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Abstract 

This paper proposes an adaptive particle swarm optimization (APSO) approach to solve the grasp planning problem. Each particle 
represents a configuration set describing the posture of the robotic hand. The aim of this algorithm is to search for the optimum 
configuration that satisfies a good stability. The approach uses a Guided Random Generation (GRG) to guide the particles in the 
generating process. A shape-based object “parameter factor” is generated from the GRG process so that, it can be considered in the fitness 
function. According to the number of contacts between the fingertips and the object, the algorithm can take off the inactive particles. The 
kinematic of the modeled hand is described and incorporated in the fitness function in order to compute the contact positions.  The APSO 
is tested in the HandGrasp simulator with four different objects and the experimental results demonstrate that this approach outperforms 
the compared simple PSO in terms of solution accuracy, convergence speed and algorithm reliability. 
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Nomenclature 

ij
θ  articulation angle of the finger i, (from little finger to thumb), joint j (from distal to proximal) 

ijl  phalange length of the finger i, (from little finger to thumb), joint j (from distal to proximal) (cm) 

j
i k

T  transformation matrix from the coordinator j to k of the finger i (from little finger to thumb) 

ijC  cosinus (
ijθ ) 

ijS  sinus ( ijθ ) 

X
i
 position and orientation of the joint i 

iq  configuration system of the joint i 

iJ  Jacobian matrix of the joint i 

Cg  configuration set of the hand  

zyx θθθ ,,
  

orientation of the wrist according respectively to the x, y and z axis  
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np  number of particles  

k
p  particle k, 1..k np=  

k
v  velocity associated to 

k
p , 1..k np=  

k

pbestp  personal best particle, 1..k np=  

gbestp  global best particle 

nit   number of  iterations 

k
f  fitness value of 

k
p , 1..k np=  

pbest

kf  fitness value of personal best particle, 1..k np=  
gbestf  fitness value of global best particle 

ibest  index of particle with best fitness value 

1
c , 

2
c  acceleration constants 

rand()  random function in the range [0, 1] 
nc  number of fingers in contact with object 

kiθ  internal angle at vertex i of the contact polygon associated to the particle 
k

p , 1..k np=  (in degrees) 

kθ  average internal angle of the corresponding regular polygon associated to the particle 
k

p , 1..k np=  (in degrees) 
max
kθ  sum of the internal angles when the polygon has the poorest conditioned shape, associated to the particle 

k
p , 

1..k np=  (in degrees) 

iF  Force associated to the finger i, ,..,nci=1  

im  mass of the finger i, ,..,nci=1  

ivf  velocity associated to the finger i, ,..,nci=1  

1. Introduction 

One of the tasks of a service robot is to grasp an object and bring it to another place. This process involves many steps 
and difficulties like detecting the emplacement of the object, move to a suitable emplacement, localize its proper hand, 
reach the object and finally form the appropriate configuration of the hand to firmly grasp the object. Each of these steps 
involves the knowledge of the environment in case of possible obstacles, the shape and parameters of the object like weight 
and emplacement [1] and the joint structure of the robotic hand [2]. Thus, it creates a high dimensionality of the 
configuration space.  Some researchers were interested in associating the grasp process with the task [3-4]. Most of them 
use the shape of the object to generate the form of the hand [5]. Others were interested in adding a learning process from a 
database of grasp examples [6] or from a human demonstration [7-10]. 

The rest of the paper is organized as follows. Section 2 specifies the addressed problem and presents a proper algebraic 
formulation to the problem. Section 3 describes the kinematic structure of the hand system. Section 4 explains the proposed 
method. Section 5 presents some experiments illustrating the method’s performance and, finally, Section 6 summarizes the 
conclusions and points deserving further attention. 

2. Grasp Planner 

The main purpose of a grasp planner is to explore the dexterous manipulation space of the multi-fingered robot hand and 
to find the best configuration of the fingers that enables a stable grasp as swiftly as possible. For a successful gripping of the 
object, several grasp planners have been developed under two main approaches [11]: empirical and analytical. The empirical 
(knowledge-based) approach is motivated by the imitation of the human hand behavior like Li and Pollard [5] who 
presented a matching algorithm to select appropriate grasps from a database based on the shape of the object. The analytic 
approach is based on the study of the robotic hand from a mechanical point of view. We can find the works of Fuentes et al. 
who used a genetic approach [12] to tackle this problem, Borst et al. [13] who presented a heuristic approach to plan a 
precision grasp for a 3D objects and Pelossof, et al. [14] who presented an SVM approach under the simulator “Grasp 
it!”[15].  
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A classification of this planners has been described by [16] as a forward and backward directions. The forward direction 
starts from the wrist of the robotic hand to the object and follow these steps:  

• Close the fingers on the object 
• Compute the values of  the joint angles using the kinematic model of the hand 
• Detect the positions of the fingertips at collision, using the collision detection technique 
• Evaluate the grasp quality of the grip 

This methodology is evaluated under the simulator “Grasp it”, which have been used for analyzing and visualizing the 
grasps of a variety of different hands and objects. This planner includes two phases, the first one is to generate a 
configuration of the hand using shape primitives [17], and the second one, is to evaluate the quality of these grasps [18].  

The backward direction is object-centered solution and is presented as follow:  

• Contact points are randomly or analytically located on the object surface 
• Evaluate the grasp quality  
•  Find the corresponding feasible finger joint position using an inverse kinematic algorithm 

In this paper, we are most interested in algorithms for the fast and autonomous generation of precision grasps where only 
the fingertips are in contact with the object. Furthermore, we assume that the position of the object is reachable by the hand 
and the position and orientation of the object is known.  

3. Modeled Hand 

3.1. Distribution of the degrees of freedom of the modeled hand 

The modeled hand is a five-fingered human hand. Indeed, the human hand has 27 degrees of freedom (DOF) presented 
like this [19]: 

• six DOF at the wrist : 3 rotations and 3 translations,  
• four DOF for each finger : 1 DOF ( flexion/extension) at each of the three joints and 1 DOF (abduction/adduction) at the 

metacarpophalangeal joint [20], 
• unlike the other fingers, the thumb has five DOF [21]: 3 DOF at the carpo-metacarpal joint (abduction/adduction, 

flexion/extension and a pseudo-rotation) and 1 DOF for each of the two other joints. 

a) b)  

Fig. 1. a) Distribution of the 21 degrees of freedom of the modeled hand. b) Joints of the hand 

The human hand interacts under static and dynamic constraints [22]. The static constraints explain the limits of joint 
angles and the dynamic constraints describe the interconnection between the degrees of freedom of the finger joints. 
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Amongst these biomechanical constraints, we are interested in the relationship between the distal and proximal phalanges 
and which can be translated by the following equation: 

1i2

3
   

2
, 1...5i iθ θ= =  (1)

For that reason and to model the hand, we opted for an optimization of the DOF by coupling the distal and proximal 
joints. This allows us to simplify the model to 21 DOF (Fig. 1.a): 3 DOF for each of the fingers and 6 DOF for the wrist. 

3.2. Kinematic of the modeled hand 

The kinematic of the modeled hand is used to determine the positions and velocity of articulations in space relative to the 
robot base coordinator (Fig. 1.b). The Denavit-Hartenberg parameters [23] are given in this table: 

Table 1: The Denavit-Hartenberg parameters of the finger with 3 DOF 

 

 
Therefore, the transformation matrix from the coordinator 0 to 3 of the finger i is given by: 
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The forward kinematic model is as follow: 

X   J  qi i i=  (6)

Articulation ij dij aij ij 
Variable of the 

articulation 

1 
1iθ  0 

1il  0 
1iθ  

2 
1

3

2
iθ  0 

2il  0 
1iθ  

3 
2iθ  0 

3il  3iθ  2iθ , 3i
θ  
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4. Adaptive Particle Swarm Optimization Approach (APSO) 

Particle swarm optimization (PSO) is a meta-heuristic optimization technique in artificial intelligence inspired by the 
behavior of flocks of birds [24]. Each particle is defined by its location, speed and previous best particle in the search. The 
particles are influenced by each other. The algorithm calculates the movement of flocks in discrete time steps and constantly 
adjusts the values describing the particle. Although PSO is a relatively new technique, but, it gained popularity in solving 
various optimization problems. Its main advantages are the easy implementation and the fast convergence to the optimum 
for a wide range of purpose functions. This technique has received more and more attention because of its simplicity and 
success. Inspired by this, we propose an adaptive particle swarm optimization (APSO) based algorithm for grasp planning 
problem in which each of the configuration set of the hand is a particle (Fig. 2). 

4.1. Configuration set 

The output of the grasp planner is the final posture of the hand. This configuration represents the 21 degrees of freedom 
of the modeled hand. Yet, the position of the wrist is computed apart. It can be controlled by a human operator or computed 
separately after evaluating the wrench space around the object. Thus, the configuration Cg  contains the values of joint’s 

angles for each of the fingers and the orientation of the wrist. It’s represented as follow: 

11 12 13

21 22 23

31 32 33

41 42 43

51 52 53

x y z

Cg

θ

θ θ θ

θ θ θ

θ θ θ

θ θ θ

θ θ θ

θ θ

=  (7)

4.2. Guided Random Generation (GRG) 

The first step of the APSO approach is the generation of possible solutions pk. In a simple PSO algorithm, the generation 
is random. However, in the APSO, a Guided Random Generation process is computed. The central idea of this system is the 
anthropomorphic studies of the human hand [25-26]. Therefore, we generate randomly the joint angles that have to satisfy 
the limitations of Table 2 and with 2 minimum contacts with the object. Then, we generate a “parameter factor” based on 
the shape of the object, which classify the object into sub-classes. The final step of GRG, is the verification test, it detects 
the deformed positions of the fingers caused from an illegal collision with the object (case where a finger enter the object 
perimeter) or with another finger, in that case, we generate another values for the corresponding finger. 

Table 2: The angle’s limit of the joints 

Finger Distal (°) Proximal (°) Pivot (°) 

Little finger 
1130 90θ− ≤ ≤ 120 90θ≤ ≤ 1310 40θ− ≤ ≤

Ring 
2130 90θ− ≤ ≤ 220 90θ≤ ≤ 2310 20θ− ≤ ≤

Middle 
3130 90θ− ≤ ≤ 320 90θ≤ ≤ 3315 15θ− ≤ ≤

Index 
4130 90θ− ≤ ≤ 420 90θ≤ ≤ 4320 10θ− ≤ ≤

Thumb 
5110 30θ− ≤ ≤ 520 90θ≤ ≤ 5310 100θ− ≤ ≤
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4.3. General process 

Assuming pk the particles represented by the configuration set of the hand, for each iteration, the velocity vk and the 
particle pk are updated. According to the fitness values of the updated individuals, the personal best angle pbest

kp of each 
particle and the global best position gbestp  among all the particles are computed. In APSO the individuals move through the 
solution space with perturbations of their position which are influenced by other swarm members. Therefore, the APSO 
searches the global optimum solution by adjusting the trajectory of each particle towards its personal best position and the 
global best position.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Main process of the APSO algorithm. 

During the process, if there has been not enough improvement in a neighborhood, the worst particle will be replaced 
with a new generated one. According to the above description, the process for implementing APSO (Fig. 2) is as follows: 

a) Initialize APSO with np and nit, 

• Generate the particle population using GRG process. 
• Generate randomly initial velocity vectors vk 

b) Compute the fitness value of each particle and set initial  
k

pbestp , 
k

pbestf  and initial gbestp gbestf for the initial 

population. 

• Set ( ) , 1, 2, , 
k k

f fitness p k np= = …  

• Set 
k k

pbestp p=  and , 1, 2, ..,
k k

pbestf f k np= =  

• Find the index ibest of the particle with best fitness value by 1arg(max )k k
np pbestibest f

=
=  

• Set  ibe

gbe

st

st pbestp p=  and  ibe
gbe

st
st pbestf f=  

• Set 1iteration =  

c) Update  , pbest gbest

kp p  and  , pbest gbest

kf f . 

• Compute ( ) , 1, 2, , 
k k

f fitness p k np= = …  

Start 

Generate initial population of random particle and 
velocity vectors using the GRG process 

Compute the fitness function 

Calculate the pbest of each particle and gbest of 
populations 

Update the value, velocity, gbest and pbest of particles 
and change the worst particle with a new one 

Stop 

Check stop 
criterion 

a) 
 
 
 
b) 
 
 
 
c) 
 
 
 
 
d) 
 
 
 
 
e) 
 
 
 
 
f) 
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• if   
k k

pbestf f>  then set  
k k

pbestp p=  and  
k k

pbestf f=  

• if   , 1, 2, ,
k

pbest gbestf f k np> = … then set   and  
k k

gbest pbest gbest pbestp p f f= =  

d) Update the velocity vector 
k

v  and the vector 
k

p of each particle. 

• Update ( ) ( )1 2
()  ()  , 1, 2, , 

k k k k k

pbest gbestv v c rand p p c rand p p k np= + − + − = …  

• Set , 1, 2, , 
k k k

p p v k np= + = …  

• Set [ ],  0,1 ,  1, 2, , 
k k

v v w w k np= ∈ = …  

• The worst particle will be updated with a new generated one. 

e) 1iteration iteration= + , if  iteration nit> then go to f) , else go to c) 

f) The desired solution is the global best  gbestp  with the best fitness value  gbestf . 

4.4. Fitness function 

The fitness function is based on a quality measure [27] associated with the position of the contact points. It takes into 
account the object properties as the shape, the weight, the size, the location and the “parameter factor” of the GRG process. 
From the configuration set pk and with the kinematic of the hand, the positions of the fingertips are calculated as well as the 
number and positions of the contact points. Park and Starr [28] have proven that when the contact points are distributed in a 
uniform way over the object surface, it improves the grasp stability. Inspired by this, the fitness function is given by [29]: 

=

−=

nc

i

kki
k
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1
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1
)( θθ

θ
 (8)
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180

−
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The force of the fingers is computed using the equation: 

iii vfmF =  (11)

Each iF  is directed to the center of mass of the object. This insures a stable grasp and simplifies the computing of the force 

magnitudes which is equal to zero: 

1

0
nc

i
i

F
=

=  (12)

5. Experimental results 

We tested this approach under HandGrasp [30] which can simulate the trajectories of the fingers in space (Fig. 3). 
HandGrasp is an environment used for hand grasping simulation and can be expanded since it’s developed under a modular 
architecture [31]. This approach is experienced with four different objects: sphere, cube, barrel and fish. The global best 
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particle at the iteration 5, 20 and 50 are shown in Table. 3. We compared the results with the same objects using a simple 
PSO algorithm [32-33].  

Table 3: Comparison results between simple PSO and APSO 

Object Approach Iteration=5 Iteration=20 Iteration=50 
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F
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Simple PSO 
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The parameters of the algorithms were: 
• np = 60 
•  number of neighborhood = 5 
• ite = 50 
• Diameter of the sphere = 5 cm 
• Length of the cube = 7 cm 
• Length of the barrel = 11 cm, diameter = 3 cm 
• Dimension of the fish : length = 29 cm, width= 6 cm, height = 7 cm 

 

Fig. 3. Simulated hand. 

We remark that the convergence to optimum solution in APSO is more guided and has a better solution (minimum two 
contact points with the object) than with simple PSO. Also, with the continued renewal and improvement of the population, 
the APSO approach outperformed the simple PSO on term of solution accuracy, convergence speed and algorithm reliability, 
although, it is clear that the simple PSO approach is faster than the APSO approach due to the CPU (Central Processing Unit) 
consuming of the GRG process.  

6. Conclusion 

In this paper, a grasp planner based on an adaptive particle swarm optimization APSO is proposed to search the wrench 
space of the graspable area. The output of this algorithm is the optimum configuration set of the hand. This grasp planner is 
set for the precise grasp when only the fingertips are in contact with object. The aim of this planner is to ensure the stability of 
the grip. In order to guaranty a good grasp, the quality of measure is computed under the fitness function. Furthermore, a 
GRG system was established to generate a guided random generation of configuration set. We tested this method under the 
HandGrasp simulator with four different objects. The results were compared with a simple PSO algorithm and it showed the 
effectiveness of the APSO compared with the simple PSO. The fitness function can be varied as required by the task.  

In future works, we will adopt a multi-object particle swarm optimization (MOPSO) [34] approach to build a list of leaders 
which can be saved as a “good” grasps in a database.  
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