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Two-dimensional principal component analysis algorithm (2DPCA) can be performed in the batch mode and can not meet the
real-time requirements of the video stream. To overcome these limitations, the incremental learning of the candid covariance-
free incremental PCA (CCIPCA) is innovated to the existing 2DPCA, and the called incremental 2DPCA (I2DPCA) is firstly
presented to incrementally compute the principal components of a sequence of samples directly on the 2D image matrices without
estimating the covariance matrices. Therefore, the I2DPCA can improve the feature extraction speed and reduce the required
memory. However, the variations between the column direction, generally neglected, are also useful for the high-accuracy object
recognition. Thus, another incremental sequential row-column 2DPCA algorithm (IRC2DPCA), based on the proposed I2DPCA
algorithm, is also proposed. The IRC2DPCA can compress the image matrices in the row and column direction, and the feature
matrices extracted by the IRC2DPCA are with less dimensions than the I2DPCA. The substantial experimental results show that
the IRC2DPCA, compared with the other three algorithms, can improve the convergence rates and the recognition rates, compress
the dimensions of the feature matrices, and reduce the feature extraction time and the classification time.

1. Introduction

Object recognition has been an active research field in
computer vision to classify the objects from the images or
the sequent arriving video frames, widely used in the pattern
recognition fields of human face [1, 2] and authentication [3–
5]. Since the dimension of the original image space obtained
by the camera is high, the dimension-reduction and feature
extraction algorithms are usually employed before classifica-
tion and recognition to improve the object recognition speed.
It can be widely applied in the fault diagnosis scheme for
planetary gearboxes [6], the early fault diagnosis of rolling
bearings [7], and the thermal nondestructive testing imagery
[8].

Principal component analysis (PCA) is a classical feature
extraction and dimension-reduction algorithm. Usually, the
eigenvectors corresponding to the larger eigenvalues are
selected as the projection axes, and the high dimension
data can be projected to the lower dimension subspaces

for reducing the dimensions. The PCA, combined with the
infrared thermograph, has been used in various application
cases [9–11]. For the PCA-based algorithms, the 2D image
matrices must be transformed into the 1D column vectors
to construct the covariance matrices. Concatenating the
entries in the 2D matrices into the 1D vectors often leads
to the high-dimensional sample spaces, and it is difficult
to accurately evaluate the eigenvectors of the covariance
matrices. Furthermore, computing directly the eigenvectors
of the covariance matrix is very time-consuming [12]. Yang
et al. [12] proposed a two-dimensional principal compo-
nent analysis algorithm (2DPCA), which can extract the
eigenvectors directly from the image matrices without the
image-to-vector transformations. It can preserve the spatial
structure feature of the images, reduce the dimensions of the
covariance matrix, and solve the small sample size problem
of the PCA [13, 14]. Subsequently, several 2DPCA extended
algorithms were proposed [15–17]. All these extended algo-
rithms ignored the longitudinal feature of the images, and the
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image information, contained in the feature matrices, is not
comprehensive enough. To overcome the weaknesses of the
2DPCA, Yang et al. [18] proposed the sequential row-column
2DPCA algorithm (RC2DPCA). It can completely preserve
the feature information of the images by the twofold feature
extractions in the row and column directions and can obtain
the feature matrices with less dimensions.

In terms of the aforementioned PCA, 2DPCA and
RC2DPCA, these algorithms are performed in batch modes.
It means that all training sample data have to be available
before the principal components can be estimated. If we
incorporate additional training data into the existing projec-
tion matrix, the matrix has to be retrained with the whole
training data. For these batch algorithms, the extraction time
and the required memory will increase rapidly with the
increase of the training data. Eventually, it will lead to the
problem that the feature extraction speed can not meet the
updating speed of the training data [19]. The incremental
PCA (IPCA) does not need to obtain all training data before
the feature extraction; the feature information is updated
gradually with the sequent input of the samples. Compared
with the batch algorithms, the IPCA can reduce the required
memory because it does not need to save the historical
training data. In addition, the IPCA can make full use of
the historical training results for the subsequent training,
and the appended training time can be greatly reduced. The
first category of the IPCA algorithms [20–23] allows for
the incremental learning using the eigenspace method. It
can update the coefficients of the images using the updated
eigenspaces without having to retain the original images.
Since the new samples are added one by one and the least
significant principal components are discarded to preserve
the dimensions of the subspaces, themethod also suffers from
the problem of unpredicted approximation error.The second
category can estimate the principal components without
directly computing the covariancematrix [24, 25].The candid
covariance-free IPCA (CCIPCA) algorithm developed by
Weng et al. [24] can estimate the principal components of
the high-dimensional image matrices quickly with a good
convergence performance.The candid covariance-free incre-
mental principal component thermography (CCIPCT) [8,
26] presented the application of the CCIPCA in the thermog-
raphy, and it can provide lower computational complexity as
compared to the principal component thermography (PCT).
Li et al. [27] proposed an extension method based on the
CCIPCA to incrementally update the feature extractors for
the camera identification. However, there exist the problems
of high-dimensional image vectors since the eigenvectors are
statistically determined by the covariance matrix, no matter
which method is adopted for obtaining the matrix.

In this paper, an incremental 2DPCA algorithm
(I2DPCA) is developed. It can overcome the limitations of
the IPCA and the batch 2DPCA. The proposed I2DPCA
can compute incrementally the principal components
directly on the 2D image matrix without estimating the
covariance matrix. It can reduce the extraction time and the
required memory. However, the I2DPCA only compresses
the image matrices in the row direction, and it requires more
coefficients for the image representation. It will lead to a

slow classification speed and a large memory requirement
for the large-scale databases. Therefore, another incremental
RC2DPCA algorithm (IRC2DPCA), based on the I2DPCA
algorithm, is proposed to reduce the dimension of the
feature matrices by the twofold feature extraction in the row
and the column directions. Both the extraction time and
classification time are reduced by the IRC2DPCA. Finally,
using the block database and the ORL face database as the
experimental samples, the convergence rates of the principal
components, the classification rates, the computation time,
and the required memory are compared and analyzed.

2. The Proposed I2DPCA Algorithm

2.1. The 2DPCA Algorithm. The 2DPCA, proposed by Yang
et al. [12], can directly compute the covariance matrix for the
image matrices without the image-to-vector transformation.
Consider the training set which consists of 𝑛 training image
matrices 𝑋󸀠(1),𝑋󸀠(2), ⋅ ⋅ ⋅ ,𝑋󸀠(𝑛), and the size is 𝑝 × 𝑞. The
covariance matrix in the row direction can be constructed
directly by

𝑆𝑟 =
1
𝑛

𝑛

∑
𝑖=1

[𝑋󸀠 (𝑖) −𝑋 (𝑛)]
T
[𝑋󸀠 (𝑖) −𝑋 (𝑛)] , (1)

where 𝑋(𝑛) = (1/𝑛)∑𝑛
𝑖=1
𝑋󸀠(𝑖) represents the mean of all the

training image matrices. Note that 𝑆𝑟 is a 𝑞 × 𝑞matrix. Since
𝑆𝑟 is a positive semidefinite matrix, there exists an orthogonal
matrix 𝑊𝑟

󸀠 which satisfies the equation 𝑆𝑟 = 𝑊𝑟󸀠∑𝑊𝑟󸀠
T
.

The eigenvectors 𝑤𝑟1
󸀠,𝑤𝑟2󸀠, ⋅ ⋅ ⋅ ,𝑤𝑟𝑘

𝑟

󸀠 corresponding to the
first 𝑘𝑟 largest eigenvalues of 𝑆𝑟 are selected to construct the
projection matrix𝑊𝑟

󸀠,

𝑊𝑟
󸀠 = [𝑤𝑟1

󸀠,𝑤𝑟2
󸀠, ⋅ ⋅ ⋅ ,𝑤𝑟𝑘

𝑟

󸀠] . (2)

Projecting𝑋󸀠(𝑖) onto𝑊𝑟󸀠, we can obtain a 𝑝 × 𝑘𝑟 feature
matrix as

𝑌
󸀠 (𝑖) = 𝑋󸀠 (𝑖)𝑊𝑟

󸀠. (3)

The 2DPCA can compute directly the covariance matrix
without transforming the image matrices into vectors. How-
ever, the 2DPCA is a batch algorithm, therefore all the
image sample matrices should be acquired in advance and
saved before training; the existing covariance matrix has to
be retrained with all training data when a new image is
appended.With the increase of the training data, the exaction
speed can not meet the updating speed of the new training
data. Hence, it can not be applied to the training of the
continuous high-dimensional sample data or the real-time
video stream data.

2.2. The Proposed I2DPCA Algorithm. To overcome the
limitations of the batch learning and the real-time problem,
we propose a I2DPCA algorithm based on the CCIPCA [24].
Suppose that the 2D training image matrices are acquired
sequentially, 𝑋󸀠(1),𝑋󸀠(2), ⋅ ⋅ ⋅ , are possibly infinite, and each
2D image matrix 𝑋󸀠(𝑖), 𝑖 = 1, 2, ⋅ ⋅ ⋅ , is of size 𝑝 × 𝑞.



Mathematical Problems in Engineering 3

Assume that the input samples satisfy the zeromeanGaussian
distribution [24], and these samples must be centralized in
advance. The centralization matrices can be expressed by
𝑋(𝑖) = 𝑋󸀠(𝑖) − 𝑋(𝑛). The covariance matrix 𝑆𝑟 in the row
direction from the 𝑛 samples can be constructed as

𝑆𝑟 =
1
𝑛

𝑛

∑
𝑖=1

𝑋
T (𝑖)𝑋 (𝑖) , (4)

where 𝑆𝑟 is 𝑝 × 𝑞. Different from the 2DPCA, it can only be
estimated as an intermediate stepwithout directly computing.
The eigenvector 𝛼𝑟 of the matrix 𝑆𝑟 satisfies

𝑣𝑟 = 𝜆𝑟𝛼𝑟 = 𝑆𝑟𝛼𝑟, (5)

where 𝜆𝑟 is the corresponding eigenvalue. By replacing the 𝑆𝑟
of (4) and replacing the 𝛼𝑟 of (5) with its estimator 𝛼𝑟(𝑖) at
each step 𝑖, we can rewrite (5) as

𝑣𝑟 (𝑛) =
1
𝑛

𝑛

∑
𝑖=1

𝑋
T (𝑖)𝑋 (𝑖)𝛼𝑟 (𝑖) , (6)

where 𝑣𝑟(𝑛) is the 𝑛th step estimator of 𝑣𝑟. Considering 𝜆𝑟 =
‖𝑣𝑟‖, and 𝛼𝑟 = 𝑣𝑟/‖𝑣𝑟‖, we can approximately estimate 𝛼𝑟(𝑖)
as 𝑣𝑟(𝑖 − 1)/‖𝑣𝑟(𝑖 − 1)‖. The following incremental form can
be given as

𝑣𝑟 (𝑛) =
1
𝑛

𝑛

∑
𝑖=1

𝑋
T (𝑖)𝑋 (𝑖)

𝑣𝑟 (𝑖 − 1)󵄩󵄩󵄩󵄩𝑣𝑟 (𝑖 − 1)
󵄩󵄩󵄩󵄩
. (7)

For the incremental estimation, (7) can be written as the
following recursive form:

𝑣𝑟 (𝑛) =
𝑛 − 1 − 𝑙
𝑛
𝑣𝑟 (𝑛 − 1)

+ 1 + 𝑙
𝑛
𝑋

T (𝑛)𝑋 (𝑛)
𝑣𝑟 (𝑛 − 1)󵄩󵄩󵄩󵄩𝑣𝑟 (𝑛 − 1)

󵄩󵄩󵄩󵄩
,

(8)

where 𝑙 is a positive parameter called the amnesic parameter.
When a new image matrix is appended, the mean matrix
needs to be updated. The incremental recursive form of the
mean matrix can be updated by

𝑋 (𝑛) = 𝑛 − 1
𝑛
𝑋 (𝑛 − 1) + 1

𝑛
𝑋
󸀠 (𝑖) . (9)

Equation (8) only can estimate the first dominant eigenvector.
To compute the 𝑖 + 1th eigenvector, the 2D image matrix
is subtracted from its projection on the 𝑖th order estimated
eigenvector 𝑣𝑟𝑖(𝑛) as

𝑋𝑖+1 (𝑛) = 𝑋𝑖 (𝑛) −𝑋𝑖 (𝑛)
𝑣𝑟𝑖 (𝑛)󵄩󵄩󵄩󵄩𝑣𝑟𝑖 (𝑛)
󵄩󵄩󵄩󵄩

𝑣
T
𝑟𝑖
(𝑛)

󵄩󵄩󵄩󵄩𝑣𝑟𝑖 (𝑛)
󵄩󵄩󵄩󵄩
, (10)

where 𝑋1(𝑛) = 𝑋(𝑛). The obtained residual 𝑋𝑖+1(𝑛) is used
as the input data of the iteration step. In this way, the first
𝑘𝑟 dominant eigenvectors are estimated, and the projection
matrix𝑊𝑟 can be obtained by

𝑊𝑟 = [𝑤𝑟1,𝑤𝑟2 . . .𝑤𝑟𝑘
𝑟

] . (11)

Projecting𝑋󸀠(𝑖) onto𝑊𝑟, we can obtain the 𝑝×𝑘𝑟 feature
matrix as

𝑍
󸀠 (𝑖) = 𝑋𝑖

󸀠 (𝑖)𝑊𝑟. (12)

The I2DPCA does not need to obtain all the sample data
at once before training. Instead, a recursive update of the
eigenvector can be performed when a new image sample is
input. Therefore, the algorithm does not save all the image
samples, and it can reduce the required memory. Without
directly computing the covariance matrix, the I2DPCA can
estimate the eigenvectors of the training image matrices in
a recursive form. However, the I2DPCA only works in the
rowdirection of the imagematrices, ignoring the information
in the column direction. Furthermore, the dimension of the
feature matrix, extracted by the I2DPCA, is still high (𝑝
is large). More time and more memory are needed in the
classification process.

3. The Proposed IRC2DPCA Algorithm

The I2DPCA can realize the incremental learning and reduce
the feature extraction time and the required memory. How-
ever, the classification time and the required memory are
still large due to the high dimension of the feature matrix
extracted by the I2DPCA. And the I2DPCA only considers
the transverse features of the image sample matrix but
neglects its longitudinal features, so that the extracted image
feature information is not comprehensive enough.Therefore,
based on the I2DPCA, the feature matrix which has been
extracted in the row direction continues to be extracted in
the column direction so that the final feature matrix contains
enough information of the images in both the row and
column directions.

The 𝑝 × 𝑘𝑟 feature matrices 𝑍󸀠(𝑖), 𝑖 = 1, 2, ⋅ ⋅ ⋅ , extracted
by the I2DPCA, are used as the training matrices of the
IRC2DPCA. 𝑍(𝑖) = 𝑍󸀠(𝑖) − 𝑍(𝑛) express the centralization
matrices. And then the 𝑝 × 𝑝 covariance matrix 𝑆𝑐, different
from 𝑆𝑟 of the I2DPCA, can be expressed as

𝑆𝑐 =
1
𝑛

𝑛

∑
𝑖=1

𝑍 (𝑖)𝑍T (𝑖) . (13)

The incremental form with the amnesic parameter can be
expressed by

𝑣𝑐 (𝑛) =
𝑛 − 1 − 𝑙
𝑛
𝑣𝑐 (𝑛 − 1)

+ 1 + 𝑙
𝑛
𝑍 (𝑛)𝑍T (𝑛)

𝑣𝑐 (𝑛 − 1)󵄩󵄩󵄩󵄩𝑣𝑐 (𝑛 − 1)
󵄩󵄩󵄩󵄩
.

(14)

Similarly, the updating mean matrix can be obtained by
the following recursive form:

𝑌 (𝑛) = 𝑛 − 1
𝑛
𝑌 (𝑛 − 1) + 1

𝑛
𝑌
󸀠 (𝑖) . (15)

We can compute the high order eigenvectors associated
with 𝑆𝑐 matrix by generating observations only in the
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complementary space. In this way, the first 𝑘𝑐 dominant
eigenvectors are estimated, and the projection matrix in the
column direction𝑊𝑐 can be constructed by

𝑊𝑐 = [𝑤𝑐1,𝑤𝑐2 . . .𝑤𝑐𝑘
𝑐

] . (16)

The feature matrix, extracted by the twofold feature
extractions in the sequential row and column directions, can
be computed by

𝑅 =𝑊T
𝑐
𝑍
󸀠 (𝑖) =𝑊T

𝑐
𝑋
󸀠 (𝑖)𝑊𝑟. (17)

The resulting feature matrix 𝑅 is a 𝑘𝑐 × 𝑘𝑟 matrix,
much smaller than the I2DPCA feature matrix 𝑍󸀠(𝑖). The
IRC2DPCA algorithm can be described as follows.

Step 1 (feature extraction in the row direction). Using for-
mula (8) of the I2DPCA, the first dominant estimators can be
obtained sequentially with the sequent input of the original
image matrix 𝑋󸀠(𝑖). The first 𝑘𝑟 higher order estimators can
also be computed by formula (10) with the increase of the
number of the order. The first 𝑘𝑟 eigenvectors corresponding
to the first 𝑛 samples can be gotten by 𝛼𝑟 = 𝑣𝑟/‖𝑣𝑟‖ to
construct the matrix𝑊𝑟. And then the feature matrix 𝑍󸀠(𝑖)
can be obtained by formula (12).

Step 2 (feature extraction in the column direction). Using
the results of the I2DPCA as training matrix 𝑍󸀠(𝑖), the
IRC2DPCA can compute the first 𝑘c dominant estimators by
the formula (14). Similarly, we can get the second projection
matrix𝑊𝑐 by the formula (16).

Step 3 (the final featurematrix). Project all the original image
matrices𝑋󸀠(𝑖) onto the matrices of𝑊𝑟 and𝑊𝑐, and the final
feature matrices 𝑅 can be gotten by formula (17).

The incremental learning of the IRC2DPCA can satisfy
the learning of the continuous high-dimensional sample data
or the real-time video stream data. At the same time, the
algorithm allows the information of the image matrices in
the row and column directions to intermingle without losing
their separate identities. In addition, the dimension of the
feature matrices is 𝑘𝑐 × 𝑘𝑟, much smaller than that of the
I2DPCA. It can effectively reduce the dimension of the feature
matrices and the classification time.

4. Experiments and Analysis

Two sets of databases are used to evaluate the performances
of the proposed algorithms. The block database contains
four kinds of blocks (the green cylinder, the green triangular
prism, the red cube, and the yellow cuboid), each having
500 different samples. The size of each image is 120 × 120
pixels, and all images are grayscale processed before the
experiments. Figure 1 shows the 10 images of each kind
of blocks. The ORL face database contains images from 40
persons, each providing 10 different images. The size of each
image is 112 × 92 pixels. Figure 2 shows the 40 images in the
ORL. All programs run on the computer whose CPU is E5-
2620 v4, the main frequency is 2.10GHz, and the memory is

Figure 1: 40 sample images in the block database.

Figure 2: 40 sample images in the ORL database.

32GB. The operation system is 64-bit Windows 10, and the
programming environment is VS2010+Opencv2.4.10.

4.1. Experiments on the Block Database. The 2DPCA [12] and
the RC2DPCA [18] are only batch algorithms without the
convergence. The amnesic parameter is set to be 2, and the
convergence experiments are performed on the I2DPCA and
the IRC2DPCA, respectively. The correlation between the
estimated eigenvectors 𝑤𝑟𝑖

󸀠,𝑤𝑐𝑖󸀠 and the accurate ones 𝑤𝑟𝑖,
𝑤𝑐𝑖 computed by the batch methods is represented by their
inner product 𝑤𝑟𝑖

󸀠 ⋅ 𝑤𝑟𝑖 or 𝑤𝑐𝑖󸀠 ⋅ 𝑤𝑐𝑖. The larger the inner
product, the more correlated the estimated and the accurate
eigenvectors.

In the experiment, 500 red cube samples are input in turn.
The convergence rates of the I2DPCA and the IRC2DPCA
are shown in Figures 3 and 4, respectively. It can be seen
that the first five eigenvectors of the IRC2DPCA show an
obvious convergent tendency, while the later three ones have
poor convergence. The convergence rates of the first five
eigenvectors of the IRC2DPCA can reach 90.6% after all
samples are input incrementally. For the I2DPCA, only the
first three eigenvectors have an obvious convergence. The
convergence rates of the five ones can only reach 77.7%.
Hence, the estimated eigenvectors of the IRC2DPCA are
closer to the accurate ones than those of the I2DPCA.

The convergence rate is influenced by the sample-to-
dimension ratio 𝑛/𝑑 [24]. The higher the ratio, generally,
the easier the convergence. In this experiment, the original
sample image is 120 × 120 pixels. The image dimension of
the 2DPCA is 120 × 120 = 14400, much higher than that
of the IRC2DPCA (120 × 8 = 960). Thus, when the sample
number reaches 500, the sample-to-dimension ratio of the
IRC2DPCA is 0.521, while that of the I2DPCA is only 0.035.
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Figure 3: The convergence rates of the I2DPCA with the red cubes. (a) The first four eigenvectors and (b) the later four ones.

0 50 100 150 200 250 300 350 400 450 500
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1

C
on

ve
rg

en
ce

 ra
te

s

Number of samples
1st eigenvetor 2nd eigenvetor
3rd eigenvetor 4th eigenvetor

(a)

0 50 100 150 200 250 300 350 400 450 500
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1

C
on

ve
rg

en
ce

 ra
te

s

Number of samples
5th eigenvetor 6th eigenvetor
7th eigenvetor 8th eigenvetor

(b)

Figure 4: The convergence rates of the IRC2DPCA with the red cubes. (a) The first four eigenvectors and (b) the later four ones.

With the same number of samples, the sample-to-dimension
ratio of the IRC2DPCA is larger than the I2DPCA, and the
convergence rate of the IRC2DPCA is higher than that of the
I2DPCA.

To improve the convergence of the algorithms, 500 red
cube samples are input repeatedly; the convergence rates of
the I2DPCA and the IRC2DPCA are shown in Figures 5 and
6, respectively. We can see that the first eight eigenvectors of
the IRC2DPCA show a more obvious tendency to converge
than those of the I2DPCA. To achieve a higher convergence
rate, the sample number should be at least 1000. If the video
stream is input, the video should last for at least 37s.

The classification experiments are performedon the block
database and the k-nearest neighbour algorithm (KNN) is

employed for classification. Through many experiments, we
can find that the featurematrices dimension always fluctuates
around a certain value and the fluctuation value is very small
when the highest classification rates can be obtained for
the four algorithms. Therefore, in the experiment, a specific
feature dimension for each algorithm is selected for testing.
L samples are randomly selected from each kind of blocks
for training, and the remaining ones are used for testing. To
ensure the adequate training samples, 𝐿 ≥ 20 is needed.

The highest classification rates and the corresponding
feature matrix dimensions are given in Table 1. The classifi-
cation rates of the four algorithms can remain on an upward
tendency with the increase of the samples. The performance
of the IRC2DPCA is superior to the other three algorithms
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Figure 5: The convergence rates of the I2DPCA with the repeated input. (a) The first four eigenvectors and (b) the later four ones.
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Figure 6: The convergence rates of the IRC2DPCA with the repeated input. (a) The first four eigenvectors and (b) the later four ones.

Table 1: Comparison of the classification rates on the block database.

𝐿 2DPCA [12]
(120 × 4)

I2DPCA
(120 × 4)

RC2DPCA [18]
(8 × 8)

IRC2DPCA
(8 × 8)

25 0.927 0.927 0.899 0.901
50 0.929 0.929 0.947 0.938
75 0.935 0.927 0.948 0.939
100 0.937 0.930 0.965 0.940
125 0.955 0.954 0.965 0.947
150 0.956 0.960 0.955 0.960
175 0.953 0.961 0.958 0.963
200 0.954 0.961 0.961 0.964
225 0.994 0.994 0.995 0.995
250 0.994 0.994 0.999 0.998
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Figure 7: The convergence rates of the I2DPCA with the repeated input. (a) The first four eigenvectors and (b) the later four ones.
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Figure 8: The convergence rates of the IRC2DPCA with the repeated input. (a) The first four eigenvectors and (b) the later four ones.

in the classification rate. When the highest classification rate
of 99.8% is obtained, the feature matrix dimension of the
IRC2DPCA is only 8 × 8 = 64, far smaller than that of the
I2DPCA; that is, 120 × 4 = 480.

The IRC2DPCA is also superior to the I2DPCA in the
classification time. Table 2 shows that the average classifi-
cation time per image of the I2DPCA is 0.0015s, and the
IRC2DPCA has less average classification time of 0.0002s,
mainly because the IRC2DPCA has a feature matrix with
relatively fewer dimensions. However, the average feature
extraction time per image of the IRC2DPCA is 0.0516s,
slower than that of the I2DPCAwhich is 0.0267s, because the
IRC2DPCAneeds to do the feature extraction in both the row
and column directions.

Table 3 shows the required memory in the feature extrac-
tion and the classification. It can be seen that the memory of

the 2DPCA and the RC2DPCAwill increase with the increase
of the samples, and this is because both algorithms are
batch algorithms. The required memory of the I2DPCA and
IRC2DPCA remains basically unchanged. When facing large
samples, the advantages of the two incremental algorithms in
memory will be more significant.

4.2. Experiments on the ORL Database. To verify the gener-
ality of the proposed algorithms, a series of experiments are
performed on theORL face database. In the experiments, 400
face images are input ten times. The convergence rates of the
I2DPCA and the IRC2DPCA can be shown in Figures 7 and
8, respectively. Compared with the I2DPCA, the IRC2DPCA
has better convergence performance on the ORL database,
similarly.
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d=1 d=8d=7d=6d=5d=4d=3d=2
(a)

d=1 d=2 d=8d=7d=6d=5d=4d=3
(b)

Figure 9: The reconstructed images. (a) The I2DPCA and (b) the IRC2DPCA.

Table 4: Comparison of the classification rates on the ORL database.

𝐿 2DPCA [12]
(112 × 4)

I2DPCA
(112 × 4)

RC2DPCA [18]
(8 × 8)

IRC2DPCA
(8 × 8)

1 0.894 0.842 0.881 0.867
2 0.947 0.909 0.925 0.922
3 0.961 0.918 0.939 0.936
4 0.979 0.950 0.967 0.963
5 0.980 0.955 0.970 0.975

To better compare the performance of the I2DPCA and
the IRC2DPCA, we use the two algorithms to reconstruct
the face images. By adding up the first 𝑑 subimages, we can
obtain the approximate reconstruction images of the original
images. Figure 9 shows eight reconstructed images of the first
face image shown in Figure 2. The reconstruction images
become clearer with the increase of the subimages. Because
the feature extraction dimension of the IRC2DPCA is much
smaller than that of the I2DPCA, the effect of the IRC2DPCA
on the image reconstruction is poorer.

From the classification rates shown in Table 4, the
IRC2DPCA has better performance in the classification rate.
When the highest classification rate reaches 97.5%, the feature
matrix dimension of the IRC2DPCA is far smaller than that
of the I2DPCA. For the running time, Table 5 shows that
the IRC2DPCA has less average classification time of 0.0002s
than the I2DPCA of 0.0015s. The classification time of the
IRC2DPCA also has a great advantage on the ORL database.
As shown in Table 6, we can see that, in the runningmemory,
the advantages of the two incremental algorithms are also
obvious with the increase of the samples.

5. Conclusions

In this paper, a new feature extraction algorithm called the
I2DPCA for image representation and object recognition
has been developed. The I2DPCA can estimate the dom-
inant eigenvectors from incrementally arriving 2D image
data without transforming the 2D image matrix into a
high-dimensional vector and without directly computing
the covariance matrix. It can reduce the complexity of the
algorithm and improve the feature extraction time. And
then another incremental algorithm called the IRC2DPCA is
proposed to intermingle effectively the information in both
the row and column directions with less dimensions. The
algorithm can effectively reduce the dimension of the feature
matrices and the classification time.

The experimental results show that (1) with the increase of
the training data, the advantage of the incremental algorithms

in the feature extraction time and the required memory
is gradually obvious; (2) compared with the I2DPCA, the
IRC2DPCA has higher convergence rate and faster conver-
gence speed; (3) the IRC2DPCA has higher classification rate
with the less-dimension feature matrix, and its highest classi-
fication rate can reach 99.8%; (4) although the IRC2DPCA
can not be performed as well in the reconstruction image
because the feature matrix dimension is far smaller than the
I2DPCA, the classification time is better than the I2DPCA.
The proposed algorithms have a widespread prospect in the
equipment fault identification and the robot vision tracking.
Applying the algorithms, the recognition of the industrial
weld surface defect is being tested by other members of our
project. The IRC2DPCA algorithm can provide an effective
solution for the real-time learning of the high-dimensional
sample data or the video stream data.

Nomenclature

PCA: Principal component analysis
2DPCA: Two-dimensional principal component

analysis
RC2DPCA: Sequential row-column 2DPCA
IPCA: Incremental PCA
CCIPCA: Candid covariance-free IPCA
CCIPCT: Candid covariance-free incremental

principal component thermography
PCT: Principal component thermography
I2DPCA: Incremental 2DPCA
IRC2DPCA: Incremental RC2DPCA
KNN: k-nearest neighbour.
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