

 48 Int. J. Information and Computer Security, Vol. 5, No. 1, 2012

 Copyright © 2012 Inderscience Enterprises Ltd.

PCIEF: a policy conflict identification and evaluation
framework

Vimalathithan Subramanian*
Department of Integrated Computing,
University of Arkansas at Little Rock,
2801 S University Avenue, EIT-579,
Little Rock, AR-72204, USA
Fax: 501-569-8144
E-mail: sxvimalathit@ualr.edu
*Corresponding author

Remzi Seker
Department of Electrical, Computer, Software, and
Systems Engineering
Embry-Riddle Aeronautical University,
600 S Clyde Morris Blvd.,
Daytona Beach, FL 32114-3900, USA
Fax: 386-226-6678
E-mail: sekerr@erau.edu

Srini Ramaswamy
Industrial Software Systems,
ABB India Corporate Research Center,
Bangalore 560048, India
Fax: 501-569-8144
E-mail: srini@ieee.org

Rathinasamy B. Lenin
Department of Mathematics,
University of Central Arkansas,
201 Donaghey Avenue, Conway, AR 72035-0001, USA
Fax: 501-450-5662
E-mail: rblenin@uca.edu

Abstract: Information system security policies have grown in complexity and
the emerging collaborative nature of business has created new challenges in
creating and managing such policies. These policies address several domains
ranging from access control to disaster recovery and depend not only on the
business itself but on socio-political/legal requirements as well. Events like
collaborative work or project-based organisational units result in the need to
create a new information system security policy for the specific work/project,
while maintaining status quo of existing policies. This requires identification

 PCIEF: a policy conflict identification and evaluation framework 49

and evaluation of existing policies to enable creating the new policy in line
with the existing ones with acceptable deviations based on informed decisions.
This paper provides a framework for capturing and converting security policies
in terms of an XML format and further into alloy language format. Policies are
converted to alloy format for performing further policy consistency analysis
using Alloy Analyser.

Keywords: policy conflicts; policy inter-operation; computer security;
information systems security; policy evaluation.

Reference to this paper should be made as follows: Subramanian, V.,
Seker, R., Ramaswamy, S. and Lenin, R.B. (2012) ‘PCIEF: a policy conflict
identification and evaluation framework’, Int. J. Information and Computer
Security, Vol. 5, No. 1, pp.48–67.

Biographical notes: Vimalathithan Subramanian is a Technical Information
Security Officer in Citi at New Jersey, USA. He received his PhD in Integrated
Computing Department in 2012 from University of Arkansas at Little Rock,
MS in Applied Science in 2011 from University of Arkansas at Little Rock,
MTech in Information Technology in 2004 from Punjabi University, India and
MSc in Mathematics in 1991 from Madurai Kamaraj University, India. He is a
Certified Information Systems Security Professional (CISSP), a Certified
Ethical Hacker (CEH), a Certified ISO27001 Lead Auditor (ISO27001LA), and
a Certified Information Technology Service Management (ITIL Foundation)
professional. He has over 16 years of IT industry experience and of which five
years are in the field of information security. His research interests are
information security policy evaluation and management.

Remzi Seker is a Professor of Electrical, Computer, Software, and Systems
Engineering at Embry-Riddle Aeronautical University, Daytona Beach, Florida.
He received his PhD in Computer Engineering from the University of Alabama
at Birmingham. His research interests are safety and security critical
systems and computer forensics. His research is motivated by the trend in
rapid penetration of computer-based technologies into the society. When
computer-based technologies become commodities on which people rely, the
vulnerability of the society to these technologies increase as well. He, as a
researcher, focuses on ways to address the asymmetric threats that arise from
rapid, yet necessary use of technology. Aside from professional activities, he
participates in variety of venues for increasing public awareness on security.

Srini Ramaswamy earned his PhD degree in Computer Science from the Center
for Advanced Computer Studies (CACS) at the University of Louisiana at
Lafayette. He leads industrial software systems research group at ABBs India
Corporate Research Center. He also serves as a Visiting Professor at the
University of Arkansas at Little Rock and an Honorary Adjunct Professor at the
Indian Institute of Information Technology – Bangalore. Earlier, he was in
academia for 16 years, most recently as Tenured Professor and Chairperson of
the Computer Science Department at UALR (2005–2010). His research
interests include behaviour modelling, analysis and simulation, software
stability and scalability – particularly in the design and development of better
software systems, and intelligent and flexible control systems. He has held
invited and visiting positions at INSA-Rouen (France), Vanderbilt and
UT-Austin. He is a Senior Member of IEEE and ACM, an active member of
IEEE SMCS TC on DIS and an Associate Editor for the IEEE Transactions on
SMC.

 50 V. Subramanian et al.

Rathinasamy B. Lenin received his PhD in Applied Mathematics from the
Indian Institute of Technology, Madras, India, in 1998. He is currently an
Assistant Professor in the Department of Mathematics at the University of
Central Arkansas, USA. Prior to joining UCA, he was working as a
Postdoctoral Fellow at the University of Arkansas at Little Rock, USA. Earlier,
he had also worked as a Postdoctoral Fellow at the University of Twente,
The Netherlands, and at the University of Antwerp, Belgium, for about five
years. His research interests are in mathematical modelling and simulation of
discrete-event systems, stochastic models, optimisation techniques,
performance analysis of computer and communication networks, rational
approximation, information retrieval and network analysis. He has 49 papers
published in international conferences and journals including Journal of
Applied Probability, Queueing Systems, Performance Evaluation, IEEE
Transactions on Computers, Wireless Networks and IEEE Transactions on
Microwave Theory and Techniques.

1 Introduction

In this era of converging industries, globalisations as well as competitive cooperation
have become inescapable realities for organisations. To remain successful and to
outsmart competitors, organisations need to quickly embrace latest technologies even
before realising potential challenges associated with them. Organisations also need to
utilise their fullest potential of infrastructure so as to eliminate border bounded access to
their resources and adopt borderless environment by authorised users whenever they need
and wherever they are. This causes network security to transcend from being in a border
bounded environment into a borderless environment. Due to this growing complexity of
information systems/networks and the need to share the information across geographical
and functional boundaries, organisations need to strictly enforce information security
policies to protect sensitive data. After all, information flows across any and every
network.

With the expansion of an enterprise over diverse geographical locations, probability
of policy conflict increases, more so with the increase in legal and regulatory
requirements that also vary from region to region. Mergers and acquisitions are taking
place in a rapid manner to enable organisations to be more competitive and to retain and
potentially increase their market share. Mergers and acquisitions are faced with security
issues and concerns as outlined by Skoudis (2007). Reconciliation of disparate sets of
information security policies is a challenging daunting task. The inter-connection
between dissimilar networks poses security and control issues pertaining to the famous
security triad – confidentiality, integrity and availability (CIA) of the information
transmitted across these networks some of which are highlighted by Grance et al. (2002).
Failing to secure sensitive information may lead to significant legal risk, in addition to
customer goodwill related issues that affect the bottom line of the organisation adversely.

To address these threats organisations develop and maintain organisational security
policies that safe guard their assets. A security policy is often an overall general
statement that outlines specific security requirements that must be met by each entity in
the organisation. A number of security policy standards and guidelines are available
today for arriving at a good information systems/information technology (IS/IT) security
policy. However, given the diversity of operations and requirements from compliance to

 PCIEF: a policy conflict identification and evaluation framework 51

multiple audit mandates, identifying the optimum policy and to identify policy
implementation mechanisms is extremely challenging. The main objective in any security
policy is to ensure CIA. Organisational security policies aim to lay a solid foundation for
the development and implementation of best practices within an organisation. Security
policies can be written using natural languages but they cannot be directly processed by
IS elements. Due to inherent ambiguities associated with natural languages, policy
interpretation is likely to be subjective and interpreted by different people in different
ways. Also, processing policies written in natural language will increase errors due to
human intervention. Security policies written in formal logic using mathematical
notations can be easily processed by the IS elements and involves less human
intervention. But it is difficult to understand policy languages written in formal logic and
it is cumbersome to design large complex policies using formal logic, given the fact that
the policy needs to be understood by all stakeholders of the organisation.

Figure 1 Policy conflict identification and evaluation framework

There are many policy specification languages specified by various researchers some of
them are listed in references section; we review some of them in Section 2. Policy
specification languages provide the means to express the intent of the owner of an asset
into a form that can be interpreted by the IS elements. These languages become effective
when policies are specified using a language that is easy to understand by the
administrators and processed in network systems. Hence to overcome these constraints
we propose policy conflict analysis language (PCAL) with an ease of use and to give
much leverage to security administrators for performing policy analysis. To achieve this,
we capture security policies in terms of XML format and convert them into alloy
language.

The converted policies are then fed into the Alloy Analyser to identify policy
inconsistencies between security policies. This paper deals with a part of our policy
conflict identification and evaluation framework (PCIEF) seen in the dotted region in
Figure 1. PCIEF deals with the conversion of real world information security policies into
alloy format and then identification of security policy conflicts with the help of Alloy
Analyser. Policy conflicts are then evaluated based on their type. Each type of security
policy conflict is based on their severity with respect to business impact.

 52 V. Subramanian et al.

2 Related work

Researchers have been seized with IS policy issues. For the purposes of this paper,
handling policy specification languages are the most relevant and we review some of the
related work within the constraints of available space. Damianou et al. (2001) specified a
policy specification language Ponder, which is a declarative, object-oriented language for
specifying security policies for both role-based access control (RBAC), and general-
purpose management policies. Ponder specifies Meta policies for group of policies to
express constraints which limit the permitted policies in the system. Using Ponder one
can express authorisations, information filtering, obligations, delegation, and refrain
policies. Ponder requires the security administrator to specify much details which limits
its capability to provide a high level security policy specification. Also, Ribeiro et al.
(2001) proposes security policy language (SPL) a policy-oriented constraint-based
language. SPL consists of four basic blocks: entities, sets, rules, and policies. It expresses
permission, obligation, and prohibition. SPL specifies only authorisation policies. Policy
description language (PDL) (Lobo et al., 1999) developed at Bell Labs is an event-based
policy language that specifies policies as declarative rules. Events in PDL can be
compound event expressions and the actions can be local or remote method calls,
complex workflows that trigger other events to form a hierarchical policy chain. PDL
does not support access control policies.

Policy specification languages such as ASL (Jajodia et al., 1997), XACML (Godik
and Moses 2003), and Tower (Michael and Vijay, 2001) specify access control policies.
Authorization Specification Language (ASL) is a formal logic language. In ASL integrity
rules are in the form of meta-policies to specify application-dependent rules that limit the
range of acceptable access control policies. ASL provides support for RBAC, but ASL is
not scalable to large systems as there is no way of grouping rules into structures for
reusability. eXtensible Access Control Markup Language (XACML) is based on XML.
XACML is intended to provide an application independent policy language to provide a
query and response format for authorisation decision requests. It provides means for
writing access control policies. However, the set of possible actions that can be defined in
XACML is restricted (Agrawal et al., 2008). XACML leaves the policy analysis to policy
analysers. Tower is a policy language to specify RBAC policies. The language is focused
in object oriented systems. This language supports role hierarchy, separation of duties
both static and dynamic, Chinese Wall policy, delegation and joint action-based access
policies. To use Tower programming expertise is needed. The policy language IBM-
ACPL (2005) is based on XML Schema from IBM in an attempt to support distributed IT
system management. ACPL uses simple text format for writing policies. Policy
management for autonomic computing (PMAC) (Agrawal et al., 2005) is a framework
that is based on ACPL to simplify the management and automation of products and
complex systems. Also, Enterprise Privacy Authorization Language (EPAL) (Schunter,
2003) is based on formal logic from IBM that specifies the authorisation decision in the
form of abstract format and specifies attempted resource access in terms of attributes. The
algorithm used in EPAL ‘first applicable’ algorithm makes it difficult to manage large
enterprise-wide policies. The Language for Security Constraints on Objects (LaSCO)
specified by Hoagland et al. (1998) used a graphical approach for specifying security
constraints on objects. Policies defined in LaSCO are specified as logical expressions and
by means of directed graphs. LaSCO does not specify confidentiality and integrity.

 PCIEF: a policy conflict identification and evaluation framework 53

Application specific policy languages such as ISPS (Zhi et al. 2001), PAX (Nossik
and Richardson, 1998), and PPL (Stone et al., 2001) are also worth mentioning here.
IPSec Security Policy Specification (ISPS) apply policy constraints on entities such as
security gateways along the path of a communication. ISPS provides means to express
confidentiality and integrity rules. ISPS does not support authentication, audit, and
delegation. Pattern Description Language PAX, a special purpose policy language used to
define pattern-matching criteria in policy-based networking devices. In PAX simple
patterns are combined to form more complex patterns. The use of field concatenation and
field combination, and the ability to name patterns lead to a flexible and powerful
language for describing patterns in data communication. Path-based policy language
(PPL) is designed to support both the differentiated as well as the integrated services
model proposed by IETF. PPL is based on the idea of providing better control over the
traffic in a network by constraining the path the traffic must take. PPL does not cover the
security functionalities other than access control. But these policy languages are
application specific, the extension of these policy languages to other area would be
cumbersome. Some of the languages discussed above do not deal with verification of
policy inconsistencies.

Most of these policy languages are specific to a certain application or restricted to a
certain security domain, for example, access control domain. If some policy specification
languages cover more than one security domain then they require either expert
knowledge of programming skills or formal logic. Hence, there is a strong need for
developing a policy model that is simple and easy for security administrators to perform
their jobs and covers all domains of security.

To address these issues, we have come up with our policy specification based on
XML called PCAL. Also for performing policy analysis many researchers use alloy
language (Jackson, 2006). Alloy is a full fledged declarative language with simpler
semantics with more conventional syntax designed for automatic analysis. Alloy
Analyser is a tool that can check consistency of policy specifications. It performs fully
automatic analysis, and when an assertion is false, it generates a counterexample. Similar
to Java, alloy follows an object oriented paradigm. In alloy a model is represented in
terms of sets and relations. The structures in alloy model are built from atoms and
relations. A relation in alloy is a structure that relates atoms. A more detailed overview of
alloy language is provided in Jackson (2006). Park and Kwon (2005) model access
control policies using UML and convert access control policies into alloy specification
which is then analysed through the Alloy Analyser. Schaad and Moffett (2002)
investigated how alloy can be used for verifying RBAC policies. Georg et al. (2001)
analysed runtime configuration of distributed system with the help of alloy. RBAC
schema is modelled by Zao et al. (2003) in alloy, with the automatic semantic analysis
capability, they verified internal consistency of a RBAC schema. Mankai and Logrippo
(2005) used Alloy Analyser to analyse conflicts and interactions among access control
policies expressed in XACML. They also developed an XACML2 alloy tool. Hughes and
Bultan (2004) translated XACML policies to their logical representation in the alloy
language and verified them using Alloy Analyser. Dennis et al. (2004) exposed hidden
flaws in the UML design of a radiation therapy machine using alloy. Some of these
researchers such as Dennis manually converted to alloy language which may lead to
human errors. Hence, we use automatic alloy conversion based on our PCAL policy
model. Modelling policy specification in alloy language has an added advantage as
policies can be verified by using Alloy Analyser. In our work we capture security policies

 54 V. Subramanian et al.

in terms of XML format and automatically convert them into alloy language. We use
Alloy Analyser to identify policy conflicts between security policies. Existing Policy
conflict techniques are being analysed by the authors and presented in Subramanian et al.
(2011).

3 Policy model

Policy documents needs to be modelled in line with a policy model to perform policy
analysis. This leads us to design a policy model for policy specifications. We analyse real
world information security policies with our policy specification and come up with a
policy model. Each organisation has a set of security policies, these policies are part of a
security domain based on their security properties. According to International
Information Systems Security Certification Consortium (ISC)^2 (Tipton, 2009), security
policies are classified into ten domains and each security domain addresses security
issues pertaining to a specific area of security. In our policy model we refer to a policy in
a domain as ‘DomainPolicy’. Each policy contains a collection of rules, each rule
constrains on an object’s use, and therefore each policy contains a set of objects. Object
is an entity or a component that needs to be protected in an organisation. Each
‘DomainPolicy’ constrains certain objects based on their ‘attributes’. Attribute of an
object is a certain security property of the object. These attribute values are retrieved
from objects to limit the object’s use. Attributes are specific in type of information they
hold. Each attribute has a ‘Type’ field to specify what kind of data the attribute
represents. For example, an attribute ‘password modification date’ holds type of
information as ‘date’ while attribute ‘password length’ holds an ‘integer’ type of
information. Constraints on these attributes are specified as a set. Each attribute has a set
of ‘Constraints’ and each constraint represents an expression. An expression is in the
form of ‘Operator’ and ‘Operand’. Each ‘Constraint’ interprets an ‘Operator’ which in
turn contains ‘Operand’ for the condition. In summary the model is a collection of
conditions over objects’ use based on their attributes. In other words, a domain policy
consists of ‘objects’ while objects have `attributes’ which are limited by ‘constraints’.

The resulting tree structure of the model is presented in Figure 2. We have expanded
the tree structure for one element in each level for the sake of clear visibility.
Organisation S1 consists of security policy documents from all security domains. Domain
D1 contains policies DomainPolicy_1, DomainPolicy_2, …, DomainPolicy_p.
DomainPolicy_1 contains objects Object_1, Object_2, …, Object_o. Object_1 contains
attributes Attribute_1, Attribute_2, …, Attribute_a. Attribute_1 contains Constriant_1,
Constraint_2, …, Constraint_c. Each constraint contains constraint operator and
constraint operand.

For performing fine grained comparative analysis of security policies a policy
language needs to be able to specify a policy document. In general security policies are
created by the information security group of an organisation with top management’s
support. The security policies may be represented in different form by different security
groups. Representation of a single security policy by two different organisations may be
in different forms. Comparison of policies in different forms is difficult and comparison
of different complex policies in different forms will be even more difficult. One solution
to address the problem is to have all security policy documents translated into a common
format. We propose a policy specification language PCAL to provide a common format

 PCIEF: a policy conflict identification and evaluation framework 55

for all security policy documents. PCAL is an intermediate language based on XML
structure to interface with Alloy Analyser that checks for policy consistency. We develop
a policy capturing form (PCF) to capture security policies in PCAL format. A user can
enter the policy document into PCF using a graphical user interface (GUI), the security
policy document is then stored in PCAL database in XML structure. We use
inter-operable XML structure to represent security policies in PCAL and to have a
common language for expressing security policies. For example, every organisation
comes up with a set of security policy documents (S3) in PCAL. In PCAL Security
policies are categorised according to their security properties. The categorised classes are
called ‘Domains’, the ‘Domains’ are classified recursively into ‘Domain Policies’. Each
policy constrains its objects based on their attributes. Object is an entity or a component
that needs to be protected in an organisation. Attribute of an object is a certain security
property of the object. Therefore, a domain policy consists of ‘objects’ while objects have
‘attributes’ which are limited by ‘constraint value’.

Figure 2 Policy model

Security policy conflicts can be categorised into four types. They are no conflict, weak
conflict, strong conflict, and extreme conflict. They are defined as follows:

Definition 1 No conflict: Two Security policies of organisations m and n are said to
have no conflicts policies if corresponding elements of both policies are
equal.

Definition 2 Weak conflict: Two Security policies of organisations m and n are said to
have weak conflicts if for some i and j, either corresponding operators
have different values or corresponding operands have different values.

Definition 3 Strong conflict: Two Security policies of organisations m and n are said to
have weak conflicts if for some i and j, there are no corresponding
attributes in respective policies.

 56 V. Subramanian et al.

Definition 4 Extreme conflict: Two Security policies of organisations m and n are said
to have conflicts of type ‘extreme’ if for some i and j, either there are no
corresponding Objects in respective policies or there are no corresponding
policies in respective domains.

With the structured representation of security policies we make the policy document
machine process able. Policies are stored in PCAL format and automatically converted
into alloy using web application. We are using alloy to represent security policies in
terms of atoms and relations. Elements in each set in the mathematical notations will be
represented as atoms in alloy. We automated the translation of security policies from
PCAL to alloy. The definitions for each primitive in alloy are similarly used as class
definitions in object oriented programming structure.

3.1 PCAL policy format

Figure 3 represent shows the policy specification in PCAL format. Policies are captured
in PCAL policy language format using GUI-based PCF. Security policies can be easily
represented using PCAL policy format and can maintain uniformity in security policy
specification.

Figure 3 PCAL policy format

 PCIEF: a policy conflict identification and evaluation framework 57

4 Alloy structure

An instance of a primitive is represented as an atom of corresponding signature. For
example an object ‘password’ is written in alloy as:

one sig password extends Object{}

By specifying it, password inherits all the (set)properties of signature ‘Object’. Automatic
generation of alloy code from PCAL is performed by simple mapping operation. Each of
the primitive in PCAL is mapped to corresponding atoms in alloy. Policy document in
human readable form is converted into alloy code and is ready to be used for further
policy conflict analysis using Alloy Analyser. Architecture of the system for generating
alloy code for a policy document and algorithm involved to convert from PCAL to alloy
are discussed in the next section.

Security policy in alloy format is represented as below in Figure 4.

Figure 4 Alloy structure

After a policy document in PCAL is converted to alloy language using the mapping table,
conflict analysis can also be performed.

4.1 Procedure

As we discussed in earlier section, we capture policies using a GUI. The interface stores
as well as retrieves policy documents from PCAL policy database. Policy database is a

 58 V. Subramanian et al.

collection of policy documents in PCAL format. Each of the policy documents is then
converted into alloy language. We developed a tool to automate the conversion
procedure. The tool consists of following components.

1 Policy capture form (PCF): We implement the policy feeder as a web application so
that users can access/create/modify/analyse policies from remote location. A user is
allowed to feed necessary data for each policy of a policy document. PCF consists of
four controls. The first control allows the user to enter a policy rule from the policy
document. The second control allows the user to delete a policy rule if needed. Third
control allows the user to retrieve the policy document from the database. The fourth
control converts policy document into alloy language.

2 PCAL policy database (PPD): PPD is a collection of policy documents in PCAL
format. A policy document is represented as per the XML schema as shown in
Figure 2. The policies in the PPD are ready to be converted into alloy language.

3 PCAL to alloy converter: It consists of a mapping mechanism to automate policy
conversion. Such converted policy documents are stored in alloy policy database. An
algorithm to convert PCAL to alloy is presented in Figure 5.

4 Alloy policy database (APD): It is a repository that holds security policy documents
in alloy format.

The above mentioned components constitute a full fledged tool which is used to perform
necessary pre-processing of security policy document for conflict analysis and
evaluation. We implemented this tool as a web application and performed several
experiments on real world security policy documents. Some of them were presented in
Section 6.

4.2 Policy facts and assertions

In alloy, fact is a formula that constrains the values of the sets and relations. Policy
constraints are shown as facts in alloy. The Alloy Analyser enumerates all possible
instances that conform to the policy specification. Facts can be named for documentation
purposes.

For example, fact Domainfact Domain.consists = Domain.consists + AccessControl.

Domainfact is the name of the fact for the signature Domain. ‘Consists’ is the relation
between Domain and its elements. Access control is an element of Domain. An assertion
is a constraint that is intended to follow from the facts of the model.

Assertions can be checked by the Alloy Analyser. An assertion can be named so that
it can be checked by Alloy Analyser.

For example, assert weak_conflict {

all p: Policy || all d: p: consists || all dp: d: part of || all o: dp: contains || all a:
o: has ||all c: a: rule || some p1: Policy – p || some d1: p1: consists || some dp1:
d1: part of || some o1: dp1: contains || some a1: o1: has || some c1: a1: rule || d: ID =
d1: ID&&dp: ID = dp1: ID&&o: ID = o1: ID&&a: ID = a1: ID&&c: operator =
c1: operator&&c: operand = c1: operand }

 PCIEF: a policy conflict identification and evaluation framework 59

Figure 5 Algorithm for PCAL to alloy conversion

4.3 Policy comparison procedure

Alloy Analyser compares two given policies, prints conflict summary based on the
conflict type. The conflict detection algorithm is presented in Figure 6. The Alloy
Analyser first opens the following files: Policy Structure, Policy Document Check, and
Policy Files from Org1 and Org2. Analyser then verifies the policy files against the
policy structure to ensure the policies conform to specific alloy format. Alloy Analyser
checks whether the policy documents meet the conditions laid down in policy document
check. The policy document check file consists of facts that need to be satisfied by each
policy document. The violations of an assertion for a particular type of conflict are then
checked. If there are no conflicts between two policies, then Alloy Analyser displays a
message, no counterexample found. Assertion may be valid.

 60 V. Subramanian et al.

Figure 6 Alloy comparison procedure

If there are inconsistencies found, Alloy Analyser displays a message, ‘Counterexample
found’. Assertion is invalid and provides a link to a visual diagram representing the
conflict. Here, a counter example is a set of instances that satisfy the constraints defined
by the model and doesn’t satisfy the analysed assertion.

5 Case study

We consider sample policy rules from real world security policies in different security
domains. Alloy Analyser compares two given policies against policy facts and presents
the report. Policy conflicts are identified by Alloy Analyser based on the assertions.
Alloy Analyser shows output in different format such as graphical, XML format.

 PCIEF: a policy conflict identification and evaluation framework 61

5.1 Example 1

Here, we consider sample password policy rules from Access Control Systems and
Methodology domain from organisations A2Z Tech and Galaxy Inc. The password policy
of organisation A2Z Tech contains 30 rules and password policy of Galaxy Tech contains
26 rules. Here, we have shown only the conflicting rules.

Domain name: Access control systems and methodology

Policy name: Password policy

Policy rules:

1 Password should contain at least eight characters.

2 Previously used ten passwords should not be used.

3 Accounts should be unlocked after two hours.

4 Do not use SSN in passwords.

5 Passwords should not be disclosed to any forum.

6 Passwords should not be transmitted through e-mail.

Figure 7 present simplified version of Alloy Analyser output. Minimum password length
in A2Z Tech is eight while it is seven in the case of Galaxy Tech. The operand is
highlighted with a directional arrow.

Figure 7 Weak conflict – an example

Each policy conflict will be displayed in this fashion. For simplicity sake we have shown
one of the weak conflicts using the graphical output. Entire Alloy Analyser output cannot
be fit into one page. Hence, we have shown all the weak conflicting elements using the
XML output. Constraint operand values which differ are shown below. The policy rules
that are missing in Galaxy Tech are also highlighted in the XML output as shown in
Figure 8.

Alloy Analyser’s graphical output for the strong conflicts are shown in Figure 9. In
Figure 9, the attribute ‘Account Lockout’ is missing from Galaxy Tech Password policy.
For strong conflicts attribute section from the XML output is shown in Figure 10. The

 62 V. Subramanian et al.

attributes ‘Account Lockout’ and ‘Transmission’ are missing from Galaxy Tech
password policy. They are highlighted along with their constraints.

Figure 8 XML extract of weak conflicts

5.2 Example 2

In this example, we present conflicting data classification policy rules from Security
Management Practices domain in organisations A2Z Tech and Galaxy Tech. The data
classification policy of organisation A2Z Tech contains 30 rules and data classification
policy of Galaxy Tech contains 27 rules. Here we have shown only the conflicting rules.

Figure 9 Strong conflict example

 PCIEF: a policy conflict identification and evaluation framework 63

Figure 10 Strong conflict XML extract

Domain name: Security management practices

Policy name: Data classification policy

Policy rules:

1 Policy is applicable to information on paper.

2 Customer order is confidential and must be restricted to those with a legitimate business
need for access.

3 Staff Directory is internal and meant for use by the company’s staff.

Figure 11 Weak conflict example 2

 64 V. Subramanian et al.

Alloy Analyser analyses data classification policies from A2Z Tech and Galaxy Tech the
output is shown in Figures 11 through 14. In A2Z Tech Data classification policy, the
policy is applicable to all data stored in any format, including electronically, on paper and
on visual displays, including screens and display boards. While in data classification
policy of Galaxy Tech does not specifically mention about the information on paper. Also
in A2Z Tech, the policy classifies customer order as confidential and in Galaxy Tech,
customer order is classified as Internal. In A2Z Tech, the policy classifies Customer order
as confidential (assigned ID 3) and in Galaxy Tech, customer order is classified as
internal (assigned ID 4). Refer Figure 11. Figure 12 display the XML extract of the weak
conflicting elements.

Figure 12 Weak conflict XML extract

Figure 13 Extreme conflict

 PCIEF: a policy conflict identification and evaluation framework 65

Figure 14 Extreme conflict XML extract

In Figure 13, the object staff directory is classified as Internal in data classification policy
of organisation A2Z Tech, in Galaxy Tech’s policy did not mention about Staff directory.
Figure 14 represent the XML extract of the extreme conflict.

6 Conclusions and future work

Information security policies address several areas of information security. In this paper,
we proposed a PCIEF with a policy specification language PCAL as its backbone. PCAL
is used to provide a common format for all security policy documents. We converted
policy documents in the form of PCAL using a web-based GUI tool. The policy
document in PCAL format is converted into Alloy Language format using a web
application for performing further policy consistency analysis. Our policy model will
help the user to easily convert human readable security policy documents into PCAL and
then into alloy to identify policy conflicts without having to have in depth knowledge of
Alloy Language. To use PCAL, the user need not be a programmer; understanding of
information security is enough. Moreover if a user wants to use any other analyser to find
policy conflicts, he/she can use policy document that are in PCAL format and easily
convert them into any other language. Policies in alloy format are analysed by Alloy
Analyser, policy inconsistencies are shown in the form of a visual diagram and XML
extracts. There has been significant development made by various researchers in the field
of policy consistency analysis. However there is a lack of policy analysis for conflicts
arising from various compliances and regulations. These conflicts should also be
analysed so as to provide a common framework that caters to multiple mandates.

References
Agrawal, D. et al. (2008) Policy Technologies for Self-Managing Systems, IBM Press, Indiana,

USA.
Agrawal, D., Kang-Won, L. and Lobo, J. (2005) ‘Policy-based management of networked

computing systems’, IEEE Communications Magazine, Vol. 43, No. 10, pp.69–75,.
Damianou, N. et al. (2001) ‘The ponder policy specification language’, Proceedings of the

International Workshop on Policies for Distributed Systems and Networks, Springer-Verlag,
Bristol, UK.

 66 V. Subramanian et al.

Dennis, G. et al. (2004) ‘Automating commutativity analysis at the design level’, Proceedings of
the 2004 ACM SIGSOFT International Symposium on Software Testing and Analysis, ACM,
Massachusetts, Boston, USA.

Georg, G., Bieman, J. and France, R.B. (2001) ‘Using alloy and UML/OCL to specify
run-timeconfiguration management: a case study’, published in Workshop of the
pUML-Group held together with the «UML» 2001 on Practical UML-Based Rigorous
Development Methods – Countering or Integrating the eXtremists, pp.128–141, published by
GI publications.

Godik, S. and Moses, T. (2003) ‘eXtensible access control markup language (XACML) Version
1.0.’, OASIS Standard, 18 February.

Grance, T., Hash, J., Peck, S., Smith, J. and Korow-Diks, K. (2002) ‘Security guide for
interconnecting information technology systems’, Technical Report.

Hoagland, J.A. et al. (1998) ‘Security policy specification using a graphical approach’, Technical
Report CSE-98-3, UC Davis Computer Science Department.

Hughes, G. and Bultan, T. (2004) ‘Automated verification of access control policies’, Technical
Report, Department of Computer Science, University of California.

IBM-ACPL (2005) ACPL: Autonomic Computing Policy Language, available at
http://dl.alphaworks.ibm.com/technologies/pmac/acpl.pdf (accessed on 18 September 2008).

Jackson, D. (2006) ‘Alloy specification language and analyzer’, available at
http://www.Alloy.mit.edu (accessed on 25 May 2008).

Jajodia, S., Samarati, P. and Subrahmanian, V.S. (1997) ‘A logical language for expressing
authorizations’, Proceedings of the 1997 IEEE Symposium on Security and Privacy, IEEE
Computer Society.

Lobo, J., Bhatia, R. and Naqvi, S. (1999) ‘A policy description language’, Proceedings of the
Sixteenth National Conference on Artificial Intelligence and the Eleventh Innovative
Applications of Artificial Intelligence Conference Innovative Applications of Artificial
Intelligence, American Association for Artificial Intelligence, Orlando, Florida, USA.

Mankai, M. and Logrippo, L. (2005) ‘Access control policies: modeling and validation’, 5th
NOTERE Conference (Nouvelles Technologies de la R´epartition), pp.85–91, Gatineau,
Canada.

Michael, H. and Vijay, V. (2001) ‘Tower: a language for role based access control’, Policies for
Distributed Systems and Networks, Vol. 1995/2001, pp.88–106, available at http://dx.doi.org/
10.1007/3-540-44569-2_6 (accessed on 18 September 2008).

Nossik, F.W.M. and Richardson, M. (1998) ‘PAX PDL – a non-procedural packet description
language’, Technical Report.

Park, S. and Kwon, G. (2005) ‘Verification of Uml-based security policy model’, International
Conference on Computational Science and its Applications (ICCSA), pp.973–982.

Ribeiro, C. et al. (2001) ‘SPL: an access control language for security policies with complex
constraints’, Proc. Network and Distributed System Security Symposium (NDSS), 2001.

Schaad, A. and Moffett, J.D. (2002) ‘A lightweight approach to specification and analysis of
role-based access control extensions’, Symposium on Access Control Models and
Technologies (SACMAT), pp.13–22.

Schunter, M. (2003) Enterprise Privacy Authorization Language (EPAL), available at
http://www.zurich.ibm.com/security/enterprise-privacy/epal/ (accessed on 25 May 2010).

Skoudis, E. (2007) ‘Mergers and acquisitions: building up security after an M&A’, available at
http://searchsecurity.techtarget.com/tip/0,289483,sid14_gci1261024_mem1,00.html (accessed
on 18 September 2008).

Stone, G.N., Lundy, B. and Xie, G.G. (2001) ‘Network policy languages: a survey and a new
approach’, IEEE Network, Vol. 15, No. 1, pp.10–21.

 PCIEF: a policy conflict identification and evaluation framework 67

Subramanian, V., Seker, R., Bian, J. and Kanaskar, N. (2011) ‘Collaborations, mergers,
acquisitions, and security policy conflict analysis’, Proceedings of the Seventh Annual
Workshop on Cyber Security and Information Intelligence Research, Oak Ridge, Tennessee,
Article 36.

Tipton, H.F. (2009) Official (ISC)2 Guide to CISSP CBK, pp.12–15, Auerbach Publications,
Florida, USA.

Zao, J. et al. (2003) ‘RBAC schema verification using lightweight formal model and constraint
analysis’, Proceedings of the eighth ACM symposium on Access Control Models and
Technologies.

Zhi, F. et al. (2001) ‘IPSEC/VPN security policy: correctness, conflict detection, and
resolution’, Policies for Distributed Systems and Networks, Vol. 1995/2001, pp.39–56,
available at http://dx.doi.org/10.1007/3-540-44569-2_3 (accessed on 25 May 2008).

