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Abstract In dynamic information environments such as the web, the amount of information is

rapidly increasing. Thus, the need to organize such information in an efficient manner is more

important than ever. With such dynamic nature, incremental clustering algorithms are always pre-

ferred compared to traditional static algorithms. In this paper, an enhanced version of the incre-

mental DBSCAN algorithm is introduced for incrementally building and updating arbitrary

shaped clusters in large datasets. The proposed algorithm enhances the incremental clustering pro-

cess by limiting the search space to partitions rather than the whole dataset which results in signif-

icant improvements in the performance compared to relevant incremental clustering algorithms.

Experimental results with datasets of different sizes and dimensions show that the proposed algo-

rithm speeds up the incremental clustering process by factor up to 3.2 compared to existing incre-

mental algorithms.
� 2015 Faculty of Engineering, Alexandria University. Production and hosting by Elsevier B.V. This is an

open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Data clustering [1] is a discovery process that groups set of
objects in disjoint clusters such that the intra-cluster similarity
is maximized and inter-cluster similarity is minimized. The

resulted clusters can explain characteristics of the underlying
data distribution which can be used as a foundation for other
data mining and analysis techniques. Data clustering is used in

a wide range of applications. For example, in marketing,
clustering is used to find group of customers with similar
behaviors [2]. In biology, it is used to find similar plants or ani-

mals given their features [3]. In search engines, clustering is
used to group similar documents to facilitate user search and
topics discovery [4], while in networks, clustering is used in

analyzing and classifications of network traffic [5]. Given the
number of clustering applications, there are challenges associ-
ated with the clustering process. Such challenges include the
choice of a suitable clustering algorithm, the choice of best rep-

resentative features of objects and the choice of appropriate
distance/similarity measure [6]. Other challenges include deal-
ing with outliers [7], ability to interpret clustering results (selec-

tion of cluster’s representative and cluster summarization) [8]
and dealing with huge number of dimensions and distributed
data [9].

Due to data overwhelming, new challenges have appeared
for traditional algorithms that were implemented before. One
challenge is the ability to perform incremental update of the
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clusters upon any change in the dataset. Traditional algo-
rithms require existence of the whole dataset before running
the algorithm. However, in many online applications where

the time factor is essential, traditional algorithms are not fea-
sible. As a result, algorithms that can perform incremental
updates to the clusters are always preferred in dynamic envi-

ronments. In such algorithms, objects are processed one at a
time and incrementally assigned to their prospective clusters
while they progress with minimized overload. Along with

incremental process, incremental clustering algorithms face
other challenges such as finding the best way to determine
the most suitable cluster that next object will be assigned,
and also once an object is assigned to a cluster, this assignment

may change in the future as new objects are added or removed
from the dataset (which is also known as The Insertion Order
Problem [10]).

In this paper, an incremental density-based clustering algo-
rithm is introduced for incrementally building and updating
clusters in the dataset. The proposed algorithm enhances the

clustering process by incrementally partitioning the dataset to
reduce the search space of the neighborhood to one partition
rather than the whole dataset. For each partition, the proposed

algorithm maintains an incremental DBSCAN algorithm to
detect and update dense regions at the partition with new
objects. Finally, to identify the final natural number of final
clusters, the algorithm employs a merging step to merge dense

regions in different partitions. Experimental results show that
the proposed algorithm speeds up the incremental clustering
process with a factor up to 3.2 compared to relevant existing

incremental clustering algorithms. The main contribution of
this work can be summarized in enhancing the incremental
DBSCAN algorithm by limiting the search space to partitions

instead of the whole dataset which speeds up the clustering pro-
cess. The proposed algorithm is proved to perform better than
the existing incremental DBSCAN especially in large datasets

with higher number of dimensions.
The rest of the paper is organized as follow: Section 2 dis-

cusses related work; Section 3 presents the proposed algorithm
in detail; Section 4 presents the experimental results with other

algorithms as well as the evaluation metrics and the datasets;
finally Section 5 concludes a summary of the proposed work
with potential future work.
2. Related work

Clustering is unsupervised classification of data into groups or

clusters. Existing clustering algorithms can be classified into
different classes. Centroid-based algorithms such as K-means
[11], PAM [12], BIRCH [13], and CLARANS [14] are simple

and fast to converge to local optimum; however they have lim-
itations of predefining the number of clusters and dealing with
clusters of different sizes and shapes. Hierarchical-based algo-
rithms include single linkage, CURE [15] and Chameleon [16]

can deal with different shapes and sizes of clusters and less sus-
ceptible to initialization and outliers; however they suffer from
two main limitations: firstly they can never undo what were

done (e.g. whenever two clusters are merged, they will always
be merged) and secondly their high complexity which makes
them slow to converge. Density-based algorithms such as

DBSCAN [17], SSN [18] and OPTICS [19] overcome the diffi-
culty of detecting arbitrary shaped clusters by extracting high
dense regions (clusters) separated by low dense regions.
Density-based algorithms can detect noise objects as they are
not reachable from any of the generated clusters and hence

noise has less effect of density based algorithms.
In dynamic environments where data are changing fre-

quently overtime, clustering algorithms are required to perform

the necessary updates incrementally in an efficient manner.
Many incremental clustering algorithms were developed to cope
with the dynamic nature of the data. Tzortzis and Likas [20]

proposed a kernel K-means as an extension of the standard
K-means that incrementally identifies nonlinearly separable
clusters based on kernel based clustering. Widyantoro and
Ioerger [21] proposed an incremental hierarchical clustering

algorithm that works in a bottom-up fashion such that a new
instance is placed in the hierarchy and a sequence of hierarchy
restructuring is performed only in regions that have been

affected by the presence of the new instance. Mary and Kumar
[22] proposed an incremental density-based algorithm that can
detect clusters with arbitrary shapes and handle updates in an

incremental manner. Hammouda and Kamel [23] proposed an
incremental similarity-histogram based algorithm where the
similarity histogram is a concise statistical representation of

the set of pair-wise document similarities distribution in the clus-
ter and objects are added to a cluster only if they enhance its sim-
ilarity histogram (keeping the distribution of similarities skewed
to the right of the histogram). As the incremental DBSCAN

algorithm [24] is used at one of the stages of the proposed algo-
rithm, more details are introduced in the next subsection.
2.1. Incremental DBSCAN algorithm

Incremental DBSCAN algorithm is density-based clustering
algorithm that can detect arbitrary shaped clusters. While sta-

tic DBSCAN [17] is applied to static datasets in which the exis-
tence of all objects is required before running the algorithm,
incremental DBSCAN [24] works by processing objects as they

come and update/create clusters as needed. Given two param-
eters Eps and Minpts:

Definition 1. The Eps neighborhood of an object p is donated
by NEps(p), is defined by NEps(p) = {q|dis(p,q) 6 Eps}.

Definition 2. An object p is directly density-reachable from
object q if p 2 NEps(q) and |NEps(q)| P Minpts (i.e. q is a core
object).

Definition 3. An object p is density-reachable from an object q

if there is a chain of objects p1,p2, . . .,pn such that pi+1 is
directly density reachable from pi and p1 = p and pn = q.

Due to the density-based nature of the incremental
DBSCAN algorithm, the insertion or deletion of an object
affects only the objects within a certain neighborhood

(Fig. 1). Affected objects are potentially the objects that may
change their cluster membership after insertion/deletion of
an object p and they are defined as the objects in the NEps(p)
plus all other objects that are density reachable from objects

in NEps(p). The cluster memberships of all other objects are
not affected.

Assuming that D is the objects space, following the inser-

tion of an object p, defines:



Figure 1 Affected objects due to insertion/deletion of object P.
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UpdSeedins = {q|q is a core object, $q0:q0 is a core object in
D [ {p} but not in D and q 2 NEps(q

0)}. For the UpSeedIns,
there are four cases to consider.

� If UpSeedIns is empty, then p is considered as a noise object.
� If UpSeedIns contains core objects which did not belong to a

cluster before the insertion of p, then p creates a new cluster
with these objects.
� If UpSeedIns contains core objects that belong to exactly
one cluster, then p joins this cluster.

� If UpSeedIns contains core objects that are members of sev-
eral clusters, then p merges all these clusters into one
cluster.

Similarity, after deletion of some object p, defines:
UpseedDel = {q|q is a core object in Dn{p}, $q0:q0 is a core

object in D but not in Dn{p} and q 2 NEps (q0)}. For the
UpSeeddel, there are three cases to consider.

� If UpseedDel is empty, then p is just removed.

� If UpseedDel contains objects that are density-reachable
from each other, then deletion of p causes some of objects
in NEps(p) to be noise (i.e. lose their cluster membership).

� If the objects in UpseedDel are not directly density-
reachable from each other, then these objects belong to
one cluster c before the deletion of p, so a check should

be performed whether these objects are density connected
by other objects in the former cluster c. Depending on such
density connections, the cluster c may be split or not.

3. Proposed algorithm

Fig. 2 shows the different stages of the proposed algorithm.
Initially, the algorithm requires defining of K partitions before
operating. The algorithm considers the first K objects to be
centroids of the K partitions are long as the distances between

them are larger than Eps. For the subsequent objects, the algo-
rithm incrementally partitions the dataset to eliminate the scal-
ability problem of scanning the entire search space for finding

the neighborhood of the new inserted object. Following assign-
ing the new object to its nearest partition, the algorithm
creates/updates dense regions in this partition according to
the incremental DBSCAN algorithm [24]. After that, the algo-
rithm incrementally merges the dense regions of different par-
titions based on a given connectivity measure to create/update

the possible final clusters. Finally, the algorithm labels outliers
and removes noise to produce the final clusters. Experimental
results show that the proposed algorithm speeds up the cluster-

ing process with a factor up to 3.2 compared to relevant incre-
mental clustering algorithms.

Algorithm 1 introduces the details of the proposed algo-

rithm for incrementally creating and updating clusters.

Algorithm 1: Incremental creating/updating clusters

Input: Set of new objects P, centroids

Output: create/update clusters after insertions of P

1: M List of object that may change their centroids

2: D List of updated dense regions

3: For each pi in P do

4: c nearest_centroid (pi)

5: M update_centroids (pi, c)

6: Add pi to M

7: end for

8: For each ri in M do

9: cn ri � new_centroid
10: co ri � old_centroid
11: Apply incDbscanDel to remove ri from co
12: Apply incDbscanAdd to insert ri to cn
13: Add updated dense regions to D (step 11 and 12)

14: end for

15: For each di in D do

16: For each dj in D and i – j do

17: If inter_connectivty (di,dj) > a merge

18: merge(di,dj)

19: end if

20: end for

21: end for

3.1. Incremental partitioning of dataset

Incremental partitioning for objects is needed to reduce the
search space for object’s neighborhood. Given a new object
p, the neighborhood is determined by scanning objects of the

nearest partition rather than the entire dataset (search space).
The partitioning algorithm divides the dataset into a prede-
fined number of partitions and assigns the object p to the par-

tition with the nearest centroid (line 4). Although several
incremental partitioning algorithms can be used at this stage
such as [25] and other partitioning algorithms, the proposed
algorithm uses the partition algorithm in [26] for the following

reasons. First, due to the dynamic nature of the dataset, old
objects may change their positions after the insertion of new
objects; thus, the partitioning algorithm should be able to

detect the existing objects that became closer to other centroids
after insertion of new objects (line 5). Second, it provides what
is called ‘‘stability”; the partitioning algorithm reaches stability

by utilizing a learning rate that decays with time so that objects
are consistently assigned to centroids and the centroids are
changing with a very small tolerance. The result of the parti-
tioning stage is finding the nearest centroid for the new object

p in addition to updating positions of current centroids with
respect to the employed learning rate.



Figure 2 Algorithm’s stages.
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3.2. Incremental DBSCAN of partitions

Incremental DBSCAN algorithm [24] is used to update dense

regions in partitions. A dense region can be defined as a set

of objects that can form a final cluster or be part of a final clus-
ter. Given the new object p, the insertion module of DBSCAN
(incDbscanAdd) is used to find a dense region at the nearest

partition that the object p can join. For the old objects which
changed their partitions, the deletion module (incDbscanDel)
is used to remove them from their old dense regions and inser-
tion module (incDbscanAdd) adds them to their new dense

regions (lines 8–14). The goal of this stage is updating dense
regions in different partition with the changes occurred in
the partitioning stage.
3.3. Incremental merging of dense regions

To form the final set of clusters, an additional stage is needed

to merge dense regions of different partitions. The number of

final clusters is less than or equal the number of dense regions
of the dataset. Given two regions A and B in two different par-
titions, A is merged to B if the inter-connectivity IE(A,B) is
greater than a predefined threshold a merge (lines 17–19).

Fig. 3 explains the idea of the inter-connectivity between two
dense regions. Assume there is an imaginary edge between
two borders objects in two different dense regions if the dis-

tance between these objects is less than the Eps defined by
the incremental DBSCAN algorithm, then the inter-
connectivity between dense regions A and B is defined as IE

(A,B) where

IEðA;BÞ ¼ Nab

ðNa þNbÞ=2 ð1Þ

where Na and Nb are the number of edges that connect boarder
objects in regions A and B respectively and Nab is the number

of edges that connect boarder objects from dense region A and
to objects in dense region B.
Figure 3 Interconnectivity between two regions.
3.4. Noise removal and outlier labeling

A final step is needed to eliminate noise from the dataset. The
proposed algorithm is able to detect and eliminate the noise
where noise objects are neither classified objects (not assigned

to a cluster) nor reachable from any core objects in the clus-
ters. However, objects whose distance to any cluster is less than
Eps are considered as outliers and they are labeled by the label

of the nearest cluster.
Fig. 4 shows an illustrative example for applying the pro-

posed algorithm on 2D dataset. Fig. 4.1 shows the dataset

before applying the proposed algorithm. After incrementally
partitioning objects, centroids started to take final positions
as shown in Fig. 4.2. While every partition maintains an incre-
mental DBSCAN, dense regions started to appear more obvi-

ously in Fig. 4.3 and finally, merging dense regions and noise
removal are applied as shown in Fig. 4.4.

4. Evaluation

The proposed algorithm is evaluated against two incremental
clustering algorithms: incremental version of DBSCAN [24]

and incremental similarity-histogram based clustering algo-
rithm (specific for documents clustering) [23]. The experiments
are performed on (Core i5, 6 GB RAM) machine and baseline

algorithms are implemented by authors of this paper for accu-
rate comparisons. Six datasets with different number of objects
and dimensions are used to evaluate the proposed algorithm as

shown in Table 1. The first three datasets are used to evaluate
the proposed algorithm with the incremental DBSCAN algo-
rithm [24] while the last three datasets (textual datasets) are
used to evaluate the proposed algorithm with incremental

similarity-histogram based clustering algorithm [23] which is
designed originally for document clustering.

4.1. Evaluation metrics

F-Measure is used to evaluate the accuracy of the final clusters

based on precision and recall while the speedup factor is used
to compare the running times of the algorithms.

F-Measure is commonly used in evaluating the effectiveness

of clustering and classification algorithms. It combines the
precision and recall ideas in information retrieval. The
F-Measure for class i and cluster j is given by the following

formula:

Fði; jÞ ¼ 2Precði; jÞ �Recallði; jÞ
Precði; jÞ þRecallði; jÞ ð2Þ

And the overall F-Measure for cluster algorithm quality is
given by the following formula where N is the total number
of the data points and ci is a candidate cluster.



Figure 5 Speedup factor for the numerical datasets for different

partitions.

Figure 4 An illustrative example.

Table 1 Datasets.

Dataset Classes Num of objects Type

Open digits 10 5620 Num, 64 dimensions

Pen digits 10 11,000 Num, 15 dimensions

SCC 10 600 Num, 60 dimensions

UW-CAN 10 314 Textual

4 Universities 7 8282 Textual

News Group 20 20,000 Textual
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F ¼
Xl

i

jcij
N
�maxfFði; jÞg ð3Þ

While the speedup factor is defined as the ratio of the base-

line algorithm to the run time of the proposed algorithm.

Speedup ¼ Tcompared

Tproposed

ð4Þ
4.2. Comparison with the incremental DBSCAN algorithm

In order to compare the proposed algorithm with the incre-
mental DBSCAN [24], same values of Eps and MinPts are
used in the experiment to show the effect of the enhancement.

However, for the proposed algorithm, there are two parame-
ters that can affect its performance:

1. The number of partitions (in the incremental partitioning
stage).

2. The value of a merge (in the incremental dense regions
merging stage)

Fig. 5 shows that the speedup factor (the ratio between exe-
cution time of the incremental DBSCAN [24] to the proposed

algorithm) increases with the increase of the number of parti-
tions as the search space is reduced. However, as the number
of partitions increases, the overhead of partitioning and merg-

ing also increases after which this overhead leads to decreasing
in the speedup of the proposed algorithm.
Fig. 6 shows that the proposed algorithm has a comparable
accuracy with the incremental DBSCAN algorithm.

As a result, the proposed algorithm maintains a nearly
same accuracy with incremental DBSCAN algorithm; however
the proposed algorithm has an advantage for the running time

with a factor up to 3.2.
Table 2 shows the best speedup factors of the proposed

algorithm relative to the incremental DBSCAN algorithm

for different datasets.
Table 3 shows the parameters used to conduct the experi-

ments for the different numerical database. The table shows
values for Eps, MinPts, number of partitions and Alpha

merge.

4.3. Comparison with the incremental similarity-histogram based
clustering (SHC) algorithm

Incremental similarity-histogram cluster (SHC) algorithm [23]
aims to cluster documents where the similarity histogram is a

concise statistical representation of the set of pair-wise docu-
ment similarities distribution in the cluster and objects are



Figure 7 Speedup factor for the textual datasets for different

partitions.

Figure 8 F-Measure for the proposed algorithm and SHC

algorithm.

Figure 6 F-Measure for the proposed algorithm and incremental

DBSCAN algorithm.

Table 3 Parameters used to conduct the experiments to

obtain best performance for numerical datasets.

Dataset Eps MinPts # partitions Alpha

Open digits 16 2 40 0.1

Pen digits 30 10 45 0.2

SCC 5 18 50 0.1
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added to a cluster only if they enhance its similarity histogram
(i.e. keeping the distribution of similarities skewed to the right

of the histogram).
The proposed algorithm is a general purpose clustering

algorithm that can operate on any type of data. In this case,
the proposed algorithm is evaluated with text data. Fig. 7

shows the speedup factor of the proposed algorithm compared
to SHC algorithm. It shows that the proposed algorithm
speeds up the clustering process to a factor up to 2.4.

Fig. 8 shows the F-Measure of the proposed algorithm to
SHC algorithm. Although SHC gives a slightly better accuracy
in UW-CAN dataset, the proposed algorithm gives higher

accuracy in 4 Universities and 20 News Groups dataset.
Table 4 shows the parameters used to conduct the experi-

ments for the different textual database. The table shows
values for Eps, MinPts, number of partitions and Alpha merge.

Table 5 shows the best speedup factors of the proposed
algorithm relative to the SHC algorithm for different datasets.

5. Discussion

An enhanced version of incremental DBSCAN algorithm is
proposed in this paper. The proposed algorithm speeds up

the clustering process by limiting the search space to partitions
instead of the whole dataset. The proposed algorithm is proved
to perform better than the existing incremental DBSCAN

especially in large datasets with higher number of dimensions.
It is clear that for the textual datasets the speedup factor

increases proportionally with the size of the dataset. Given

that the average size of documents is comparable in all textual
datasets, the proposed algorithm tends to perform better on
large datasets.
Table 4 Parameters used to conduct the experiments to

obtain best performance for textual datasets.

Dataset Eps MinPts # partitions Alpha

UW-CAN 20 12 20 0.15

4 Uni 30 6 50 0.23

News Group 15 11 30 0.1

Table 2 Speedup factor between the proposed algorithm and

incremental DBSCAN.

Open digits Pen digits SCC

1.85 1.3 3.2



Table 5 Speedup factor between the proposed algorithm and

SHC algorithm.

UW-CAN 4 Universities News Group

2.1 2.3 2.4

Efficient incremental density-based algorithm 1153
The proposed algorithm proves efficiency in clustering large
datasets especially with objects of high dimensions. Numerical
datasets with different dimensions show that the speedup fac-

tor increases with the increase of data dimensions of the
objects being clustered. This is expected due to the usage of
divide-and-conquer in dataset partitioning which leads to

fewer calculations to cluster different objects.

6. Conclusion and future work

In this paper, an incremental density-based clustering algo-
rithm is introduced to incrementally build and update clusters
in datasets. The algorithm incrementally partitions the dataset

to reduce the search space to each partition instead of scanning
the whole dataset. After that the algorithm incrementally
forms and updates dense regions in each partition. Following

identifying possible dense regions in each partition, the algo-
rithm uses an inter-connectivity measure to merge dense
regions to form the final number of clusters. Experimental
results show that the proposed algorithm has a comparable

accuracy compared to related incremental clustering algo-
rithms. However, the proposed algorithm has significant
improvements on the runtime with a speedup factor of 3.2.

The proposed algorithm is also proved to perform better in
large datasets with higher dimensions compared to related
algorithms.

Other possible enhancements to the proposed algorithm are
planned for future work. Probably a major enhancement is
designing the algorithm to work in a parallel manner. Given
the independence of the partitions, incremental DBSCAN for

each partition can be applied in parallel. It is expected that
the parallel version of the proposed algorithm will achieve bet-
ter performance with comparable accuracy.
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