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A Group Signature Scheme with Efficient Membership Revocation
for Middle-Scale Groups∗
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SUMMARY This paper proposes a group signature scheme with effi-
cient membership revocation. Though group signature schemes with ef-
ficient membership revocation based on a dynamic accumulator were pro-
posed, the previous schemes force a member to change his secret key when-
ever he makes a signature. Furthermore, for the modification, the member
has to obtain a public membership information of O(�nN) bits, where �n
is the length of the RSA modulus and N is the total number of joining
members and removed members. In our scheme, the signer needs no mod-
ification of his secret, and the public membership information has only K
bits, where K is the maximal number of members. Then, for middle-scale
groups with the size that is comparable to the RSA modulus size (e.g., up
to about 1000 members for 1024 bit RSA modulus), the public membership
information is a single small value only, while the signing/verification also
remains efficient.
key words: group signature, membership revocation, strong RSA assump-
tion

1. Introduction

1.1 Backgrounds

A group signature scheme allows a group member to anony-
mously sign a message on behalf of a group, where, in ad-
dition, a membership manager (MM) and an opening man-
ager (OM) participate. MM has the authority to add a user
into the group, and OM has the authority to revoke the
anonymity of a signature. Since the scheme allows us to
anonymously verify user’s ownership of some privilege, it
is applied to various cryptographic protocols such as anony-
mous e-cash [19], bidding [21], and credential system [9].
On the other hand, various group signature schemes are also
proposed [1]–[3], [7], [8], [10], [14], [22], [24], with the im-
provements of efficiency, security and convenience. The
breakthrough is achieved in [8]. In this scheme, the effi-
ciency of the public key and signatures is independent from
the group size, and furthermore an entity’s joining has no
influence on other member. The followers [1]–[3], [7], [10],
[22], [24] also have these good characteristics. In both the
efficiency and the provably unforgeability, the state-of-the-
art scheme is due to Ateniese et al. [1], followed by [3], [10],
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[22], [24].
The essential idea in this type of schemes is the use

of the membership certificate. MM issues a membership
certificate to the joining member, where the certificate is
MM’s digital signature. Then, the group signature is a non-
interactive zero-knowledge proof of knowledge of this cer-
tificate. Since the group signature has no relation with the
other members, this idea provides the above good charac-
teristics. However, on the other hand, this idea prevents a
member from being easily removed from the group, since
it is hard to erase the issued membership certificate in the
removed member’s environment without physical device’s
help. One plausible solution is to reissue certificates of all
the members except the removed one by changing MM’s
public key of the digital signature, as [3]. However, the
loads of unrelated members are too large.

1.2 Previous Works

Recently, some schemes [3], [7], [10], [22], [24] deal with
this problem of the membership revocation. In the first
scheme [7], a signer has to prove that his certificate is dif-
ferent from all the certificates of removed members in the
zero-knowledge fashion. However, this proof requires ex-
ponentiations whose number is linear in the number of re-
moved members. For dynamic groups (i.e., users often join
in and are removed from the groups), this forces signers’
heavy loads.

In [3], [22], another approach against this problem is
adopted. In this approach, a group signature includes a value
applied by a one-way function from the certificate. The
revocation of a member is to publish the certificate of the
member. This scheme also provides a method to prevent the
link between the published certificate and signatures before
revoked. However, the verification cost w.r.t. exponentia-
tions is linear in the number of removed members, though
the signing cost is independent.

In [10], an elegant approach using a dynamic accumu-
lator is proposed, which is followed by [24] with the effi-
ciency improvement. The accumulator allows MM to hash
a large set of effective certificates into a short value. In the
group signature, the signer has to prove that own certifi-
cate is accumulated into the short value. Therefore, sign-
ing/verification is efficient, since the computation cost is in-
dependent from the number of the removed members. How-
ever, whenever making a signature, the signer has to mod-
ify a secret key for the accumulator. Although the modifi-
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cation is performed efficiently w.r.t. exponentiations, it re-
quires certificates of joining members and removed mem-
bers since the last time he signed. To obtain the certificates,
the signer must fetch the certificates of all joining members
and removed members from a public directory with the list
of the certificates, as pointed out in [3]. This is because
fetching a part of the list can reveal the information to trace
the signer. The fetched public membership certificates has
O(�nN) bits in total, where �n is the length of the RSA mod-
ulus and N is the total number of joining members and re-
moved members, since each certificate has about �n bits. For
example, in case of N = 1000 and �n = 1024, the total size
of the certificates amounts to more than 1 M bits. This pub-
lic membership information should be modified in real-time
or in a short interval, and may be fetched frequently by all
signers. Therefore, this communication cost is vast, and thus
those schemes are not complete solutions for efficient mem-
bership revocation.

1.3 Our Contributions

In this paper, we propose a group signature scheme with effi-
cient membership revocation, where the public membership
information has only K bits, where K is the maximal num-
ber of members. The information is only a composition of
the group, where each bit indicates that the membership of a
member is valid, that is, the member is not removed. Thus,
the information includes no certificate. Then, for middle-
scale groups with a size that is comparable to the RSA mod-
ulus size (e.g., up to about 1000 members for 1024 bit RSA
modulus), the public membership information falls in a sin-
gle value that is comparable to the modulus. Though the
signing/verification in our scheme utilizes a zero-knowledge
proof of knowledge w.r.t. this membership information for
realizing the efficient revocation, this proof’s cost has no de-
pendency on the number of removed members, due to the
public membership information with the reasonable size.
Therefore, the signing/verification remains efficient. Fur-
thermore, at each revocation, MM only has to perform a
simple bit operation and the signer needs no modification
of own secret key. On the other hand, for larger groups,
the proposed scheme requires the signing/verification cost
related to O(K/�n). Note that, for such larger groups, the
accumulator-based schemes also have a problem of enor-
mous public information with the size O(�nN).

2. Model

We show a model of group signature scheme with member-
ship revocation.

Definition 1: A group signature scheme with membership
revocation consists of the following procedures:

Setup: MM and OM generate the general public key and
their secret keys.

Join: MM issues a membership certificate for a member-
ship secret chosen by a user joining a group. In addi-

tion, MM authentically publishes a public membership
information that reflects the current members in the
group such that the joining user belongs to the group.

Membership revocation: MM authentically publishes the
public membership information that reflects the current
members in the group such that the removed user does
not belong to the group. Note that OM, unrelated mem-
bers and even the removed member do not participate
in this procedure.

Sign: Given a message, a group member with a member-
ship secret and its membership certificate generates the
signature for the message w.r.t. the public key and pub-
lic membership information.

Verify: A verifier checks whether a signature for a message
is made by a member in the group w.r.t. the public key
and public membership information.

Open: Given a signature, OM with his secret specifies the
identity of the signer.

Definition 2: A secure group signature scheme with mem-
bership revocation satisfies the following properties:

Unforgeability: Only a member in the group, which is indi-
cated by the public membership information, can gen-
erate a valid signature.

Coalition-resistance: Colluding members including re-
moved members cannot generate a valid membership
certificate that MM did not generate, even if the mem-
bers adaptively obtained valid certificates from MM.

Anonymity: Given a signature, it is infeasible that anyone,
except the signer and OM, identifies the signer.

Unlinkability: Given two signatures, it is infeasible that
anyone, except the signers and OM, determines
whether the signatures ware made by the same signer.

No framing: Even if MM, OM, and members collude, they
cannot sign on behalf of a non-involved member.

Traceability: OM is always able to open a valid signature
and identify the signer.

Remark 1: The coalition-resistance shows the security in
the attack model where an adversary colludes with valid
members. Due to the coalition-resistance, the colluding ad-
versary cannot forge a valid certificate. Thus, the unforge-
ability and the traceability hold in the attack model. For the
details, refer to [1]. Since MM has the authority of mem-
bership, colluding with MM is meaningless. On the other
hand, colluding with OM does not give the adversary any
advantage, since OM does not have any power to compute
membership certificates and since OM is not given any cer-
tificate.

3. Preliminaries

3.1 Assumptions and Notations

Our scheme is based on the strong RSA assumption [17] and
decisional Diffie-Hellman (DDH) assumption, as well as the
state-of-the-art group signature scheme due to Ateniese et
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al. [1].

Assumption 1 (Strong RSA assumption): Let n = pq be
an RSA modulus, and let G be a cyclic subgroup of Z∗n.
Then, for all probabilistic polynomial-time algorithmA, the
probability that A on inputs n and z ∈ G outputs e ∈ Z s.t.
e > 1 and u ∈ G satisfying z = ue (mod n) is negligible.

Assumption 2 (DDH assumption): Let G be a cyclic
group generated by g ∈ G with order u. Then, the following
distributions R = (g, ga, gb, gc), where a, b, c are uniformly
chosen fromZu, and D = (g, ga, gb, gab), where a, b are uni-
formly chosen from Zu, are computationally indistinguish-
able.

Intuitively, the DDH assumption means the infeasibility to
decide whether the discrete logs of two random elements in
G to the random bases are the same. When n = pq is an
RSA modulus for safe primes p, q (i.e., p = 2p′ + 1, q =
2q′ + 1, and p, q, p′, q′ are prime), let QR(n) be the set of
quadratic residues modulo n, that is, the cyclic subgroup of
Z∗n generated by an element of order p′q′. As well as the
scheme due to Ateniese et al., the security of our scheme
is based on the above both assumptions (i.e., strong RSA
assumption and DDH assumption) on QR(n).
Notations: Let [a, a+d] be an integer interval of all integers
int such that a ≤ int ≤ a + d, for an integer a and a positive
integer d. We additionally use notation [a, a + d) for all int
such that a ≤ int < a + d, and notation (a, a + d) for all int
such that a < int < a+d. Let ∈R denote the uniform random
selection. Hereafter, we omit notation mod n for operations
on QR(n).

3.2 Camenisch-Lysyanskaya Signature Scheme for Blocks
of Messages

Our group signature scheme is based on the ordinary (not
group) signature due to Camenisch and Lysyanskaya [11]
under the strong RSA assumption, which is an extension
from the signature used as a membership certificate in Ate-
niese et al.’s scheme [1].

Key generation: Let �n, �m, �s, �e, � be security parameters
s.t. �s ≥ �n + �m + �, �e ≥ �m + 2 and � is sufficiently
large (e.g., 160). The secret key consists of safe primes
p, q, and the public key consists of n = pq of length �n
and a1, . . . , aL, b, c ∈R QR(n), where L is the number of
blocks.

Signing: Given messages m1, . . . ,mL ∈ [0, 2�m ), choose
s ∈R [0, 2�s ) and a random prime e from (2�e−1, 2�e ).
Compute A s.t. A = (am1

1 · · · amL
L bsc)(1/e mod ϕ(n)). The

signature is (s, e, A).
Verification: Given messages m1, . . . ,mL ∈ [0, 2�m ) and the

signature (s, e, A), check Ae = am1

1 · · · amL
L bsc and e ∈

(2�e−1, 2�e ).

Lemma 1: This signature is existentially unforgeable
against adaptive chosen message attack, under the strong
RSA assumption [11].

Remark 2: The above unforgeability means that, given
signatures of messages, an adversary cannot forge a signa-
ture of new messages. On the other hand, it allows that,
given a signature of messages, the adversary can compute
another signature of the same messages. Namely, given a
messages-signature tuple (m1, . . . ,mL, s, e, A), we can com-
pute another signature (s′, e, A′) for m1, . . . ,mL, by s′ =
s + ke and A′ = Abk for k ∈ Z, since A′e = (Abk)e =

am1
1 · · · amL

L bscbke = am1
1 · · · amL

L bs′c.

3.3 Commitment Scheme

A commitment scheme on QR(n) under the strong RSA as-
sumption is proposed by Damgård and Fujisaki [15] (The
original is due to Fujisaki and Okamoto [17]). The fol-
lowing is a slightly modified version due to Camenisch and
Lysyanskaya [11].

Key generation: The public key consists of a secure RSA
modulus n of length �n, h from QR(n), and g from the
group generated by h.

Commitment: For the public key, input x of length �x, and
randomness r ∈R Zn, the commitment C is computed
as C = gxhr.

Lemma 2: This commitment scheme is statistically hid-
ing and computationally binding, under the strong RSA as-
sumption [11].

3.4 Signatures of Knowledge

As main building blocks, we use signatures converted by so-
called Fiat-Shamir heuristic [16] from honest-verifier zero-
knowledge proofs of knowledge, which are called signatures
of knowledge. We abbreviate them as S PKs. The S PKs
are secure in the random oracle model [5], if the underly-
ing interactive protocols are the zero-knowledge proofs of
knowledge. The S PKs are denoted as

S PK{(α, β, . . .) : R(α, β, . . .)}(m),

which means the signature for message m by a signer
with the secret knowledge α, β, . . . satisfying the relation
R(α, β, . . .). In this notation, the Greek letters denote the
signer’s secret knowledge, and other parameters denote pub-
lic values.

The proofs used in our scheme show the relations
among secret representations of elements in QR(n) with un-
known order. Note that a representation of C ∈ QR(n) to
bases g1, . . . , gt ∈ QR(n) is a tuple (x1, . . . , xt) ∈ Zt

p′q′ such
that C = gx1

1 · · · gxt
t . The simplest S PK is one proving the

knowledge of a discrete log of an element in QR(n). This
is converted from a zero-knowledge proof of knowledge in
[17]. Furthermore, this S PK can be also extended into the
S PK of a representation [15], [17]. We furthermore use the
S PK of representations with equal parts, S PK of a repre-
sentation with parts in intervals [6], [12], and S PK of a rep-
resentation with a non-negative part [6]. The following is
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notations of the S PKs, whose detail constructions are de-
scribed in Appendix A.

S PK of representation: An S PK proving the knowledge
of a representation of C ∈ QR(n) to the bases
g1, g2, . . . , gt ∈ QR(n) on message m is denoted as

S PK{(α1, . . . , αt) :

C = gα1
1 · · · gαt

t }(m).

S PK of representations with equal parts: An S PK prov-
ing the knowledge of representations of C,C′ ∈ QR(n)
to the bases g1, . . . , gt ∈ QR(n) on message m, where
the representations include equal values as parts, is de-
noted as

S PK{(α1, . . . , αu) :

C = g
α j1
i1
· · · gα jv

iv
∧C′ = g

α j′1
i′1
· · · gα j′

v′
i′
v′
}(m),

where indices i1, . . . iv, i′1, . . . i
′
v′ ∈ {1, . . . , t} refer to

the bases g1, . . . , gt, and indices j1, . . . jv, j′1, . . . j
′
v′ ∈{1, . . . , u} refer to the secrets α1, . . . , αu. This S PK

is easily obtained by the similar way to the S PK for
groups with the known order (e.g., [12]).

S PK of representation with parts in intervals:
An S PK proving the knowledge of a representation of
C ∈ QR(n) to the bases g1, . . . , gt ∈ QR(n) on message
m, where the i-th part lies in an interval [a, a + d], is
denoted as

S PK{(α1, . . . , αt) :

C = gα1
1 · · · gαt

t ∧ αi ∈ [a, a + d]}(m).

For this S PK, two types are known. One is due to
Boudot [6], where it is assured that the knowledge ex-
actly lies in the interval. However, this S PK needs the
computations of about 10 normal S PKs of a represen-
tation. Another type appears in [12] for example (orig-
inally, [13]), where the integer the prover knows in fact
lies in the narrower interval than the interval the proved
knowledge lies in. However, its efficiency is compara-
ble to that of the normal S PK. For αi ∈ [a, a+d] in fact,
this S PK proves the knowledge in [a − 2�̃d, a + 2�̃d],
where �̃ is a security parameter derived from the chal-
lenge size and from the security parameter control-
ling the statistical zero-knowledge-ness (in practice,
�̃ ≈ 160). The S PK for a knowledge in an interval
can be easily extended into the S PK for two or more
knowledges in intervals, such as S PK{(α, β) : C =
gαhβ ∧ α ∈ [a, a + d] ∧ β ∈ [a′, a′ + d′]}(m).
In this paper, for simplicity, we describe our scheme
using the former protocol [6], since a design using the
latter efficient protocol must address the expansion of
the intervals. Although this expansion can be easily
addressed as in [11], it may disturb a clear grasp of the
essence of our scheme. However, in the later efficiency
consideration, we estimate the efficiency of our scheme
using the efficient S PK of [12]. The efficient version
of our scheme is summarized in Appendix B.

S PK of representation with non-negative part: An S PK
proving the knowledge of a representation of C ∈
QR(n) to the bases g1, . . . , gt ∈ QR(n) on message m,
where the i-th part is not negative integer, is denoted as

S PK{(α1, . . . , αt) :

C = gα1
1 · · · gαt

t ∧ αi ≥ 0}(m).

As for this, since we need to prove that the knowledge
is exactly 0 and over, we adopt the S PK due to Boudot
[6].

The interactive versions of these S PKs are also used.
The interactive ones are denoted by substituting PK for
S PK, such as PK{α : y = gα}.

4. Proposed Scheme

4.1 Idea

The foundation is that a group signature is an S PK of a
membership certificate issued by MM. For simplicity, in the
following, we first omit the mechanism to trace the signer.
Ateniese et al. [1] propose the state-of-the-art group signa-
ture scheme that is most efficient and provably coalition-
resistant against an adaptive adversary. In the registration,
MM computes an ordinary signature on a secret x chosen
by a joining member, denoted by S ign(x), and MM issues
the member S ign(x) as the membership certificate. Then,
the member can compute his group signature on message
M, as S PK{(x, v) : v = S ign(x)}(M).

As the extension, Camenisch and Lysyanskaya [11]
propose an ordinary signature scheme shown in Sect. 3.2, to-
gether with a PK of the signature. In the scheme, the signer
can sign two blocks of messages. Then, by an interactive
protocol in [11], a receiver can obtain a signature from the
signer, where one message x is known by only the receiver,
but another message m is known by both. Let S ign(x,m) de-
note the signature on x and m. In the PK shown in [11], the
owner of the signature can prove the knowledge of the signa-
ture on the messages in the zero-knowledge fashion, such as
PK{(x,m, v) : v = S ign(x,m)}. Our scheme effectively uti-
lizes the part m to be signed in the Camenisch-Lysyanskaya
signature scheme for efficient membership revocation.

Now, we show the idea of our scheme. Consider a
public membership information m̃ which represents whether
the membership of each member is valid or not. Let m̃ =
∑K−1

i=0 2im̄i for K, where m̄i ∈ {0, 1}. Then, concretely, bit
m̄i is assigned to the i-th member of the group and we set
m̄i = 1 (resp., m̄i = 0) if the membership of the i-th mem-
ber is valid (resp., invalid). Thus, note that in our scheme,
the public membership information has only K bits, which
is shorter than the previous schemes [11], [24].

To achieve the membership revocation in this setting,
a signer who is the i-th member only has to prove m̄i = 1
without revealing i. We adopt the S PK proving an integer
relation to achieve this proof. Concretely, consider the fol-
lowing integer relation:
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m̃ = m̃U(2i) + 2i−1 + m̃L ∧ 0 ≤ m̃L ≤ 2i−1 − 1.

If m̄i = 1, there exist m̃U , m̃L satisfying the above relation.
On the other hand, if m̄i = 0, there do not exist such m̃U , m̃L.
Thus, if the signer can prove the knowledge m̃U , m̃L, it en-
sures m̄i = 1, which means that the membership of the signer
is valid.

In the above discussion, note that 2i−1 has to be fixed
for the i-th member. In our scheme, m = 2i−1 is em-
bedded in the membership certificate as S ig(x,m) which
is a Camenisch-Lysyanskaya signature. Additionally, the
knowledge of the certificate and m can be proved without
revealing m by the S PK. Thus, m = 2i−1 can be fixed. By
m = 2i−1, the above relation is rewritten as follows:

m̃ = m̃U(2m) + m + m̃L ∧ 0 ≤ m̃L ≤ m − 1.

Putting everything together, the group signature on message
M is S PK{(x,m, v, m̃U , m̃L) : v = S ign(x,m)∧m̃ = m̃U(2m)+
m + m̃L ∧ 0 ≤ m̃L ≤ m − 1}(M). Note that removing the i-th
member is only the computation of m̃ − 2i−1, and it is the
very low cost.

Finally we mention the traceability. In the previous
scheme [1], a group signature includes an ElGamal cipher-
text of the certificate v = S ign(x). The decryption leads to
the signer’s identity. On the other hand, in the Camenisch-
Lysyanskaya signature as a certificate, the owner of a cer-
tificate v = S ign(x,m) can compute different certificates of
the same x,m. This is why the previous technique is not ap-
plied to our scheme. Thus, our group signature includes an
ElGamal ciphertext of ax

1 for a public a1, while the owner
has to register the value with MM. The decryption of the
ciphertext leads to the owner’s identity.

Remark 3: In the group signature, the correctness of the
ciphertext of ax

1 must be verifiable for the traceability. In
case that the ElGamal encryption is used, the S PK of repre-
sentations can prove the correctness. Furthermore, as such
a verifiable encryption, the ElGamal encryption is the most
efficient, as far as we know. This is why the ElGamal en-
cryption is adopted.

4.2 Proposed Protocols

4.2.1 Setup

Let �n be a security parameter. Then, MM sets up the
Camenisch-Lysyanskaya scheme for L = 2, i.e., MM com-
putes two (�n/2)-bit safe primes p, q and n = pq, and
chooses a1, a2, b, c ∈R QR(n). Furthermore, he sets up
the commitment scheme on QR(n) to generate g and h. He
publishes (n, a1, a2, b, c, g, h) as the public key, and keeps
(p, q) as the secret key. For the Camenisch-Lysyanskaya
scheme, security parameters �x, �m, �e, �s, � are set s.t. �s ≥
�n+max(�x, �m)+� and �e ≥ max(�x, �m)+2. To simplify the
description, we introduce interval notations as follows: De-
fine S = [0, 2�s ),E = (2�e−1, 2�e ),X = [0, 2�x ),M = [0, 2�m ).
Additionally, the initial public membership information m̃ is

set as 0.
On the other hand, OM sets up the ElGamal encryption

on QR(n), i.e., OM chooses a secret key xOM ∈R {0, 1}�n and
publishes the public key y = gxOM .

4.2.2 Join and Membership Revocation

We describe the join protocol for the i-th user (1 ≤ i ≤ K).
This protocol is derived from the interactive protocol shown
in [11], as mentioned in Sect. 4.1. In our scheme, the
membership certificate is (s, e, A) s.t. Ae = ax

1am
2 bsc, where

m = 2i−1, e is a prime from E and x ∈ X is the user’s se-
cret. Thus, (s, e, A) is a Camenisch-Lysyanskaya signature
on messages x and m. The detail protocol is as follows:

1. The joining user U sends C = ax
1 to MM, where

x ∈R X. Next, U proves the knowledge of the secret
by PK{α : C = aα1 ∧ α ∈ X}.

2. For the membership information m = 2i−1, MM com-
putes A = (Cam

2 bsc)(1/e mod ϕ(n)), s ∈R S, and e is a ran-
dom prime from E, and sends (s, e, A) to U.

3. U obtains the membership certificate (s, e, A) on the
membership secret x and membership information m
such that Ae = ax

1am
2 bsc.

4. MM publishes the new public membership information
m̃ = m̃ + 2i−1.

On the other hand, the membership revocation is sim-
ple as follows: When the i-th user is removed from the
group, MM publishes the new public membership informa-
tion m̃ = m̃ − 2i−1.

4.2.3 Sign and Verify

As mentioned in Sect. 4.1, the group signature proves the
knowledge of the membership certificate for the member-
ship information m, and the knowledge m̃U and m̃L satisfy-
ing m̃ = m̃U(2m)+m+m̃L and 0 ≤ m̃L ≤ m−1. Furthermore,
for the traceability, the group signature contains an ElGamal
ciphertext on ax

1 and the S PK proves the correctness. The
detail protocol is as follows:

1. Member U signing message M computes CA = g
wA,

Cw = gwhw̃, Cm = g
mhwm , Cm̃U = g

m̃U hwm̃U , Cm̃L =

gm̃L hwm̃L , T1 = g
we and T2 = y

we ax
1, where w, w̃, wm, wm̃U ,

wm̃L , we ∈R Zn.
2. U computes the following S PK V:

S PK{(α, β, γ, δ, ε, ζ, η, θ, ι, κ, λ, µ, ν, ξ, o, π, ρ) :

c = CA
α(1/a1)β(1/a2)γ(1/b)δ(1/g)ε

∧Cw = g
ζhη ∧ 1 = Cαw(1/g)ε(1/h)θ

∧Cm = g
γhι ∧Cm̃U = g

κhλ ∧ Cm̃L = g
µhν

∧T1 = g
ξ ∧ T2 = y

ξaβ1
∧gm̃(1/Cm)(1/Cm̃L ) = (C2

m̃U
)γho

∧Cm(1/g)(1/Cm̃L ) = gπhρ

∧µ ≥ 0 ∧ π ≥ 0 ∧ α ∈ E ∧ β ∈ X ∧ γ ∈ M}(M).
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Then, the group signature is (CA,Cw,Cm,Cm̃U ,Cm̃L ,
T1, T2,V). The verification of the signature is the verifica-
tion of V .

Remark 4: In the above S PK, U can adopt α = e, β =
x, γ = m, δ = s, ε = ew, ζ = w, η = w̃, θ = ew̃, ι =
wm, κ = m̃U , λ = wm̃U , µ = m̃L, ν = wm̃L , ξ = we, o =
−wm−wm̃L−2wm̃U m, π = m−1−m̃L, ρ = wm−wm̃L . As shown
in Lemma 4, V proves knowledge (x,m, s, e, A, m̃U , m̃L, we)
such that Ae = ax

1am
2 bsc, e ∈ E, x ∈ X, m ∈ M, T1 = g

we , T2

= ywe ax
1, m̃ = m̃U(2m) + m + m̃L and 0 ≤ m̃L ≤ m − 1.

4.2.4 Open

OM computes T2/T
xOM

1 = ax
1 to decrypt the ElGamal ci-

phertext (T1, T2). The obtained ax
1 is linkable to the mem-

ber’s identity. The correctness is proved by PK{α : T2/ax
1 =

Tα1 ∧ y = gα}.

5. Security

Our membership certificate is a Camenisch-Lysyanskaya
signature. Thus, due to the security proof [11], the following
lemma holds:

Lemma 3: Assume the strong RSA assumption. Consider
an adversary allowed to adaptively query the signing oracle
about a signature (si, ei, Ai) on messages xi ∈ X,mi ∈ M
such that Aei

i = axi

1 ami

2 bsi c, si ∈R S, and ei is a random prime
from E. Then, it is infeasible that any adversary computes a
signature (s, e, A) on new messages x ∈ X,m ∈ M such that
Ae = ax

1am
2 bsc and e ∈ E.

From this lemma, we can obtain the coalition-
resistance by the similar proof to [11].

Theorem 1: Under the strong RSA assumption, the pro-
posed scheme is coalition-resistant for the adversary who
adaptively obtains valid membership certificates from MM.

Proof. Assume an adversary F̃ who, that is allowed to adap-
tively run the join protocol and obtain k membership certifi-
cates (si, ei, Ai = (axi

1 ami

2 bsi c)(1/ei mod ϕ(n))) on xi,mi chosen
by F̃ , for i = 1, . . . , k. Here, we will prove that, if F̃ out-
puts a tuple (x̂, m̂, ŝ, ê, Â) such that Âê = ax̂

1am̂
2 bŝc with x̂ ∈

X, m̂ ∈ M, ê ∈ E and (x̂, m̂) � (xi,mi) for all 1 ≤ i ≤ k with
the non-negligible probability, the Camenisch-Lysyanskaya
signature is existentially forgeable against an adaptive ad-
versary F , which contradicts Lemma 3.

Let OF be the signing oracle for F . Then, F is
as follows: Given the public key (n, a1, a2, b, c) of the
Camenisch-Lysyanskaya scheme, generate other public pa-
rameters (g, h, y, m̃) as usual. For (n, a1, a2, b, c, g, h, y, m̃),
run F̃ . In the execution, consider the i-th join protocol run
on mi. In the first step, F̃ sends Ci = axi

1 and PK prov-
ing the correctness, namely PK{α : Ci = aα1 }. Then, ex-
tract xi such that Ci = axi

1 , by running the extractor of the
PK. For the signing oracle OF , request the signature query
on messages xi,mi. Upon the query, OF returns a valid

Camenisch-Lysyanskaya signature (si, ei, Ai) on xi,mi such
that Aei

i = axi

1 ami

2 bsi c, where ei is a random prime from E and
si ∈R S. In the second step of the join protocol, simply re-
turn (si, ei, Ai) to F̃ . Note that Aei

i = axi

1 ami

2 bsi c = Cia
mi

2 bsi c.
The public membership information m̃ is evolved as usual.
In the this simulation, F̃ ’s view is exactly the same talking
with to the real MM and to the simulator. Finally, F̃ out-
puts (x̂, m̂, ŝ, ê, Â) such that Âê = ax̂

1am̂
2 bŝc with x̂ ∈ X, m̂ ∈

M, ê ∈ E and (x̂, m̂) � (xi,mi) for all 1 ≤ i ≤ k with
non-negligible probability. As F , output the same, which
means that F breaks the Camenisch-Lysyanskaya signature
scheme. �

Next, we prove the unforgeability, using the following
two lemmas.

Lemma 4: Assume the strong RSA assumption. Then, V
is an S PK of knowledge (x,m, s, e, A, m̃U , m̃L, we) s.t. Ae =

ax
1am

2 bsc, e ∈ E, x ∈ X, m ∈ M, T1 = g
we , T2 = y

we ax
1,

m̃ = m̃U(2m) + m + m̃L and 0 ≤ m̃L ≤ m − 1.

Proof. Since the completeness and zero-knowledge-ness
are simply shown from these properties of the underlying
S PKs, only the soundness is discussed. From the S PK for
predicates c = CA

α(1/a1)β(1/a2)γ(1/b)δ(1/g)ε ∧Cw = gζhη

∧1 = Cαw(1/g)ε (1/h)θ ∧ α ∈ E ∧ β ∈ X ∧ γ ∈ M ∧ T1 =

gξ ∧ T2 = y
ξaβ1, we can extract (α, β, γ, δ, ε, ζ, η, θ, ξ) sat-

isfying these predicates. From the second and third equa-
tions, the equation gαζhαη = gεhθ holds, and thus (1/g)ε =
(1/g)αζ also holds. Therefore, aβ1aγ2bδc = CA

α(1/g)ε =
CA
α(1/g)αζ = (CA/g

ζ)α holds. Hence, the knowledge of
(x = β,m = γ, s = δ, e = α, A = CA/g

ζ , we = ξ) such
that Ae = ax

1am
2 bsc, e ∈ E, x ∈ X, m ∈ M, T1 = g

we and
T2 = y

we ax
1 can be extracted.

Hereafter, for the extracted m, we further extract the
knowledge of (m̃U , m̃L) such that m̃ = m̃U(2m)+m+ m̃L and
0 ≤ m̃L ≤ m − 1. From the S PK for the predicates

Cm = g
γhι, (1)

Cm̃U = g
κhλ, (2)

Cm̃L = g
µhν, (3)

gm̃(1/Cm)(1/Cm̃L ) = (C2
m̃U

)γho, (4)

we can extract (γ, ι, κ, λ, µ, ν, o) satisfying these predicates.
By substituting Eqs. (1), (2) and (3) for the left hand of
Eq. (4), the left hand is equal to

gm̃(1/(gγhι))(1/(gµhν)) = gm̃−γ−µh−ι−ν.

On the other hand, from Eq. (2), the right hand of (4) is equal
to (g2κh2λ)γho = g2κγh2λγ+o. Thus, we can obtain the equa-
tion m̃−γ−µ = 2κγ (mod p′q′). Then, as integer equation,

m̃ − γ − µ = 2κγ (5)

should hold, since, otherwise, we can obtain an integer d sat-
isfying p′q′|d to break the RSA assumption. From Eq. (5),
m̃ = κ · 2γ + γ + µ holds, where γ is m extracted from the
membership certificate, and κ, µ correspond to m̃U , m̃L, re-
spectively.
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Similarly, from the S PK for

Cm(1/g)(1/Cm̃L ) = gπhρ, (6)

we can extract (π, ρ) satisfying this predicate. By substitut-
ing Eqs. (1) and (3) for Eq. (6), gγhι(1/g)(1/(gµhν)) = gπhρ

hold. Then, from gγ−1−µhι−ν = gπhρ, γ − 1 − µ = π holds
as integer equation, as discussed above. Since the S PK V
proves π ≥ 0, the inequation γ − 1 − µ ≥ 0 holds and thus
µ ≤ γ − 1. Furthermore, the S PK proves µ ≥ 0, and finally
we obtain 0 ≤ µ ≤ γ − 1, that is, 0 ≤ m̃L ≤ m − 1. �

Lemma 5: Let m̃ =
∑K−1

j=0 2 jm̄ j for K, where m̄ j ∈ {0, 1}.
Then, m̃U and m̃L exist s.t. m̃ = m̃U2i + 2i−1 + m̃L and 0 ≤
m̃L ≤ 2i−1 − 1 if and only if m̄i−1 = 1.

This lemma can be straightforwardly proved.

Theorem 2: Under the strong RSA assumption, the pro-
posed scheme satisfies the unforgeability.

Proof. For signing, the signer must know the certificate
(s, e ∈ E, A) on x ∈ X,m ∈ M s.t. Ae = ax

1am
2 bsc, owing

to S PK V , as stated by Lemma 4. On the other hand, from
Theorem 1, such a certificate is unforgeable even if valid
members collude. Therefore, before signing, the signer
must have conducted the join protocol with MM, which im-
plies that the signer is a member.

In the rest, we show that a removed member with the
certificate w.r.t. m = 2i−1 cannot compute a valid S PK V . In
the certificate generated by MM, m = 2i−1 is assured. On
the other hand, S PK V proves the knowledge of (m̃U , m̃L)
such that m̃ = m̃U(2m) + m + m̃L and 0 ≤ m̃L ≤ m − 1.
However, Lemma 5 claims that such a knowledge does not
exist, if the i-th bit in m̃ (i.e., m̄i−1) is 0, which implies that
the member is removed. Therefore, the removed member
cannot compute a valid S PK V . �

Finally, we simply discuss the other requirements. The
ElGamal encryption is secure based on the DDH assumption
[23]. Therefore, anonymity and unlinkability hold, because
of the the zero-knowledge-ness of S PK V and the secrecy
of the ElGamal encryption and the commitment scheme, as
well as the original group signature [1]. No framing is also
satisfied, since the S PK V proves the knowledge of x, which
is kept secret for others (even MM), owing to the PK in the
join protocol and the S PK V . Traceability is satisfied as fol-
lows: Since V proves that (T1, T2) is an ElGamal ciphertext
of ax

1, which is shown in Lemma 4, opening the group sig-
nature produces ax

1. On the other hand, V proves the knowl-
edge of the certificate A of the x, and the unforgeability of
the A implies that the owner registered the ax

1. Therefore,
the ax

1 is linkable to the owner.

6. Efficiency

Here, we discuss the efficiency of our scheme, compared
with the related schemes [1], [10]. As mentioned before, we
evaluate the more efficient version of our scheme that adopts
the efficient S PK of [12] for intervals instead of inefficient

Table 1 Number of multi-exponentiations in signing and verification of
[1], [10] and the proposed scheme in case of �m ≈ �n.

Scheme Signing Verification

[1] 5 3
[10] 14 8
Ours 31 18

Table 2 The size of the public membership information of [10] and the
proposed scheme in case of N = 1000,K = 1000 and �n = 1024.

Scheme Communication cost

[10] 100 kbytes
Ours 100 bytes

S PK of [6]. Since the modification is simple, it is summa-
rized in Appendix B.

The signing/verification cost of our scheme depends on
�m, i.e., K that is the maximal number of members’ join-
ing. At first, consider the case of �m ≈ �n. In this case,
our scheme allows up to about 1000 members, if �n is stan-
dard 1024. Then, the exponent length is all comparable to
�n, and signing and verification require 31 and 18 multi-
exponentiations respectively, on such an exponent length.
The costs are summarized together with the other related
schemes [1], [10] in Table 1. In the state-of-the-art scheme
[1] with no revocation, signing and verification require 5
and 3 multi-exponentiations, respectively. In the accumula-
tor based scheme [10] with revocation, signing and verifi-
cation require 14 and 8 multi-exponentiations, respectively.
The accumulator based scheme [24] is slightly better. How-
ever, the schemes based the accumulator require the mod-
ification of signer’s secret key whenever signing, and the
size of public membership information is O(�nN), where N
is the total number of joining members and removed mem-
bers. On the other hand, our scheme needs no modification
of signer’s secret key, and the public membership informa-
tion is only m̃ with the length O(�n). For example, consider
the case of N,K = 1000 and �n = 1024. Though the size
of the public membership information in the accumulator
based schemes is about 100 kbytes, the size in our scheme is
about 100 bytes only. This is summarized in Table 2.

Next, consider the case of �m 	 �n, namely much more
members joining than �n. Then, the computation and com-
munication costs of signing/verification in our scheme are
O(K/�n). If �n = 1024, the feasible number of members’
joining is the order of 1000. For such larger groups, note that
the accumulator based schemes also have a serious prob-
lem: It suffers from the long public information. In case
of N = 10000 and �n = 1024, the size of the information
amounts to more than 1 MBytes.

7. Conclusion

This paper has proposed a group signature scheme with
efficient membership revocation for middle-scale groups,
where the public membership information is shorter (about
1000 bits) than the previous schemes. A future work is to
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adapt our scheme to larger groups with the efficiency pre-
served. Additionally, an open problem is to explore a prov-
ably secure scheme on the formal security definition indi-
cated in [4].
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Appendix A: Details of SPKs

We review the detail of the primitive S PKs. Let H be a
collision-resistant hash function such that H : {0, 1}∗ →
{0, 1}�c , for a security parameter �c < �n/2 that is the size
of the challenges in the underlying PKs (in practice, �c ≈
80). Furthermore, let �̃ be a security parameter, where �̃− �c
controls the statistical zero-knowledge-ness of the PKs (in
practice, �̃ − �c ≈ 80).

A.1 S PK of Representation

Here, we introduce a version in the paper due to Lysyan-
skaya [18]. Hereafter, though the case of two bases g, h ∈
QR(n) is described for all the S PKs, it is easy to generalize
the case of more bases.

Let C = gxhy for x ∈ (−2�x , 2�x ) and y ∈ (−2�y , 2�y).
Then, S PK{(α, β) : C = gαhβ}(m) is computed as follows:
Choose rx ∈R [0, 2�x+�̃) and ry ∈R [0, 2�y+�̃), and compute
C̃ = grx hry . Then, set challenge c0 = H(m‖g‖C‖C̃), and
compute responses sx = rx + c0x and sy = ry + c0y (both
in Z). The signature is (c0, sx, sy). On the other hand, the
verification is to check if c0 = H(m‖g‖C‖C−c0gsx hsy). The
following lemma is derived from [18].

Lemma 6: Under the strong RSA assumption, the interac-
tive version of the above construction is an honest-verifier
zero-knowledge proof of knowledge of α, β.
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A.2 S PK of Representations with Equal Parts

It is easy to obtain this S PK by adopting the same random-
ness rx or ry for the same knowledge in the S PKs for repre-
sentations.

Let C = gxhy and C′ = gxhz for x ∈ (−2�x , 2�x ),
y ∈ (−2�y , 2�y), and z ∈ (−2�z , 2�z ). Then, S PK{(α, β, γ) :
C = gαhβ ∧ C′ = gαhγ}(m) is computed as follows: Choose
rx ∈R [0, 2�x+�̃), ry ∈R [0, 2�y+�̃), and rz ∈R [0, 2�z+�̃),
and compute C̃ = grx hry and C̃′ = grx hrz . Then, set
c0 = H(m‖g‖C‖C′‖C̃‖C̃′), and compute sx = rx + c0x,
sy = ry + c0y, and sz = rz + c0z (in Z). The signature is
(c0, sx, sy, sz). On the other hand, the verification is to check
if c0 = H(m‖g‖C‖C′‖C−c0gsx hsy‖C′−c0gsx hsz ). The security
can be proved in the similar way to the normal S PK for a
representation.

A.3 S PK of Representation with Parts in Intervals and
S PK of Representation with Non-negative Part

Here, both [6] and [12] are described. Since [6] utilizes [12],
we first show [12].

A.3.1 S PK of [12]

The S PK of a representation with parts that lie in expanded
intervals, i.e., the proved interval is expanded from the inter-
val in which the part lies in fact, is obtained from the normal
S PK of a representation by adding the verification of the
domain of the response sx or sy.

Let C = gxhy for x ∈ [a, a+d] and y ∈ (−2�y , 2�y), where
a is an integer and d is a positive integer. Then, S PK{(α, β) :
C = gαhβ∧α ∈ [a−2�̃d, a+2�̃d]}(m) is computed as follows:
Choose rx ∈R [0, 2�̃d) and ry ∈R [0, 2�y+�̃), and compute C̃ =
grx hry . Then, set c0 = H(m‖g‖C‖C̃), and compute sx = rx +

c0(x−a) and sy = ry+c0y (both inZ). But, if sx � [c0d, 2�̃d),
start again. The signature is (c0, sx, sy). On the other hand,
the verification is to check if c0 = H(m‖g‖C‖C−c0gsx+c0ahsy)
and sx ∈ [c0d, 2�̃d). This convinces the verifier that α ∈
[a − 2�̃d, a + 2�̃d] that is expanded from the real interval
[a, a + d].

The security can be proved in the similar way to the
normal S PK for a representation, except that the knowledge
extracted by the knowledge extractor surely lies in the in-
terval [a − 2�̃d, a + 2�̃d]. Note that the cost of this S PK is
comparable with the normal S PK of a representation.

A.3.2 S PK of [6]

We first describe S PK{(α, β) : C = gαhβ ∧ α ≥ 0}(m).
Consider C = gxhy for x ∈ [0, 2�x ) and y ∈ (−2�y , 2�y).

Then, before describing S PK{(α, β) : C = gαhβ∧α ≥ 0}(m),
we describe S PK{(α, β) : C = gαhβ ∧ α ≥ −2�̃+1(2�x −
1)1/2}(m).

At first, the signer computes normal S PK{(α, β) : C =

gαhβ}(m). Next, he computes x̃ = �x1/2 and x̄ = x − x̃2, and
commitments Cx̃ = g

x̃hrx̃ , Cx̃2 = gx̃2
hrx̃2 and Cx̄ = g

x̄hrx̄ , for
rx̃, rx̃2 ∈R Zn and rx̄ = y−rx̃2 . Note that 0 ≤ x̄ ≤ 2(2�x −1)1/2.
Then, he proves

S PK{(α, β, γ, δ, ε) :

Cx̃ = g
αhβ ∧Cx̃2 = Cαx̃ hγ ∧ Cx̄ = g

δhε

∧δ ∈ [−2�̃+1(2�x − 1)1/2, 2�̃+1(2�x − 1)1/2]}(m),

using the S PK of [12]. The verification is to check the
S PKs and if C = Cx̃2Cx̄. This convinces the verifier that
x = x̃2 + x̄ ≥ −2�̃+1(2�x − 1)1/2.

By modifying the above S PK, we can obtain
S PK{(α, β) : C = gαhβ ∧ α ≥ 0}(m): In advance, the signer
computes C′ = C2T

, for T such that 2T/2 > 2�̃+1(2�x − 1)1/2.
Note that C′ = gx′hy

′
for x′ = x2T ∈ [0, (2�x − 1)2T ]. Then,

he computes S PK{(α, β) : C′ = gαhβ ∧ α ≥ −2�̃+1((2�x −
1)2T )1/2}(m), as above. Then, from 2�̃+1((2�x−1)2T )1/2 < 2T ,
this convinces the verifier that x2T > −2T , which implies
that x ≥ 0. Note that this S PK costs 7 multi-exponentiations
for signing, and 4 multi-exponentiations for the verification.

The above S PK is simply applied to the S PK for an
exact interval, i.e., S PK{(α, β) : C = gαhβ ∧ α ∈ [a, a +
d]}(m). At first, the signer computes C1 = C/ga and C2 =

ga+d/C. Then, the signer computes S PK{(α1, β1, α2, β2) :
C1 = g

α1 hβ1 ∧ C2 = g
α2 hβ2 ∧ α1 ≥ 0 ∧ α2 ≥ 0}(m). Since

this proves α − a ≥ 0 and (a + d) − α ≥ 0, it convinces the
verifier of α ∈ [a, a + d].

Appendix B: The Scheme Using SPK of [12]

Since the application of the S PK of [12] to our scheme is
similar to [11], the summary is only shown. Although the
S PK of [6] can prove the interval exactly, the S PK of [12]
expands the real interval into a wider interval. On the other
hand, Camenisch-Lysyanskaya signature requires e ∈ E,
x ∈ X and m ∈ M. Thus, e, x and m has to be chosen
from narrower intervals Ẽ, X̃ and M̃ such that the intervals
expanded from Ẽ, X̃ and M̃ by the S PK of [12] are included
E,X andM, respectively.

For E = (2�e−1, 2�e ),X = [0, 2�x ),M = [0, 2�m ),
we can prepare the narrower intervals Ẽ = [2�e−1 +

2�e−2, 2�e−1+2�e−2+2�e−3−�̃], X̃ = [2�x−1, 2�x−1+2�x−2−�̃], M̃ =
[2�m−1, 2�m−1 + 2�m−2−�̃] of E,X,M, respectively. If x ∈ X̃ =
[2�x−1, 2�x−1 + 2�x−2−�̃] in fact, the knowledge proved by the
S PK lies in expanded [2�x−1 − 2�x−2−�̃2�̃, 2�x−1 + 2�x−2−�̃2�̃],
that is, [2�x−1 − 2�x−2, 2�x−1 + 2�x−2]. Thus, it is confirmed
that the knowledge lies in [0, 2�x ) = X. This is the similar in
cases of (M, M̃) and (E, Ẽ).

In this setting, we should care about the membership
information m = 2i−1 for the expansion. Consider a map:
ṁ = m + 2�m−1. Assume K ≤ �m − 2 − �̃. Then, ṁ ∈ M̃ is
satisfied. Thus, the membership certificate can be modified
into (s, e, A) s.t. Ae = ax

1aṁ
2 bsc, where x ∈R X̃, e ∈R Ẽ. Then,

the efficient S PK can prove x ∈ X, ṁ ∈ M and e ∈ E in the
group signature. Therefore, the ownership of the certificate
is ensured.
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The introduction of ṁ = m+2�m−1 needs a modification
of Cm into Cṁ = g

ṁhwm and a modification of the S PK V as
follows:

S PK{(α, β, γ, δ, ε, ζ, η, θ, ι, κ, λ, µ, ν, ξ, o, π, ρ) :

c = CA
α(1/a1)β(1/a2)γ(1/b)δ(1/g)ε

∧Cw = g
ζhη ∧ 1 = Cαw(1/g)ε(1/h)θ

∧Cṁ = g
γhι ∧Cm̃U = g

κhλ ∧ Cm̃L = g
µhν

∧T1 = g
ξ ∧ T2 = y

ξaβ1

∧(C2
m̃U

)2�m−1
gm̃+2�m−1

(1/Cṁ)(1/Cm̃L ) = (C2
m̃U

)γho

∧Cṁ(1/g)1+2�m−1
(1/Cm̃L ) = gπhρ

∧µ ≥ 0 ∧ π ≥ 0 ∧ α ∈ E ∧ β ∈ X ∧ γ ∈ M}(M).

The security of V can be proved as in Sect. 5.

Toru Nakanishi received the M.E. and
Ph.D. degrees in information and computer sci-
ences from Osaka University, Japan, in 1995 and
2000 respectively. He joined the Department
of Information Technology at Okayama Univer-
sity, Japan, as a research associate in 1998, and
moved to the Department of Communication
Network Engineering in 2000, where he became
an assistant professor in 2003. His research in-
terests include cryptography and information se-
curity. He is a member of the IPSJ.

Yuji Sugiyama received the B.E., M.E. and
Ph.D. degrees in information and computer sci-
ences from Osaka University, Japan, in 1974,
1976 and 1983, respectively. He joined the fac-
ulty of Osaka University in 1977. Currently, he
is a professor of the Department of Communica-
tion Network Engineering at Okayama Univer-
sity. His current research interests include alge-
braic specifications and implementation of alge-
braic languages. He is a member of the IPSJ.


