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Abstract: The increased use of Industrial Wireless Sensor Networks (IWSN) in a variety of different
applications, including those that involve critical infrastructure, has meant that adequately protecting
these systems has become a necessity. These cyber-physical systems improve the monitoring and
control features of these systems but also introduce several security challenges. Intrusion detection
is a convenient second line of defence in case of the failure of normal network security protocols.
Anomaly detection is a branch of intrusion detection that is resource friendly and provides broader
detection generality making it ideal for IWSN applications. These schemes can be used to detect
abnormal changes in the environment where IWSNs are deployed. This paper presents a literature
survey of the work done in the field in recent years focusing primarily on machine learning techniques.
Major research gaps regarding the practical feasibility of these schemes are also identified from
surveyed work and critical water infrastructure is discussed as a use case.

Keywords: industrial informatics; industrial sensor network; cyber-physical systems; critical
infrastructure; water monitoring

1. Introduction

Industrial wireless sensor networks (IWSN) have gained popularity in recent years and are being
used in a variety of different applications [1–5]. One of their most important applications involves
critical infrastructure, where they form part of supervisory control and data acquisition (SCADA)
systems [6]. They are popular in these systems because they provided the same control features as
their wired counterparts but have a much lower deployment and maintenance cost. These systems
also introduce the potential for intelligent monitoring and control within the Internet of Things
(IoT) application environment. The rapid rise of IoT technologies has meant that in the future
these devices are going to be an integral part of smart city applications. A recent study has shown
that by 2020 there could be over 100 billion IoT applications in existence and the market value
for these projects is currently over 11 billion Euro in Europe alone [7]. The complex nature of the
application environment also means that IWSNs require a multidisciplinary team of experts for both
development and application [8]. In the application domain these networks are usually deployed
in hostile environments and their resource constraints introduce several security challenges [9–12].
This is particularly problematic in these critical infrastructure applications because compromised
systems can lead to disastrous consequences for the underlying infrastructure. In this scenario control
theory and network security are combined to protect the system and this is collectively referred to as
cyber-physical security.
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These cyber-physical systems [13] can be conveniently monitored and controlled remotely but
this added convenience comes at the cost of increased vulnerability. This is because attackers can
compromise the corporate network using conventional network security attacks and use this access
to seize control of the SCADA system. This was the case in the attack on the Ukrainian power
grid [14] which resulted in over 200,000 consumers not having access to electricity due to power
outages. Intrusion detection provides a second layer of security in case of the failure of normal network
security policies and the system becomes compromised. This secondary defence is paramount in these
applications because it would limit the resultant damage of a compromised system. An example of
this can be seen from the Maroochy water treatment system attack where it took three months to detect
that the system was compromised and during that period 150 million litres of untreated sewerage was
released into local waterways [15].

An important consideration of protecting IWSNs is that conventional network security policies
cannot be applied to these networks in their original format because they are deployed in vastly
different environments and thus have conflicting priorities to conventional IT networks. This is
especially the case with intrusion detection schemes which are conventionally resource intensive [16].
Anomaly detection is a branch of intrusion detection which is popular in IWSNs because of its flexibility
and relative resource friendliness [17]. An anomaly is defined as something which deviates from the
norm/standard. In the application environment, an anomaly can be found by analysing the sensed
data or traffic patterns to find abnormal behaviour in the system. The sensor nodes in IWSNs consume
the most energy while transmitting data as opposed to the data processing tasks [18–21]. A major
limitation in these systems is the finite power supply which is usually a conventional battery. It is
for this reason that anomaly detection algorithms in this application scenario should seek to limit the
amount of communication required to perform the task [22]. This can be achieved by making use of
distributed in-network processing.

Another important consideration is that an anomaly might not necessarily be the result of a
security breach [17]. A faulty node could produce abnormal results which could intern bring down the
entire network. In critical infrastructure applications these types of anomalies are as dangerous as those
caused by intruders and should also be detected by proposed schemes. Several anomaly detection
surveys which give comprehensive overviews of the relevant literature exist [23–26]. These surveys
however do not specifically consider resource constrained IWSN, which have conflicting priorities
to conventional computer networks. To the best of our knowledge, there is also no survey which
considers the applicability of anomaly detection to critical infrastructure applications (specifically
water systems) taking the above into consideration. Intrusion detection systems specifically designed
for WSNs are surveyed by the authors in [16,27]. These schemes are however distinguishable from
their anomaly detection counterparts which provide greater flexibility in these dynamic environments.
The authors in [17,28] surveyed the state of the art anomaly detection schemes with the former
presenting a guideline for the selection of appropriate schemes depending on the specific application
requirements. A brief review of anomaly detection in traditional SCADA systems was presented by
the authors in [29] but this did not specifically consider IWSNs. This paper presents a brief overview
of the work done in the field in recent years and highlights the practical considerations of the proposed
schemes in these resource constrained environments. Critical water system infrastructure was chosen
as the primary application of concern because of the increased number of cyber-attacks against water
utilities in recent years [30]. The importance of protecting these systems is paramount and this
paper looks at the challenges and limitations of this within the broader IWSNs anomaly detection
application environment.

Anomaly detection schemes have been classified based on different indicators (Section 2),
for example, based on the detection model they can be classified into parametric (Section 3) and
non-parametric (Section 4) models. This paper focuses more on the latter and investigates several
non-parametric schemes which are more suitable for IWSNs because of their dynamic nature.
Critical water system infrastructure is used as a case study to examine the applicability of these
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schemes to SCADA systems (Section 5) and some applications challenges are then discussed (Section 6).
The schemes are then compared using several different performance measures as well as the inherent
challenges and limitations (Section 7). Some open issues for future work are also discussed in the
paper. This paper highlights important issues that need to be addressed in order for the field to evolve
from being primarily concept-based, to one that is practically viable.

2. Anomaly Detection

Abnormal changes within monitored IWSN systems can be detected using anomaly detection
algorithms [31]. In cyber-physical systems for instance, a fault in system the system caused by
general wear and tear would cause significant changes to the sensed data which could have disastrous
consequences. The same is true if an intruder were to successfully feed false data into the system in an
attempt to affect the system functionality. Both of the examples would result in data that deviates from
norm and should be flagged by anomaly detection.

Figure 1 shows a generic framework for anomaly detection [32] which was derived from the
generic intrusion detection framework. The input to an anomaly detection scheme is a dataset which
consists of data instances which in turn consist of data attributes. Depending on the detection scheme,
the data may need to be pre-processed before proceeding further. A normal profile is then produced
through data processing by using either a training procedure or prior knowledge. Once a normal profile
is produced, a test instance can be classified as anomalous with the aid of some established threshold.
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Figure 1. Generic Anomaly detection framework.
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Anomaly detection schemes can be categorised using several different indicators. The model used
in detection schemes is a popular indicator used to classify them. The two general categories in this
regard are parametric (also known as statistical) and non-parametric models [28]. Parametric methods
are suitable in stable environments where the data distribution is well known and unlikely to change
frequently. Non-parametric models can be used in dynamic environments where the statistical
distribution is unknown and unfamiliar. The first category provides faster detection while the
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second category provides detection generality. Table 1 shows a comparison between parametric
and non-parametric schemes.

Table 1. Parametric vs. Non-parametric anomaly detection.

Parametric Non-Parametric

Prior-Knowledge? Statistical distribution Labelled training data
Environment? Static Dynamic

Detection speed? fast Moderate/slow
Detection generality? No Yes

Anomaly detection schemes can also be broadly classified as those that require prior knowledge
of the system data and those that do not [23]. As with the previous categorisation, the first category
provides faster detection while the second category provides detection generality. In the first category
the classifier can either use supervised or semi-supervised learning [33]. The former uses a large
training set and has to be retrained if normal system behaviour changes while the latter generalises
results using a smaller data set and adapts to changing system behaviour on the fly. The second
category, which does not require prior knowledge, uses unsupervised learning and assumes that
abnormalities are far removed from the norm. Table 2 shows a comparison between the different
training methods and this section is summarised in Figure 2. This paper focuses on these two
categorisation because they focus on information designers need to have about the data before they
can use the algorithm which, as will be explained later, is paramount in anomaly detection schemes.

Table 2. Comparison of anomaly detection training methods.

Supervised Semi-Supervised Unsupervised

Prior-Knowledge? Yes Yes No
Environment? Static Dynamic Dynamic

Detection speed? Fast Fast/moderate Moderate/slow
Detection generality? No Yes YesVersion July 15, 2018 submitted to MDPI 5 of 23

Anomaly 

Detection

Parametric
Non-

parametric

Prior-

Knowledge

Prior-

Knowledge

No Prior-

Knowledge

Multivariate unsupervised
Semi-

supervised
Supervised

Figure 2. Anomaly Detection Summary.

there is a strong correlation between the data of the compromised node and its neighbours. In140

both cases, the selected routing algorithm affected both the anomaly detection and the effect the141

compromised data has on the system.142

The aforementioned problem can be alleviated by using a dynamic multi-hop routing strategy143

[36]. In static routing, data always travels via the same route to the sink while in dynamic routing the144

next hop is chosen using a random selection process. In this way, the effect of the compromised data145

is spread across the neighbourhood making it easier to manage. While this technique improves the146

data recovery, a major drawback is that it introduced a traffic imbalance which can affect the energy147

consumption of the nodes. In addition to this, it becomes more difficult to find the source of the attack148

because its effects have been spread over a larger area.149

4. Non-Parametric Methods150

When the density distribution of the underlying data is not known in advance, then151

non-parametric methods can be used for anomaly detection [28]. These methods are ideal for resource152

constraint devices in dynamic settings. This can be the case when the monitored environment and/or153

the network topology are likely to change over time. There are numerous methods that have been154

proposed in this category [37–40] but this paper will focus on methods that employ computational155

intelligence. More specifically, pattern recognition through machine learning where a known dataset156

is used to find the input/output relationship of the system which can in turn be used to classify an157

unknown dataset.158

4.1. K-nearest neighbour159

K-nearest neighbours (kNN) anomaly detection schemes are generally classified into two broad160

categories, those that are density-based and those that are distance-based [41]. The former is ideal for161

multilevel detection applications and can process unevenly dense training data. Two popular metric162

parameters in these schemes are the local outlier factor (LOF) and the connectivity-based outlier factor163

(COF) which both have large computational complexities that may not make them feasible for IWSN164

applications without some optimisation. Distance based schemes classify a data point as anomalous to165

Figure 2. Anomaly Detection Summary.



Sensors 2018, 18, 2491 5 of 24

3. Parametric Methods

Parametric methods require prior knowledge of the density distribution of the data being
analysed [28]. An anomaly is assumed when a data point that has a small probability of occurring is
observed. Parametric methods can use either univariate or multivariate distribution functions with the
latter being more suitable for IWSN applications. The former only deals with one random variable at a
time so each variable would have to be modelled independently using its own distribution function
while the latter allows vectors of random variables to be modelled using the same distribution function.
Parametric methods are suitable when the nodes and the distribution function will be static over the
network lifetime.

Multivariate Distribution Functions

A scheme that detects sinkhole and Denial of Service (DoS) attacks is proposed by the authors
in [34]. This scheme detects global long term anomalies that cannot be detected by conventional
point-based techniques. As with most IWSN applications, a decentralised approach is followed in
order to decrease the communication overhead. The scheme uses a Kullback-Leibler divergence-based
algorithm that employs segment-based recursive kernel density estimation. It was found to have
generally favourable results although dimensionality is still a major issue.

The problem of data loss/modification was addressed by the authors in [35] who developed a
scheme that can both detect and recover lost data. Both detection and recovery use a partial least
squares and principal component-based multivariate technique but the latter additionally utilises
trimmed scores regression. Both models had favourable results with the latter performing best
when there is a strong correlation between the data of the compromised node and its neighbours.
In both cases, the selected routing algorithm affected both the anomaly detection and the effect the
compromised data has on the system.

The aforementioned problem can be alleviated by using a dynamic multi-hop routing strategy [36].
In static routing, data always travels via the same route to the sink while in dynamic routing the next
hop is chosen using a random selection process. In this way, the effect of the compromised data is
spread across the neighbourhood making it easier to manage. While this technique improves the
data recovery, a major drawback is that it introduced a traffic imbalance which can affect the energy
consumption of the nodes. In addition to this, it becomes more difficult to find the source of the attack
because its effects have been spread over a larger area.

4. Non-Parametric Methods

When the density distribution of the underlying data is not known in advance, then
non-parametric methods can be used for anomaly detection [28]. These methods are ideal for resource
constraint devices in dynamic settings. This can be the case when the monitored environment and/or
the network topology are likely to change over time. There are numerous methods that have been
proposed in this category [37–40] but this paper will focus on methods that employ computational
intelligence. More specifically, pattern recognition through machine learning where a known dataset
is used to find the input/output relationship of the system which can in turn be used to classify an
unknown dataset.

4.1. K-Nearest Neighbour

K-nearest neighbours (kNN) anomaly detection schemes are generally classified into two broad
categories, those that are density-based and those that are distance-based [41]. The former is ideal for
multilevel detection applications and can process unevenly dense training data. Two popular metric
parameters in these schemes are the local outlier factor (LOF) and the connectivity-based outlier factor
(COF) which both have large computational complexities that may not make them feasible for IWSN
applications without some optimisation. Distance based schemes classify a data point as anomalous
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to a dataset if less than a predetermined number of points in that set are a predetermined distance
from that set. These schemes also have high computational complexities but can be optimised for
IWSN applications.

A density-based kNN scheme that uses LOF as a metric for anomaly detection on uncertain data
was proposed by the authors in [42]. Local density and uncertainty information is used to calculate
uncertain local outlier factors (ULOF) in an uncertain dataset. The distance distribution function is
found by using the least squares algorithm on multi-times curve fitting and a pruning algorithm is
used to reduce the set of potential “nearest-neighbours”. Experiments yielded favourable results when
compared to state-of-the-art techniques, but dimensionality was found to be a major drawback.

The lazy-learning problem of the kNN algorithm was addressed by the authors in [41] who
proposed a distance-based scheme that makes online detection a possibility. The scheme is based on a
hypergrid that consists of several fixed-size hypercubes in which data points are mapped in order to
make an anomaly detectable. Hypergrid schemes have low computational complexities making them
ideal for IWSN applications. In fact, the complexity of the proposed scheme increases logarithmically
with sample size as opposed to other schemes that have quadratic increase.

The effectiveness of a kNN algorithm lies with the optimal selection of the k-value. A larger
k-value makes the algorithm less susceptible to noise but could also result in a neighbourhood that is
too large with indistinct boundaries and cause short circuit errors. The opposite could inadvertently
lead to data points in the same class being separated due the weakened association between the nodes
in the same neighbourhood. In [43] the authors propose a weighted natural neighbour graph (WNaNG)
which is an adaptive algorithm that does not make use of the k-value. The algorithm makes use of
the principle of implicit trust to find all the “friendly” nodes in a particular cluster. The rest of the
nodes are then considered “outsiders”. The algorithm has generally favourable results when compared
traditional kNN algorithms depending on the data distribution and selected k-value.

4.2. Support Vector Machines

Support Vector machines (SVMs) are traditionally supervised learning classifiers that require
labelled training data to map samples into one of two classes [44]. These types of SVM models are
called binary or two-class linear models. Binary SVMs can be adapted to work with non-linear data
by mapping them into a high dimensional feature space using the Kernel method. Structural risk
minimisation (SRM) is achieved when a maximum margin hyperplane can be found. In cases where
unsupervised learning is required, which is normally the case in anomaly detection schemes because of
the lack of training data, one-class SVMs can be used. In one-class SVMs the only class is the “normal”
class and anything which deviates from the norm is classified as an anomaly.

The use of a sliding window-based Least Squares SVM for online outlier detection was proposed
by the authors in [45]. The algorithm uses a Reproducing Kernel Hilbert Space (RKHS) with Radial
Basis Function (RBF) kernel. This kernel requires the system that produces the readings to be in steady
state otherwise the detection performance deteriorates. The proposed algorithm addresses this issue by
using the norms of the differences between samples and Least Squares Estimates instead of Euclidean
norm. The modified scheme was shown to significantly outperform the original but is much slower.

An anomaly detection scheme based on SVM and Linear regression models is proposed for
medical applications by the authors in [46]. The SVM detects anomalies and the linear regression
model is used to find the abnormal sensor measurements. A patient’s vital signs can sometimes
deteriorate suddenly and seemingly without warning but this model is able to distinguish between
those cases and erroneous sensor readings. The system was tested using real patient data and was
found to have a higher true positive and lower false negative rate than state-of-the-art techniques.

As already mentioned the lack of training data is a serious drawback of binary SVMs. The same
is true for multi-class SVMs because they are an extension binary SVMs that allow for sample
categorisation into multiple classes. Moreover, should the training data be available SRM remains a
major issue in these schemes and as such new emerging anomalies are difficult to detect. A multi-class
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SVM for anomaly detection in large scale deployments that seeks to address this issue is proposed
in [47]. It is capable of classifying data into multiple known classes and uses the unknown class
to detect anomalous data. The scheme is an extension conic segmentation SVM (CS-SVM) which
is known as a true multi-class SVM as it does not use a combination of binary SVMs to achieve
multi-class classification. The added functionality of the CS-SVM is achieved by combining it with
the one-class SVM. The proposed scheme was tested using several benchmarking datasets and had
favourable results.

4.3. Artificial Neural Networks

Artificial Neural Networks (ANNs) model the way the biological brain solves problems to
enable computational systems to have the same capacity to learn [48]. They consist of several
interconnected artificial neurons that are categorised into 3 main layers: the input, hidden and output
layers. The ability of neural networks to detect patterns in the input/output relationships of given
data sets makes them ideal contenders for anomaly detection systems. However, their inability to
handle unseen data is a major limitation for these kinds of applications so ANNs are seldom used in
isolation [49].

An adaptive neural swarm approach was proposed for anomaly detection by the author
in [50]. The system uses a decentralised collaborative approach which utilises agent-based swarm
intelligence. Modular neural networks are formed autonomously by the swarm agents and the
reinforced learning approach is used in the training process to facilitate an unsupervised learning
environment. The proposed scheme is theoretically capable of monitoring the application environment
and identifying possible anomalies in real-time. Simulation results were promising, but more research
is required to explore the feasibility in resource constrained devices.

An interesting research focus in the application of neural networks in anomaly detection is on
the training process. A variation of the online sequential extreme learning machine (OS-ELM) was
proposed for the training of single layer feed-forward neural networks (SLFN) by the author in [51].
The proposed scheme uses an embedded fixed-point implementation which has overcome the stability
issues inherent with fixed-point implementations. The scheme is ideal for resource constrained devices
because the underlying algorithm has a low computational overhead. When compared to state of the
art techniques, it was found to have comparable results.

Another related application scenario is the deployment of IWSNs for the specific task of detecting
anomalies. In this case, the anomalies are usually caused by equipment malfunction but as already
mentioned, there is little difference between the effects faulty equipment and an attack. An architecture
for industrial condition monitoring that is based on a dynamic neural network was proposed by the
authors in [52]. The proposed scheme was designed to work in noisy, dynamic non-linear systems
and was tested on the cooling system of a poly-phase induction motor. It was able to produce a high
detection accuracy when tested using unseen anomalous data.

4.4. Genetic Algorithms

Genetic algorithms (GA) are based on the principle of natural selection. Given a population of
possible solutions, the GA uses a subset of them (referred to as parents) to create the “next generation”
which will also be used to create their successors and so on. This evolutionary process continues until
it produces an optimal solution. The different types of GA’s differ in the way “parents” are selected
and how the “next generation” is produced.

A GA-based node attribute behaviour anomaly detection scheme was proposed by the authors
in [53]. The scheme uses the fact that particular node attributes can be used determine whether or
not a particular node is behaving “normally”. These attributes can then be mapped into the feature
set which is used by the GA to detect anomalies. The proposed scheme is capable of adapting to
changes in system behaviour over time. The system was simulated in NS-2 and yielded a detection
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accuracy of 87.5% with a false positive rate of 12.5%. The authors however noted that these values can
be significantly improved by using more behaviour indices.

A GA based scheme that be used to improve reputation systems was developed by the authors
in [54]. The scheme uses trust and reputation principles to identify misbehaving nodes and then
isolate them from the network. The reputation of a node is determined by an unsupervised GA
which monitors the network for suspicious behaviour. Nodes that are misbehaving will have their
reputation scores sharply reduced until it is deemed to be untrustworthy. Should the misbehaving
node start to behave “normally” its reputation score will gradually increase until it becomes trusted
again. This possibility for redemption accounts for selective behaviour of nodes, which may not be the
result of an attack. The proposed scheme had a high detection accuracy and low false positive rate
when tested with known attacks.

Besides GAs, there are other biologically inspired artificial intelligence algorithms that can be
used in anomaly detection schemes. For instance, the use of the negative selection algorithm (NSA) of
the artificial immune system (AIS) to detect anomalies was proposed by the authors in [55]. The AIS
is modelled after the human immune system and is advantageous because it is inherently adaptive
making it ideal for anomaly detection schemes. The proposed scheme uses a modified version of NSA
(modelled after the natural system of the same name) that has an added injection feature step referred
to as vaccination. This allows for an ad hoc update of the detector set without having to retrain the
system. Experimental results show that the proposed scheme outperforms state of the art techniques

4.5. Hybrid Systems

In intrusion detection systems, the traditional definition for a hybrid system is one that combines
signature-based classifiers with anomaly detection methods [24]. In this paper that definition will be
extended to include all systems that combine two methods to produce a stronger intrusion detection
system. While increasing in popularity, hybrid systems do not always result in a better overall system
because what you gain in detection accuracy could be lost in efficiency. So the challenge in these kinds
of systems is creating robust schemes that have high detection accuracies and low false positive rates
while still being feasible for practical implementation.

The use of a hybrid model that combines signature-based classification and anomaly detection
using SVM was proposed for intrusion detection by the authors in [56]. The system is designed to work
for networks that use clustered architectures where cluster heads are elected to forward aggregated
data packets to the base station. The cluster heads are not more powerful than the other sensor nodes
and are selected based on the remaining energy of the nodes in the cluster. Each node runs a local
intrusion detection agent while the cluster head runs the global one which is responsible for making
decisions based on two detection schemes. The proposed scheme yielded a high detection accuracy
and low false positive rate when tested with a range of known attacks. It also had better or comparable
result to state of the art techniques.

A scheme that uses a combination of spectral clustering (SC) and deep neural networks (DNNs)
for intrusion detection was proposed in [57]. SC is used to improve the performance of DNNs which
usually perform poorly when exposed to camouflaged attacks. In the learning phase, spectral clustering
is used to extract features and divide the data into categories depending on their similarities using
cluster centres. Each category is then used to train a DNN which then learns specific characteristics of
each category. Once trained, the DNNs detect intrusions by first categorising the input data into the
above mentioned categories using SC. Based on the learned behaviour, the DNNs are able to distinguish
between normal and malicious behaviour. The proposed scheme outperforms state-of-the-art
techniques when tested using known datasets. The scheme was tested using the simulator NS-2.
However, no evaluation was conducted to verify the feasibility for practical implementation given the
scarce resources in the application scenario.

One could go further than hybrid systems by using an ensemble of algorithms to detect anomalies.
This would theoretically result in a better detection accuracies than hybrid systems because there
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are more algorithms working together to overcome each other’s limitations. Owing to the resource
constraints of IWSNs, these types of systems are not as popular in these applications. The authors
in [58] however proposed a framework for the use of ensembles of incremental online learners for
anomaly detection. Their decentralised approach was able to outperform their centralised offline
learner counterparts. While the complexity of the algorithms used will ultimately be the determining
factor, they find that ensemble schemes are feasible for practical implementation.

5. Anomaly Detection in Water Systems

In March 2000, the water treatment system of Maroochy in Queensland Australia was
compromised by a disgruntled attacker who was turned down for a job at the facility [15]. The attacker
ceased control of 150 pump stations remotely and in the three months it took to detect the breach he
was able to release 150 million litres of untreated sewage into local water ways. The system did have
security mechanisms in place but the attacker was involved in the installation of the upgrades to the
system and used this knowledge to bypass them. The system exhibited unexplained behaviour during
this period which was eventually noticed by the engineers who were eventually able to track him
down and have him arrested. At this point however, the attacker had already caused a substantial
amount of damage. This example will be used to illustrate the benefits anomaly detection in critical
infrastructure applications by looking at how the system failed and how anomaly detection could have
been used to limit the damage.

Some of the most notable faults exhibited by the system during the breach were [59]:
(1) unexplained alarms, (2) increased network traffic, (3) misbehaving pumps, (4) alarms not going off
when they were supposed to, and (5) communication lockups. These faults can clearly be classified
as system anomalies which can be classified by detection schemes. SCADA systems consist of the
corporative and the control networks [6]. The former is responsible the general system supervision
while the latter is more intimately involved with the control of the various subsystems. This discussion
will be constrained to the control network which is where the sensor networks are located. Each of
the notable system faults will now be discussed to ascertain how an anomaly detection scheme at the
control level could have led to the breach being detected sooner.

The system exhibited several alarms which could not be explained by the administrators.
Anomaly detection schemes however deal with raw system data at the control level. This means
that a detected anomaly can be isolated to a specific part of the network which would have made it
easier find the source of the problem. In this instance, the administrators would have been able to
approach the problem from the sensor level, e.g., specific sensors within the system are measuring
uncharacteristic values based on historic data. The problem of alarms not going off when they were
supposed to could have also been aided by these schemes. In this case however, this would have only
been useful once the problem had been detected. The alarms still wouldn’t have gone off because
that was modified at an administrative level, but the anomalies would have been detected and logged
making it easier to find the source. The other three faults were general anomalies which would have
been easily detected by any anomaly detection scheme.

The attack on the Maroochy water system was however not very sophisticated which is why it
could have been detected easily using appropriate schemes. The authors in [60] used a water treatment
dataset to show that more sophisticated attacks can also be detected in water systems. In this case
the system was tested against a variety of spoofing attacks which could lead to, among other things,
overflow and underflow errors. The former can lead to flooding and the latter can potentially damage
the pumps. The system was able to detect all the various attacks it was tested against and isolate the
anomalies to specific sensors within the system. This would make it easier for a system to recover once
compromised because administrators would know the exact location of the problems.

The authors in [61] went further by using the FACIES testbed to compare model-based fault
detection (FD) and network anomaly detection. The FACIES testbed emulates the water system of the
fictional HighLake City which primarily uses gravity to supply water to the different areas of the city
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as shown in Figure 3. The testbed consists of 5 tanks which represent different areas of the fictional
city and a reservoir tank which serves as the main water source and sink. The reservoir supplies water
to residential area 1 through tanks 1 and 2 using pumps. Residential area 1 supplies water to the
industrial area (through tank 5) using a pump and also to residential area 2 (through tanks 3 and 4)
using gravity. The configuration allows several different water distribution scenarios to be emulated
and has many predefined fault mechanisms that can be used to test and evaluate algorithms in the
application scenario. The authors in [61] used this testbed in their evaluation and found that FD is not
an adequate mechanism to detect attacks because an attacker with sufficient knowledge of how the
system operates would easily be able to shield their activities from detection. They however found that
anomaly detection still works even when the attacker attempts to go unnoticed by launching stealthy
attacks. The introduction of anomaly detection also makes it possible to distinguish between physical
faults and attacks.
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It is thus evident that anomaly detection is a convenient second line of defence in critical water
system applications. It is however necessary to discuss the applicability of these schemes taking
two critical points into consideration. The first important consideration is that of prior knowledge,
which in this and most other existing critical infrastructure applications is not a major issue when
considering physical faults. Labelled training data is it pertains to system attacks is however not as
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easily available making this a major limiting factor. The process dynamics of real world critical water
infrastructure will evolve over time meaning that proposed anomaly detection schemes should take this
into consideration [62]. The use of simulated data is useful in determining the viability of the proposed
schemes but may not adequately portray the challenges of practically deployed full-scale system.
This is especially true when considering the fact that anomalies are rare obscure events in practice
which creates additional challenges as opposed to the simulated scenario where they are artificially
created and clearly defined. An example of this can be seen in [63] where the authors used the real
world Vitens Innovation Playground dataset which they found to lack sufficient logged information
about anomalies. This lack of labelled training data severely hindered the scheme’s performance
because there was not enough information to enable them to adequately train the algorithm.

It may not always be possible to obtain real world training data for full-scale systems especially
in the case of system attacks which are even less frequent than system faults. It is however necessary
for proposed schemes to be trained and tested against a variety of such attacks but as mentioned
before simulated data may not always be adequate. This is where scaled down practical systems
such as the FACIES testbed mentioned earlier could be useful. These scaled down versions of real
world systems enable designers to work with system data as close to practically deployed systems
as possible. The use of such systems could greatly improve accuracies because the full impact of
modelled attacks can be observed and designers would be able to make informed decisions about
aspects such as sensor placements and what the appropriate action should be taken when an anomaly
is detected [64]. The latter is important because some anomalies could have devastating consequences
if corrective action is not implemented in a timely manner, even just as an interim measure while the
administrator investigates.

The computational overhead of the detection schemes is also another limiting factor in terms of
their applicability in practice. Proposed schemes should run in parallel with the control algorithms
without significantly affecting their performance. This is particularly important when considering the
bedrock of network security, the CIA triad, which identifies the three key components that need to be
protected in most systems: confidentiality, integrity and availability. In SCADA systems, availability
has been identified as the most important of these three components [65]. Availability is more difficult
to classify than the other two components because its protection cannot be evaluated using a binary
measure. A system can still be able to carry out its normal operations but be slowed down enough to
affect its overall performance making it impossible to carry out its mandate. In this case an anomaly
detection scheme which significantly affects system performance will be counterproductive because it
will have affected the availability of system resources to the point of constituting an anomaly or breach.
The two considerations mentioned above are paramount in order for these schemes to be seriously
considered in critical infrastructure applications.

The final part of this discussion considers the fact that traditional SCADA systems are protected
using physical FD mechanisms and are never directly connected to the Internet presumably making
them safe from remote attacks. This may lead designers to believe that not upgrading the system to
take advantage all the benefits that come with smart interconnected devices may be a small price to
pay to secure it. In this scenario the belief is that the FD mechanism would be adequate protection for
the system because the system would then be safe from cyber-attacks. This belief would be false as was
demonstrated by the Stutnex worm attack of 2010 [66]. The worm was specifically designed to target
computers that were running Siemens Step 7 which is used by many SCADA systems. Once active
the worm would directly attempt to communicate with PLC (programmable logic controller) devices
within the system. The most troublesome aspect of the worm was that its propagation mechanism did
not require an internet connection to spread which made it capable of compromising legacy systems
as well. This demonstrated the fact that traditional SCADA systems are not inherently safe from
cyber-physical attacks.
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6. Applying Anomaly Detection in Water Systems

In Section 5, anomaly detection schemes in critical water system infrastructure were broadly
discussed and some practical challenges were outlined. Anomaly detection was then introduced in
more detail in the following sections and some state of the art techniques were discussed. In this
section, anomaly detection in the application scenario will be discussed by making use of a security
attack to illustrate what can go wrong and then using that to discuss some practical considerations to
take into account when applying anomaly detection from a machine learning perspective.

6.1. Data Integrity Attack

The authors in [67] attack the fieldbus communications of the Secure Water Treatment (SWaT)
testbed using a Man-in-the-middle (MitM) attack to illustrate the devastating consequences such
attacks could have in industrial control systems (ICS). The SWaT testbed is a scaled down version of
a water treatment plant that has six main processes which emulate the functionality their full-scale
counterparts. The industrial control network for the SWAT testbed is shown in Figure 4. In the network,
the SCADA system communicates with the PLC which in turn has a ring topology connection with the
RIO (remote input/out) device. The ring topology consists of two PLCs (one main device and a backup)
to ensure reliable communication within the fieldbus network. This network redundancy is what
makes this type of attack challenging because cutting the communication link of the main PLC will
activate the backup until the attacker is able to close the loop again. The RIO allows communication
between the PLC and the actuators and sensors by converting the digital signals required by the former
and analog signals required by the latter before transmitting to the respective devices.Version July 15, 2018 submitted to MDPI 12 of 23
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In the attack described in [67], the authors show that MitM attackers would be able insert
themselves between the PLC and the actuators and sensors and consequently manipulate sensor
reading and/or control commands sent to the actuators. This could lead to, among other things,
tank overflows and the manipulation of the treatment process to contaminate the water and potentially
damage tanks and pipes. The attackers could also launch a series of stealthy attacks which emulate
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the physical processes of the system in order to remain undetected by the built-in fault detection
mechanisms of the control system. These types of attacks are not easy to carry out because an attacker
first needs to have an intimate knowledge of how the system operates which he can gain by first
launching passive attacks. These attacks are also more sophisticated than network traffic-based attacks
(e.g., DoS attacks), which may not require prior knowledge of the system, but they are far more difficult
to detect and have substantially more devastating consequences when successful [68].

6.2. Feature Selection

One of the most important considerations in machine learning is that of feature selection which
will directly impact how well the algorithm will work in the application scenario. When considering
feature selection for anomaly detection in critical water system infrastructure, it may be useful to first
consider how fault detection mechanisms in these systems work. As mentioned in the previous section,
data integrity anomalies are more difficult to classify and have more devastation consequences than
network anomalies so that will be the focus of this discussion. These FD algorithms use the fact that
ICS applications change the physical state of their application environments and these changes should
thus obey the laws of physics [69]. For example, if a flow valve from a specific tank is opened, then the
flow of water into/out of that tank should follow the laws of fluid dynamics. If the sensor readings
and corresponding control commands do not result in physical changes that obey these laws then
there is a fault in the system.

Knowledge of these laws above can be used to predict what the system state should be, given a
set of time-series inputs, and if the actual value falls outside of a predetermined threshold it is flagged
as a system fault. Using machine learning, designers of the algorithms do not need to have an in depth
understanding of these laws because the detection algorithm would be able to learn the input/output
relationship from historical data. A basic knowledge of these laws would however enable designers
to choose the features that would produce the best results for their specific applications. Designers
would also then be able to make adequate decision regarding the data pre-processing required before
training commences.

6.3. Training Methods

As already mentioned in the previous sections, anomalies are rare obscure events in practice
so labelled anomalous training data is hard to come by. This means that supervised learning as
a classification problem would not yield good results because there might not be enough positive
examples to train the algorithm. Based on the discussion in the previous section though, supervised
learning can be used to learn the system behaviour and predict the system state given some time-series
inputs. As with their fault detection counterparts, if the actual value is outside a predetermined error
margin from the predicted value, it could then be flagged as an anomaly. In this case, labelled training
data as it pertains to anomalous states is not required because the algorithm is learning how the system
operated under normal condition and anything not adhering to that would then be classified as an
anomaly. Anomalous examples are still required but not in the training process, they will rather be
used to evaluate the proposed algorithms as will be discussed in the next section.

To use parametric schemes, the probability distribution of that data has to be known beforehand.
This knowledge can then be used to fit the training set to the model by calculating statistical parameters
such as mean and standard deviation. The probability that given time-series inputs fall within normal
system parameters can then be calculated and if the value is smaller than some predetermined threshold
it is classified as an anomaly. This does not require a labelled training set so it can also be viewed as an
unsupervised learning problem. Their non-parametric counterparts do not make any assumptions
about the underlying probability distribution of the data but are similar in the way an anomaly is
classified. The lack of labelled anomalous training data can thus be solved by ignoring anomalous
data in the training process and rather using the little that is available for evaluation purposes.
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6.4. Algorithm Evaluation

The lack of labelled anomalous data in the application environment means that accuracy is not
an adequate measure to evaluate whether or not an algorithm is performing well. This is because
assuming that anomalous data makes up only 5% of a particular dataset, which is possible given
how rare anomalies are, then an algorithm that always predicts that the data is normal with have an
accuracy of 95%. This means that in anomaly detection schemes, the accuracy does not reveal how
well the algorithm is classifying the data. In this scenario, the detection rates would be more adequate
in order to determine the precision and recall of proposed schemes. Another adequate evaluation
metric is the area under the receiver operating characteristic (ROC) curve which will be discussed later.

There is no universal approach to selecting appropriate features, training methods, algorithms and
evaluation metrics. These are mostly application specific and what works in one scenario may not work
as well in others. This section presented a general guideline of points to take into consideration when
dealing with anomaly detection in critical water systems. The state of the art techniques presented
in this paper will now be discussed to see how they measure up against each other and the practical
consideration mentioned in this paper.

7. Observations and Recommendations

Two main considerations have to be taken into account when designing anomaly detection
schemes for IWSN applications: (1) the resource constraints of the nodes and (2) the lack of training
data [70]. The former requires the designer to consider the trade-offs between the detection accuracy
and the computation requirements because as the detection accuracy increases then so too does the
computational complexity. The latter requires the designer to be cognisant of the fact that supervised
learning as a classification problem may not always be possible because the knowledge formulation
process will not always be in their full control. The schemes discussed in this paper will now be
compared taking this into consideration. It is important to note that this discussion is also applicable to
cyber-physical systems as outlined in Section 5 and there will be many recurring themes here because
many of the challenges are interchangeable. Table 3 shows a comparison of the anomaly detection
schemes discussed in this paper.



Sensors 2018, 18, 2491 15 of 24

Table 3. A comparison of the discussed anomaly detection schemes.

Scheme Technique Prior Complexity Practical Accuracy Data Anomaly DrawbackKnowledge Consideration Prediction

Xie et al. [34] Multivariate Yes Low No High No DOS Dimensionality/PK
Magan-Carrion et al. [35] Multivariate Yes Low Yes High Yes Data Loss/Modification Affected by Routing/PK
Magan-Carrion et al. [36] Multivariate Yes Low No High Yes Tampered Data Traffic Imbalance/PK
Xie et al. [41] kNN No Moderate No High No Generic No Regression
Liu et al. [42] kNN Yes High No High No Generic Dimensionality
Zhu et al. [43] kNN No High No High No Misbehaving Nodes Complexity
Martins et al. [45] SVM No High No High No Generic Complexity
Salem et al. [46] SVM Yes High No High Yes Data Integrity Complexity/PK
Shilton et al. [47] SVM Yes High No High No Generic Complexity/PK
Cannady [50] ANN No High No N/A No DOS Complexity
Bosman et al. [51] ANN No Moderate Yes High No Generic Detection Bias
Yusuf et al. [52] ANN Yes High Yes High Yes Data Integrity Complexity/PK
Radhika et al. [53] GA Yes High No Average No Misbehaving Nodes Complexity/PK
Bankovic et al. [54] GA No High Yes High No Misbehaving Nodes Complexity
Rizwan et al. [55] GA Yes High No High No Generic Complexity/PK
Maleh et al. [56] Hybrid Yes Moderate Yes High No DOS PK
Ma et al. [57] Hybrid Yes High No High No Generic Complexity/PK
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7.1. Summary Comparison

As can be seen in Table 3, the parametric methods [34–36] all require prior knowledge of the
data’s density distribution. This means that these methods aren’t flexible when considering the lack
of control over the knowledge formulation process. All three schemes were found to have high
detection accuracies and two of the schemes had a data recovery mechanism when an anomaly
was detected. The majority of the discussed schemes did not consider data prediction, in fact only
two of the non-parametric schemes did making it a total of four across all schemes. An important
consideration is that all the schemes that included data prediction were specifically designed to detect
data integrity anomalies which could have been the contributing factor. Going back to the parametric
methods, the resource constraints of IWSNs were only considered in one of the methods but they all
have theoretically low computational overheads thus making them feasible for these applications.
IWSNs are however generally deployed in dynamic environments but these parametric methods are
suitable for static environments where the data’s density distribution is not likely to change over time.
The non-parametric methods are thus better suited for IWSNs because they are generally more robust
but this comes at the cost of a higher computational overhead.

This paper focussed on non-parametric schemes that employed machine learning to detect
anomalies. Of the KNN group of schemes discussed only [41] was specifically designed for
resource constrained devices. The other two schemes discussed [42,43] did not consider the resource
constraints and the former required large amounts of training data. For the non-parametric schemes,
prior knowledge was indicated only if the scheme required a substantial amount of labelled training
data. The scheme proposed in [41] achieves its efficiency through distributed computing and also
uses unsupervised online learning thus eliminating the need for prior knowledge. In Table 3 it is
however noted that the practical implications of the scheme were not considered. This is because the
efficiency of the scheme was only considered theoretically and not backed up by any experimental data
in the paper. All the non-parametric schemes recorded high detection accuracies with the exception of
those proposed in [50,53]. The issue of high detection accuracies is however contentious and will be
discussed in the next section.

Considering the SVM schemes [45–47] the practical implications were only considered in the one
proposed in [45] which is also the only one that employs online learning techniques. However, like the
one in [41] , the scheme was not specifically evaluated for a resource constrained environment as the
practical feasibility was not backed up by any experimental data. Of the three ANN schemes [50–52]
discussed two of them considered the practical implications and one of them required a substantial
amount prior knowledge. Most of the remaining schemes required prior knowledge with the exception
being the only GA scheme that considered the practical implications [54]. When considering all the
non-parametric schemes just over a third of them required little to no prior knowledge and less than a
third included substantial practical considerations. It is thus evident that conceptually there have been
many proposed anomaly detection schemes for IWSNs that look very promising for this growing field.
The practical feasibility has however been generally neglected in the literature and should start being
given more attention going forward.

7.2. Discussion on Performance/Issues

As already mentioned at the beginning of the previous section the two main concerns when
designing anomaly detection schemes for IWSNs are their resource constraints and lack training data.
From the previous discussion it is clear that both of these primary concerns have been overlooked
in the literature. Less than a third of the discussed non-parametric schemes considered the practical
implications of the proposed schemes. Studies have however shown that many deployed IWSNs are
error-prone and exhibit poor performances [71]. The resource constraints and distributed nature of
IWSNs makes the design of these systems particularly challenging. Anomaly detection schemes run
as monitoring agents on these already complex systems thus adding more complexity and further
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straining these already resource constrained systems. It is thus important for proposed schemes
consider how they would function as part of these complex environments.

IWSN testbeds [72–76] are convenient tools to evaluate the feasibility of designed schemes in a
practical environment. These testbeds are however costly and may not always be sufficient to evaluate
complex machine learning algorithms but they provide a much clearer picture of how the schemes
would fair in deployed full-scale systems than their simulation counterparts. None of the discussed
schemes were evaluated using these testbeds, they instead made use of IWSN simulators such as
TOSSIM [77] and NS-2 [78]. While these simulators do not accurately reflect the real world deployment
environment, they are convenient tools in evaluating the feasibility and performance of proposed
schemes and protocols. When considering the second important consideration, just over a third of
the schemes did not require a substantial amount of prior knowledge. This is not ideal in IWSNs not
only because labelled training data is not readily available in large quantities, but also because the
algorithms have to be retrained if normal system behaviour changes. Considering the fact the IWSNs
are deployed in dynamic environments and expected to last long periods of time, maintaining these
schemes in a practical setting may not always be feasible.

Another important consideration is the evaluation metrics of the schemes. Given the vast range of
IWSN applications, there is no universal benchmark that can be applied across the board. As discussed
in the previous section, the detection accuracy in anomaly detection schemes is also not a good measure
of how well the algorithm is actually working. This means that in practice these evaluation metrics
should be evaluated based on the specific application scenario. While many of the papers do mention
the accuracy and false positive rate, the false negative rate is rarely mentioned. In fact only three of
the surveyed papers considered the impact of the false negative rate in their results. The precision
and recall of the proposed schemes were rarely taken into consideration in the surveyed literature.
Given the fact that anomalies are rare obscure events in practice, this factor should not be overlooked
when considering how well the scheme classifies anomalies. The receiver operating characteristic
(ROC) curve [79] is becoming an increasingly popular tool for evaluating machine learning algorithms.
The curve is the true positive rate (y-axis) of the classifier plotted against the false positive rate (x-axis)
obtained from the confusion matrix. Using these ratios instead of the standard numerical accuracies is a
better performance measure because it includes all the data samples, even those that were erroneously
missed by the classifier. In this way designers are able to thoroughly evaluate how well their classifiers
are able to distinguish between normal and anomalous data. The area under the curve (AUC) has
become a more effective performance measure than the standard numerical accuracy and many of
the schemes found in the literature were evaluated using this approach. Given the fact that there is
no universal benchmark however, there are also many schemes that don use this approach and even
those that do use it vary appreciably in how they present their findings making a direct comparison of
the schemes using this performance measure challenging.

7.3. Recommendations and Research Challenges

7.3.1. Practical Evaluation

The resource constraints of IWSNs are one of their most critical limiting factors as discussed in the
previous section. The literature survey revealed that very few of the proposed schemes’ feasibilities
were adequately evaluated in this context. Future work should address this overlooked aspect in order
for the field to evolve from being primarily concept-based, to one that is practically viable. Practical
considerations are also more than just the resource constraints, in order to enhance their practical
feasibility these schemes also have to include protocols that govern how they would work in a practical
setup. Considerations of aspects such as the underlying network architecture, topology and protocols
are paramount in determining a scheme’s viability in practice. Very few schemes found in the literature
considered this and most were primarily evaluated using popular datasets such as those found on
the University of California, Irvine (UCI) machine learning repository [80]. While this is adequate to
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evaluate the accuracy of the proposed schemes, it neglects the challenges inherent within the IWSN
application environment.

7.3.2. Complex Malicious Attack Protection

The vast range of IWSN applications means that they have different and often conflicting priorities.
These applications thus have dedicated network policies and protocols to this end and anomaly
detection schemes should form part of this while maintaining their detection generality. The majority
of the schemes proposed in the literature were designed to detect generic anomalies. Considering
the fact that anomaly detection schemes should also be able to detect anomalies that result from
malicious attacks, which might be concealed, this might not always be adequate. For instance, attackers
might be able to compromise several nodes and then launch a series of unobservable attacks [81] to
systematically shut the system down or cause irreparable damage. Generic detection schemes may not
be able to detect these kinds of attacks if not trained adequately which could be disastrous in critical
infrastructure applications. This is especially true with schemes that employ reinforced learning as
the new behaviour might be falsely learned as the new norm. Given the lack of training data, how to
protect these schemes against various complex malicious attacks while maintaining their detection
generality is going to be in interesting research topic going forward.

7.3.3. Data Recovery

In a practical setup, sensor readings are inherently unreliable and inaccurate [46]. This means that
nodes will frequently produce erroneous readings even though there is nothing wrong in the system.
Anomaly detection schemes may falsely classify these random errors as anomalous (which they are)
thus increasing the false alarm rate. Pairing anomaly detection algorithms with data recovery models
or developing schemes with inbuilt predictive models would help alleviate this problem. Doing this
helps in two ways, firstly the faulty readings can be replaced with the predicted values thus improving
system performance, and secondly the overall accuracy of the detection scheme is improved. This often
overlooked topic will be central in improving the feasibility of anomaly detection schemes in practice.

7.3.4. Online Learning

The lack of labelled training data in IWSNs means that supervised learning as a classification
problem will not be feasible for most applications. In cases where large training sets are available,
a major drawback is that the algorithm would need to be retrained every time the normal system
behaviour changes. Given the dynamic nature of IWSNs this is likely to happen often within the
network lifetime. Online learning would thus be a feasible solution in the IWSN context. To achieve
this detection generality however comes with its own challenges. For instance, the use of complex
malicious attacks, as discussed previously, could result in the system learning new erroneous behaviour
if the attacker remains undetected for a long enough period of time. This means that this detection
generality could come at the cost of detection accuracy. Future work into this topic will have to consider
the trade-off between the two and determine how much training data and which features are required
to get the best possible outcome.

7.3.5. Benchmarking

As previously stated, anomalies are rare obscure events in practice which makes detecting them
very challenging. It has previously been stated that in the simulated scenario they are artificially created
and often clearly defined. This will vary between different simulations and also will not necessarily
translate well into practice. It thus becomes important for researchers to develop benchmarking
tests that would enable other researchers to evaluate their schemes against an industry standard
instead of developing their own tests, which could be misleading. These tests should take the practical
implications of the application environment into consideration. This would give researchers a solid
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foundation on which to design their proposed even though the end results may be deployed in vastly
different applications.

7.3.6. Hybrid Schemes

Combining multiple detectors to create hybrid and ensemble schemes has the advantage of
creating improved schemes that counteract each other’s limitations. This improvement in accuracy
comes at the cost of a higher computational complexity which could render them infeasible for resource
constrained IWSN applications. The authors in [58] however found that these schemes are in fact
feasible in these applications depending on how they designed to function in this setup. Future work
into this topic should look into innovative ways to combine multiple algorithms to produce schemes
that perform better than the individual components but that also ensure that the resultant overhead
would not render them impractical in a IWSN scenario.

7.3.7. Critical Infrastructure Applications

Critical infrastructure applications employ cyber-physical systems to achieve their monitoring
and control functionality. This improved functionality comes with numerous security challenges which
need to be addressed because a compromised system could have disastrous real world consequences.
Taking the previous discussions into consideration it is important to develop anomaly detection
schemes that can fit into these complex environments in order to limit the damage of potential security
breaches. In this context, it is not only important to detect the breach, but also to have recovery
mechanisms in place to protect the underlying infrastructure once it has been detected. It is also
paramount that these schemes be introduced while maintaining reliability and latency requirements of
the system. These and the other requirements discussed in this paper have to be specifically considered
for critical infrastructure applications. The implication of these schemes in this context should not be
neglected in future work.

7.3.8. Harsh Environments

IWSNs are sometimes deployed in extremely harsh environments such as underground mines [82]
and intertidal habitats [83]. Deploying IWSNs in this scenario introduce several monitoring and
communication challenges [84]. In addition to the inherent communication challenges such as high
signal attenuation and poor link quality, the monitored environment is often dynamic and harsh which
can inadvertently affect both the sensor readings and communication networks. In intertidal WSNs for
example, packet delivery can be delayed by up to several days which can severely affect the operation
of the deployed system [85]. From this discussion it is evident that distinguishing between anomalies
and the inherent behaviour of IWSNs deployed these harsh environments is going to be an interesting
research challenge for future work.

8. Conclusions

Abnormal changes within the environment where IWSNs are deployed can be detected using
anomaly detection algorithms. This can be applied to many applications such as critical water systems.
In these applications it is important to take the required prior knowledge and computation overhead
into consideration when designing the schemes. Parametric methods are resource friendly but may not
be applicable to many IWSN applications because they require the distribution function to be known
in advance and also for it to remain static over the network lifetime. Machine learning techniques
are more robust but this comes at the cost of a higher computational overhead. Conceptually there
have been many proposed anomaly detection schemes for IWSNs that look very promising, which is a
step in the right direction for this growing field. The practical feasibility has however been generally
neglected in the literature and should start being given more attention going forward. Future work
into the field should also consider aspects such as complex malicious attack protection, data recovery,
online learning, and the development of robust hybrid and ensemble schemes. It is also important
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to develop schemes that can fit into complex cyber-physical environment given the critical nature
of those applications. IWSNs are increasingly being used in many applications across a variety of
different fields. Anomaly detection schemes are going to be an important protection mechanism as we
move towards a more interconnected world.
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FD Fault Detection
DoS Denial of Service
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LOF Local Outlier Factor
COF Connectivity-based Outlier Factor
ULOF Uncertain Local Outlier Factors
WNaNG Weighted Natural Neighbour Graph
SVM Support Vector machines
SRM Structural Risk Minimisation
RKHS Reproducing Kernel Hilbert Space
RBF Radial Basis Function
CS-SVM Conic Segmentation SVM
ANN Artificial Neural Networks
OS-ELM Online Sequential Extreme Learning Machine
SLFN Single Layer Feed-Forward Neural Networks
GS Genetic Algorithms
NS-2 Network Simulator 2
NSA Negative Selection Algorithm
AIS Artificial Immune System
SC Spectral Clustering
DNN Deep Neural Networks
PLC Programmable Logic Controller
SWaT Secure Water Treatment
MitM Man-in-the-Middle
ICS Industrial Control Systems
RIO Remote Input/Output
ROC Receiver Operating Characteristic
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