Lang, S.,
Svoboda, T., Koller-Meier, E., Gool, L.V.,
Staadt, O.: blue-c: A spatially immersive
display and 3D video portal for
telepresence. In: SIGGRAPH ’03,
pp. 819–827 (2003)

12. Hofsetz, C., Ng, K., Max, N., Chen, G.,
Liu, Y., McGuinness, P.: Image-based
rendering of range data with estimated
depth uncertainty. IEEE CG&A 24(4),
34–42 (2005)

13. Iddan, G.J., Yahav, G.: 3D imaging in the
studio (and elsewhere . . . ). In: SPIE ’01,
4298, 48–55 (2001)

14. Kanade, T., Rander, P., Narayanan, P.J.:
Virtualized reality: construction of virtual
worlds from real scenes. IEEE Multimedia
4(1), 34–47 (1997)

15. Kang, S., Szeliski, R.: Boundary matting
for view synthesis. In: CVPRW ’04
(2004)

16. Kang, S., Webb, J., Zitnick, L., Kanade, T.:
A multi-baseline stereo system with active
illumination and real-time image
acquisition. In: ICCV ’95, pp. 88–93 (1995)

17. Levin, D.: Mesh-independent surface
interpolation. In: Geometric Modeling for
Scientific Visualization, pp. 37–49, ed. by
Brunnett, Hamann, Mueller, Springer 2003

18. Levoy, M., Hanrahan, P.: Light field
rendering. In: SIGGRAPH ’96, pp. 31–42
(1996)

19. Matusik, W., Buehler, C., McMillan, L.:
Polyhedral visual hulls for real-time
rendering. In: EGRW ’01, pp. 115–125
(2001)

20. Matusik, W., Buehler, C., Raskar, R.,
Gortler, S.J., McMillan, L.: Image-based
visual hulls. In: SIGGRAPH ’00,
pp. 369–374 (2000)

21. Matusik, W., Pfister, H.: 3D TV: A scalable
system for real-time acquisition,
transmission, and autostereoscopic display
of dynamic scenes. In: SIGGRAPH ’04
(2004)

22. Mulligan, J., Daniilidis, K.:
View-independent scene acquisition for
tele-presence. In: International Symposium
on Augmented Reality, pp. 105–110 (2000)

23. Pauly, M., Gross, M.: Spectral processing
of point sampled geometry. In:
SIGGRAPH ’01(2001)

24. Pauly, M., Gross, M., Kobbelt, L.: Efficient
simplification of point-sampled geometry.
In: VIS ’02, pp. 163–170 (2002)

25. Pfister, H., Zwicker, M., van Baar, J.,
Gross, M.: Surfels: Surface elements as
rendering primitives. In: SIGGRAPH ’00,
pp. 335–342 (2000)

26. Redert, A., de Beeck, M.O., Fehn, C.,
Ijsselsteijn, W., Pollefeys, M., Gool, L.V.,
Ofek, E., Sexton, I., Surman, P.: ATTEST:
Advanced three-dimensional television
system technologies. In: 3DPVT ’02,
pp. 313–319 (2002)

27. Scharstein, D., Szeliski, R.: A taxonomy
and evaluation of dense two-frame stereo
correspondence algorithms. Int. J. Comput.
Vis. 47(1–3), 7–42 (2002)

28. Shade, J., Gortler, S., He, L.W., Szeliski,
R.: Layered depth images. In:
SIGGRAPH ’98, pp. 231–242 (1998)

29. Smolic, A., Kimata, H.: Description of
exploration experiments in 3DAV. In:
JTC1/SC29/WG11 N6194. ISO/IEC
(2003)

30. Vedula, S., Baker, S., Kanade, T.:
Spatio-temporal view interpolation. In:
EGRW ’02, pp. 65–76 (2002)

31. Weyrich, T., Pauly, M., Keiser, R., Heinzle,
S., Scandella, S., Gross, M.:
Post-processing of scanned 3D surface



638 M. Waschbüsch et al.

data. In: Eurographics Symposium on
Point-Based Graphics ’04 (2004)

32. Wilburn, B., Joshi, N., Vaish, V., Talvala,
E.V., Antunez, E., Barth, A., Adams, A.,
Horowitz, M., Levoy, M.: High
performance imaging using large camera
arrays. In: SIGGRAPH ’05 pp. 765–776
(2005)

33. Würmlin, S., Lamboray, E., Gross, M.: 3D
video fragments: Dynamic point samples
for real-time free-viewpoint video. In:
Computers and Graphics ’04 28(1), 3–14
(2004)

34. Würmlin, S., Lamboray, E., Staadt, O.G.,
Gross, M.H.: 3D video recorder. In:
Proceedings of Pacific Graphics 2002,
pp. 325–334. IEEE Press, New York (2002)

35. Yang, J.C., Everett, M., Buehler, C.,
McMillan, L.: A real-time distributed light
field camera. In: EGRW ’02, pp. 77–86
(2002)

36. Zhang, L., Curless, B., Seitz, S.M.:
Spacetime stereo: shape recovery for
dynamic scenes. In: CVPR ’03,
pp. 367–374 (2003)

37. Zhang, L., Snavely, N., Curless, B., Seitz,
S.M.: Spacetime faces: high resolution
capture for modeling and animation. In:
SIGGRAPH ’04, pp. 548–558 (2004)

38. Zitnick, C.L., Kang, S.B., Uyttendaele, M.,
Winder, S., Szeliski, R.: High-quality video
view interpolation using a layered
representation. In: SIGGRAPH ’04,
pp. 600–608 (2004)

39. Zwicker, M., Pfister, H., van Baar, J.,
Gross, M.: EWA splatting. IEEE Trans.
Visual. Comput. Graph. 8(3), 223–238
(2002)

MICHAEL WASCHBÜSCH is currently a Ph.D.
candidate in the Computer Graphics Laboratory
at ETH Zurich. In 2003, he received his com-
puter science diploma degree from the Univer-
sity of Kaiserslautern, Germany. His research
interests include 3D video, 3D reconstruction,
point-based rendering, and graphics hardware.

STEPHAN WÜRMLIN is currently a postdoctoral
researcher in the Computer Graphics Labora-
tory and project leader of the blue-c-II project
(http://blue-c-II.ethz.ch). He re-
ceived his Ph.D. from ETH Zurich in 2004 on
the design of the 3D video technology for the
blue-c collaborative virtual reality system. His
current research interests include free-viewpoint
video, point-based representations and render-
ing, real-time rendering, virtual reality, and
multimedia coding.

DANIEL COTTING received his computer sci-
ence diploma degree from ETH Zurich. He is
currently enrolled in a Ph.D. program at the ETH
Computer Graphics Laboratory led by Prof. Dr.
Markus Gross. Daniel’s current research inter-
ests include projection and display technologies,
imperceptible structured light, augmented reality,
interaction, and 3D reconstruction.

FILIP SADLO is a Ph.D. candidate in computer
science at the Computer Graphics Laboratory of
ETH Zurich, where he received his diploma in
2003. His research interests include scientific vi-
sualization, 3D reconstruction, and imaging.

MARKUS GROSS is a professor of computer sci-
ence and director of the Computer Graphics Lab-
oratory of ETH Zurich. He received a Master of
Science in electrical and computer engineering
and a Ph.D. in computer graphics and image an-
alysis, both from the University of Saarbrucken,

Germany. From 1990 to 1994 Dr. Gross worked
for the Computer Graphics Center in Darmstadt,
where he established and directed the Visual
Computing Group. His research interests include
point-based graphics, physics-based modeling,
multiresolution analysis, and virtual reality. He
has been widely publishing and lecturing on
computer graphics and scientific visualization,
and he authored the book Visual Computing,
Springer, 1994. Dr. Gross has taught courses at
major graphics conferences including ACM SIG-
GRAPH, IEEE Visualization, and Eurographics.
He is the associate editor of IEEE Computer
Graphics and Applications and has served as
a member of international program committees
of many graphics conferences. Dr. Gross has
been a papers cochair of the IEEE Visualization
’99, Eurographics 2000, and IEEE Visualization
2002 conferences. He is currently chair of the
papers committee of ACM SIGGRAPH 2005.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice


