Prolegomena to Logic Programming for
Non—Monotonic Reasoning

Jiirgen Dix! and Lufs Moniz Pereira? and Teodor Przymusinski®

! Dept. Computer Science, University of Koblenz
Rheinau 1, D-56075 Koblenz, Germany
dix@mailhost.uni-koblenz.de
2 Dept. Computer Science and CENTRIA, Universidade Nova de Lisboa
2825 Monte da Caparica, Portugal
Imp@di.fct.unl.pt
3 Dept. Computer Science, University of California at Riverside

Riverside, CA 92521, USA

teodor@cs.ucr.edu

Abstract. The present prolegomena consist, as all indeed do, in a crit-
ical discussion serving to introduce and interpret the extended works
that follow in this book. As a result, the book is not a mere collection
of excellent papers in their own specialty, but provides also the basics of
the motivation, background history, important themes, bridges to other
areas, and a common technical platform of the principal formalisms and
approaches, augmented with examples.

In the introduction we whet the reader’s interest in the field of logic
programming and non monotonic reasoning with the promises it offers
and with its outstanding problems too. There follows a brief historical
background to logic programming, from its inception to actuality, and its
relationship to non monotonic formalisms, stressing its semantical and
procedural aspects.

The next couple of sections provide motivating examples and an overview
of the main semantics paradigms for normal programs (stable models and
wellfounded) and for extended logic programs (answer—sets, e—answer—
sets, Nelson’s strong negation, and well founded semantics with pseudo
and with explicit negation).

A subequent section is devoted to disjunctive logic programs and its
various semantical proposals.

To conclude, a final section on implementation gives pointers to available
systems and their sites.

We leave out important concerns, such as paraconsistent semantics, con-
tradiction removal, and updates. Hopefully they will be included in the
next book in this series. But an extensive set of references allows the
reader to delve into the specialized literature.

For other recent relevant complementary overviews in this area we refer
to [AP96, BDK97, BD96b, Min96, Dix95c].

1 Introduction

One of the major reasons for the success story (if one is really willing to call it a
success story) of human beings on this planet is our ability to invent tools that
help us improve our otherwise often quite limited capabilities. The inven-
tion of machines that are able to do interesting things, like transporting people
from one place to the other (even through the air), sending moving pictures and
sounds around the globe, bringing our email to the right person, and the like,
is one of the cornerstones of our culture and determines to a great degree our
everyday life.

Among the most challenging tools one can think of are machines that are
able to handle knowledge adequately. Building smart machines is at the heart of
Artificial Intelligence (AI). Since such machines will need tremendous amounts of
knowledge to work properly, even in very limited environments, the investigation
of techniques for representing knowledge and reasoning is highly important.

In the early days of AT it was still believed that modeling general purpose
problem solving capabilites, as in Newell and Simon’s famous GPS (General
Problem Solver) program, would be sufficient to generate intelligent behaviour.
This hypothesis, however, turned out to be overly optimistic. At the end of
the sixties people realized that an approach using available knowledge about
narrow domains was much more fruitful. This led to the expert systems boom
which produced many useful application systems, expert system building tools,
and expert system companies. Many of the systems are still in use and save
companies millions of dollars per year?.

Nevertheless, the simple knowledge representation and reasoning methods
underlying the early expert systems soon turned out to be insufficient. Most of
the systems were built based on simple rule languages, often enhanced with ad
hoc approaches to model uncertainty. It became apparent that more advanced
methods to handle incompleteness, defeasible reasoning, uncertainty, causality
and the like were needed.

This insight led to a tremendous increase of research on the foundations
of knowledge representation and reasoning. Theoretical research in this area has
blossomed in recent years. Many advances have been made and important results
were obtained. The technical quality of this work is often impressive.

On the other hand, most of these advanced techniques have had surprisingly
little influence on practical applications so far. To a certain degree this is under-
standable since theoretical foundations had to be laid first and pioneering work
was needed. However, if we do not want research in knowledge representation to
remain a theoreticians’ game, more emphasis on computability and applicability
seems to be needed. We strongly believe that the kind of research presented in
this book, that is research aiming at interesting combinations of ideas from logic
programming and non—monotonic reasoning, and its implementation, provides
an important step into this direction.

* We refer the interested reader to the recent book [RN95] which gives a very detailed
and nice exposition of what has been done in Al since its very beginning until today.

Research in the area of logic programming and non-monotonic reasoning
makes a significant contribution not only towards the better understanding of
relations existing between various formalizations of non-monotonic reasoning,
and, hopefully, towards the eventual discovery of deeper underlying principles
of non-monotonic reasoning and logic programming, but, perhaps more impor-
tantly, towards the eventual development of relatively efficient inference engines
based on the techniques originating in logic programming. Needless to say, the
problem of finding efficient inference mechanisms, capable of modelling human
common-sense reasoning, is one of the major research and implementation prob-
lems in AI. Moreover, by incorporating the recent theoretical results, the next
qualitative leap in logic programming systems is well under way.

In fact, during the last decade a truly impressive body of knowledge has
been accumulated, providing us with a better understanding of semantic issues
in logic programming and the nature of its relationship to non-monotonic for-
malisms. New, significantly improved, semantics for logic programs have been
introduced and thoroughly investigated and their close relationship to major
non-monotonic formalisms has been established. A number of fundamental re-
sults describing ways in which non-monotonic theories can be translated into
logic programs have been obtained. Entirely new computational mechanisms
for the new, greatly improved, semantics have been introduced and several very
promising implementations of logic programming systems based on these seman-
tics have been developed.

In spite of these unquestionable successes some major problems remain:

1. Standard logic programs are not sufficiently expressive for the representation
of large classes of knowledge bases. In particular, the inability of logic pro-
grams to deal with disjunctive information proved to be a major obstacle to
using them effectively in various knowledge domains, in particular, it consti-
tutes a major obstacle to using logic programming as a declarative specifica-
tion language for software engineering. The problem of extending of the logic
programming paradigm to the class of disjunctive programs and deductive
databases turned out to be a difficult one, as evidenced by a large number
of papers, the book [LMR92] and several workshops ([Wol94, DLMW96])
devoted to this issue. It is well known that disjunctive programs are signifi-
cantly more expressive than normal programs.

2. In recent years, several authors have underscored the importance of extend-
ing logic programming by introducing different types of negation (explicit,
strong or classical negation) which proved essential for knowledge represen-
tation and are indispensable for the effective use of integrity constraints. This
important enhancement of logic programming immediately leads, however,
to the new basic problem of how to deal with contradiction in such extended
logic programs. The proper definition of declarative and procedural seman-
tics for contradiction removal is particularly crucial in applications of logic
programming to diagnosis, database updates, and declarative debugging.

3. The existing logic programming systems suffer from an important proce-
dural limitation of being unable to deal with non-ground negative queries.

This well-known phenomenon, known as the floundering problem, severely
restricts the usefulness of logic programs for knowledge representation. Sev-
eral major attempts have been made recently to deal with this problem but
much more work is still needed.

4. In spite of the unquestionable progress obtained during the last decade or
so, insufficient attention has been paid to the study of various applications
of the new logic programming paradigm and to the actual testing and exper-
imentation with the new systems in various application domains. Extensive
experimentation will allow us to better understand and evaluate their po-
tential value for knowledge representation, at the same time exposing their
possible weaknesses and inadequacies.

5. While several promising implementations of logic programming systems have
been developed recently, much more effort has to be devoted to this issue
during the next several years if we are to come up with a truly practical and
efficient alternative to the currently existing logic programming paradigm.
These efforts must include implementations which are capable, among oth-
ers, to deal with disjunctive information, contradiction removal and con-
structive negation. More work is also needed towards the development of
object-oriented logic programming systems.

In short, the advent of low cost multiprocessor machines, impressive research
progress of the past decade as well as significant advances in logic programming
implementation techniques now provide us with a great opportunity to bring to
fruition computationally efficient implementations of extended logic program-
ming. The resulting programming system must not only ensure the increased
expressivity and declarative clarity of the new paradigm of logic programming
but it should also be suitable to serve as an inference engine for other non-
monotonic reasoning formalisms and deductive databases and as a specification
language for software engineering.

This book is the successor of [DPP95] and the next in a series addressing such
issues. To facilitate access to the book, and to this research area, we decided to
provide here an introduction and motivation for (extended and disjunctive) logic
programming, which is commonly used as a basis for knowledge representation
and non—monotonic reasoning, and applications. Other more specific develop-
ments, such as belief revision or updates, are deliberately left out. The reader
is referred to the collection of papers in this book and the references therein for
such topics.

2 Brief historical logic programming background

Computational Logic arose from the work begun by logicians since the midfifties.
The desire to impart the computer with the ability to reason logically led to the
development of automated theorem proving, which took up the promise of giv-
ing logic to artificial intelligence. This approach was fostered in the 1970’s by
Colmerauer et al. [CKPR73] and Kowalski [Kow74, Kow79] as Logic Program-
ming (and brought on the definition and implementation of Prolog [CKPR73]).

It introduced to computer science the important concept of declarative — as op-
posed to procedural — programming. Ideally, a programmer should need only to
be concerned with the declarative meaning of his program, while the procedural
aspects of program’s execution are handled automatically. The Prolog language
became the privileged vehicle approximating this ideal. The first Prolog compiler
[WPP77] showed that it could be a practical language and helped disseminate
it worldwide.

Clearly, this ideal cannot possibly be fulfilled without a precise definition of
proper declarative semantics of logic programs and, in particular, of the meaning
of negation in logic programming. Logic programs, however, do not use classical
logical negation, but rely instead on a non-monotonic operator, often referred to
as “negation by failure” or “negation by default”. The non-monotonicity of this
operator allows us to view logic programs as special non-monotonic theories, and
thus makes it possible to draw from the extensive research in the area of non-
monotonic reasoning and use it as guidance in the search for a suitable semantics
for logic programs.

On the other hand, while logic programs constitute only a subclass of the class
of all non-monotonic theories, they are sufficiently expressive to allow formal-
izations of many important problems in non-monotonic reasoning and provide
fertile testing grounds for new formalizations. Moreover, since logic programs ad-
mit relatively efficient computational mechanisms, they can be used as inference
engines for non-monotonic formalisms.

The development of formal foundations of logic programming began in the
late 1970s, especially with the works [EK76, Cla78, Rei78b]. Further progress
in this direction was achieved in the early 1980’s, leading to the appearance of
the first book on the foundations of logic programming [L1087]. The selection
of logic programming as the underlying paradigm for the Japanese Fifth Gener-
ation Computer Systems Project led to the rapid proliferation of various logic
programming languages.

In parallel, starting at about 1980, non monotonic Reasoning entered into
computer science and began to constitute a new field of active research. It was
originally initiated because Knowledge Representation and Common-Sense Rea-
soning using classical logic came to its limits. Formalisms like classical logic are
inherently monotonic and they seem to be too weak and therefore inadequate
for such reasoning problems.

In recent years, independently of the research in logic programming, peo-
ple interested in knowledge representation and non—-monotonic reasoning also
tried to define declarative semantics for programs containing default or explicit
negation and even disjunctions. They defined various semantics by appealing to
(different) intuitions they had about programs.

Due to logic programming’s declarative nature, and amenability to implemen-
tation, it quickly became a prime candidate for knowledge representation. Its ad-
equateness became more apparent after the relationships established in the mid
1980’s between logic programs and deductive databases [Rei84, GMN84, LT85]
[LT86, Min&8].

The use of both logic programming and deductive databases for knowledge
representation is based on the so called “logical approach to knowledge repre-
sentation”. This approach rests on the idea of providing machines with a logical
specification of the knowledge that they possess, thus making it independent of
any particular implementation, context free, and easy to manipulate and reason
about.

Consequently, a precise meaning (or semantics) is associated with any logic
program in order to provide its declarative specification. The performance of
any computational mechanism is then evaluated by comparing its behaviour
to the specification provided by the declarative semantics. Finding a suitable
declarative semantics for logic programs has been acknowledged as one of the
most important and difficult research areas of logic programming.

iFrom the implementational point of view, for some time now programming
in logic has been shown to be a viable proposition. As a result of the effort to
find simple and efficient theorem proving strategies, Horn clause programming
under SLD resolution was discovered and implemented [KK71, CKPR73].

However, because Horn clauses admit only positive conclusions or facts, they
give rise to a monotonic semantics, i.e. one by which previous conclusions are
never questioned in spite of additional information, and thus the number of
derived conclusions cannot decrease — hence the monotonicity.

Horn clause programming augmented with the NOT operator (i.e. Prolog),
under the SLDNF derivation procedure [L1087], does allow negative conclusions;
these, however, are only drawn by default (or implicitly), just in case the cor-
responding positive conclusion is not forthcoming in a finite number of steps,
taking the program as it stands. This condition also prevents, by definition, the
appearance of any and all contradictions, and so does not allow for reasoning
about contradictory information.

The NOT form of negation is capable of dealing with incomplete information,
by assuming false exactly what is not true in a finite manner — hence the Closed
World Assumption (CWA) [Rei78a] or completion semantics given to such pro-
grams [Cla78]. However, irrespective of other problems with this semantics, there
remains the issue of the proper treatment of non-terminating computations, even
for finite programs.

To deal with the difficulties faced by the completion semantics, a spate of
semantic proposals were set forth from the late eigthies onwards, of which the
well founded semantics of [GRS91] is an outcome. It deals semantically with
non-terminating computations, by assigning them the truth value “undefined”,
thereby giving semantics to every program. Moreover, it enjoys a number of
desirable structural properties

[Dix92a, Dix92b, Dix91, Dix95a, Dix95b, BD96a].

However, the well-founded semantics deals solely with normal programs, i.e.
those with only negation by default, and thus it provides no mechanism for
explicitly declaring the falsity of literals. This can be a serious limitation. In fact,
recently several authors have stressed and shown the importance of including in
logic programs a symmetric form of negation, denoted —, with respect to default

negation [APP96], for use in deductive databases, knowledge representation, and
non—monotonic reasoning

[GLI1, GL92, Ino91, Kow90, KS90, PW90, PAA91b, AP96], [PAA92, PDA93,
Wag91, PAA91c]. This symmetric negation may assume several garbs and names
(*classical, pseudo, strong, explicit) corresponding to different properties and
distinct applicability. Default and symmetric negation can be related: indeed
some authors uphold the coherence principle, which stipulates the latter entails

the former.

So-called extended logic programs, those which introduce a symmetric form
of negation, both in the body and conclusion of rules, have been instrumental
in bridging logic programming and non monotonic reasoning formalisms, such
as Default Logic, Auto Epistemic Logic, and Circumscription: non monotonic
reasoning formalisms provide elegant semantics for logic programming, in par-
ticular in what regards the meaning of negation as failure (or by default); non—
monotonic reasoning formalisms help one understand how logic programming
can be used to formalize and solve several problems in AI. On the other hand,
non monotonic reasoning formalisms benefit from the existing procedures of
logic programming; and, finally, new problems of non monotonic reasoning are
raised and solved by logic programming.

Of course, introducing symmetric negation conclusions requires being able
to deal with contradiction. Indeed, information is not only normally incomplete
but contradictory to boot. Consequently, not all negation by default assumptions
might be made, but only those not partaking of contradiction. This is tantamount
to the ancient and venerable logical principle of “reductio ad absurdum”: if an
assumption leads to contradiction withdraw it. One major contribution of work
on extended logic programming is that of tackling this issue.

Whereas default negation, and the revision of believed assumptions in the
face of contradiction, are the two non—monotonic reasoning mechanisms available
in logic programming, their use in combination with symmetric negation adds
on a qualitative representational expressivity that can capture a wide variety
of logical reasoning forms, and serve as an instrument for programming them.
The application domains facilitated by extended logic programming include for
example taxonomies with exceptions and preferences, reasoning about actions,
model based diagnosis, belief revision, updates, and declarative debugging.

It should be noted that symmetric negation differs from classical negation.
In particular, the principle of the excluded middle is not adopted, and so neither
is case analysis, whereby if p if ¢, and if p if —¢q, then p. Indeed, propositions
are not just true or false, exclusively. For one, they may be both true and false.
Moreover, once contradiction is removed, even so a proposition and its negation
may both remain undefined. In fact, truth in logic programming should be taken
in an auto-epistemic sense: truth is provability from an agent’s knowledge, and
possibily neither a proposition nor its negation might be provable from its present
knowledge — their truth-value status’ might be undefined for both. Hence case
analysis is not justified: p may rest undefined if ¢ or —¢ are undefined.

This is reasonable because the truth of ¢ is not something that either holds

or not, inasmuch as it can refer to the agent’s ability to deduce g, or some other
agent’s view of ¢q. For that matter, the supposition that either ¢ holds or does
not hold might be contradictory with the rest of the agent’s knowledge in either
case.

Also, the procedural nature of logic programming requires that each conclu-
sion be supported by some identifiable rule with a true body whose conclusion it
is, not simply by alternatively applicable rules, as in case analysis. Conclusions
must be procedurally grounded on known facts. This requirement is conducive
to a sceptical view of derived knowledge, which disallows jumping to conclusions
when that is not called for.

Next we make a short technical overview of the main results in the last
15 years in the area of logic program’s declarative semantics. This overview is
divided into four sections. In the first we review some of the most important
semantics of normal logic programs while in the second we motivate the need
of extending logic programming with a second kind of negation, and overview
recent semantics for such extended programs. The third and forth section are
very compact and not as detailed as the previous ones. In the third section we
treat disjunctive logic programming and in the fourth section we give an overview
of implemented systems and where they can be obtained.

3 Normal logic programs

Several recent overviews of normal logic programming semantics can be found in
the literature (e.g. [She88, She90, PP90, Mon92, AB94, Dix95¢c, BD96b]). Here,
for the sake of this text’s self-sufficiency and to introduce some motivation, we
distill a brief overview of the subject. In some parts we follow closely the overview
of [PP90].

The structure of this section is as follows: first we present the language of
normal logic programs and give some definitions needed in the sequel. Then we
briefly review the first approaches to the semantics of normal programs and point
out their problems. Finally, we expound in greater detail two of the more recent
and important proposals, namely stable models and well-founded semantics.

3.1 Language

By an alphabet A of a language £ we mean a (finite or countably infinite) dis-
joint set of constants, predicate symbols, and function symbols. In addition, any
alphabet is assumed to contain a countably infinite set of distinguished variable
symbols. A term over A is defined recursively as either a variable, a constant
or an expression of the form f(¢1,...,t,), where f is a function symbol of A,
and the t; are terms. An atom over A is an expression of the form p(t,...,t,),
where p is a predicate symbol of A, and the ¢;s are terms. A literal is either an
atom A or its negation not A. We dub default literals those of the form not A.

A term (resp. atom, literal) is called ground if it does not contain variables.
The set of all ground terms (resp. atoms) of A is called the Herbrand universe
(resp. base) of A. For short we use H to denote the Herbrand base of A.

A normal logic program is a finite set of rules of the form:
H<+ Ly,...,Ly, (n >0)

where H is an atom and each of the L;s is a literal. In conformity with the
standard convention we write rules of the form H < also simply as H.

A normal logic program P is called definite if none of its rules contains
default literals. We assume that the alphabet A used to write a program P
consists precisely of all the constants, and predicate and function symbols that
explicitly appear in P. By Herbrand universe (resp. base) of P we mean the
Herbrand universe (resp. base) of A.

By grounded version of a normal logic program P we mean the (possibly
infinite) set of ground rules obtained from P by substituting in all possible ways
each of the variables in P by elements of its Herbrand universe.

In this work we restrict ourselves to Herbrand interpretations and models®.
Thus, without loss of generality (cf. [PP90]), we coalesce a normal logic program
P with its grounded version.

3.2 Interpretations and models

Next we define 2 and 3 valued Herbrand interpretations and models of normal
logic programs. Since non—-Herbrand interpretations are beyond the scope of this
work, in the sequel we sometimes drop the qualification Herbrand.

Definition 1 Two—valued interpretation. A 2—valued interpretation I of a
normal logic program P is any subset of the Herbrand base H of P.

Clearly, any 2 valued interpretation I can be equivalently viewed as a set
TUnot F 8

where T = [and is the set of atoms which are true in I, and FF = H — T is
the set of atoms which are false in I. These interpretations are called 2—valued
because in them each atom is either true or false, i.e. H =T U F.

As argued in [PP90], interpretations of a given program P can be thought
of as “possible worlds” representing possible states of our knowledge about the
meaning of P. Since that knowledge is likely to be incomplete, we need the ability
to describe interpretations in which some atoms are neither true nor false but

rather undefined, i.e. we need 3—valued interpretations:

Definition 2 Three—valued interpretation. By a 3 valued interpretation
of a program P we mean a set

T Unot F

5 For the subject of semantics based on non-Herbrand models, and solutions to the
problems resulting from always keeping Herbrand models see e.g. [Kun87, Prz89c,
GRS91].

& Where not {a1,...,a,} stands for {not ai,...,not a,}.

where T and F' are disjoint subsets of the Herbrand base H of P.

The set T (the T-part of I) contains all ground atoms true in I, the set F'
(the F-part of I) contains all ground atoms false in I, and the truth value of the
remaining atoms is unknown (or undefined).

It is clear that 2 valued interpretations are a special case of 3 valued ones,
for which H = T'U F is additionally imposed.

Proposition 3. Any interpretation I = T Unot F can equivalently be viewed as

a function I : H — V where V = {O, %, 1}, defined by:
0 if not Ael
I(A)=< 1 4f Ael
% otherwise

Of course, for 2 valued interpretations there is no atom A such that I(4) = 1.

Models are defined as usual, and based on a truth valuation function:

Definition 4 Truth valuation. If / is an interpretation, the truth valuation I
corresponding to I is a function I : C' — V where C is the set of all formulae of
the language, recursively defined as follows:

— if Ais a ground atom then I(A) = I(A).

— if S is a formula then I(not S) =1— I(S).
— if S and V are formulae then

o 1((S,V)) = min(1(S), [(V)).
o I[(V« S)=1if I(S) < I(V), and 0 otherwise.

Definition 5 Three—valued model. A 3-valued interpretation I is called a
3-valued model of a program P iff for every ground instance of a program rule
H + B we have I(H «+ B) = 1.

The special case of 2 valued models has the following straightforward defi-
nition:

Definition 6 Two—valued model. A 2 valued interpretation I is called a 2

valued model of a program P iff for every ground instance of a program rule
H < B we have I(H < B) = 1.

Some orderings among interpretations and models will be useful:

Definition 7 Classical ordering. If [and J are two interpretations then we
say that I < J if I(A) < J(A) for any ground atom A. If 7 is a collection of
interpretations, then an interpretation I € 7 is called minimal in 7 if there is no
interpretation .J € 7 such that J < I and I # J. An interpretation I is called
least in Z if I < J for any other interpretation J € Z. A model M of a program
P is called minimal (resp. least) if it is minimal (resp. least) among all models
of P.

Definition 8 Fitting ordering. If I and J are two interpretations then we
say that I <p J [Fit85] iff I C J. If 7 is a collection of interpretations, then an
interpretation I € 7 is called F-minimal in 7 if there is no interpretation .J € 7
such that J <p I and I # J. An interpretation I is called F-least in Z if I <p J
for any interpretation J € Z. A model M of a program P is called F-minimal
(resp. F-least) if it is F-minimal (resp. F-least) among all models of P.

Note that the classical ordering is related with the amount of true atoms,
whereas the Fitting ordering is related with the amount of information, i.e.
nonundefinedness.

3.3 Clark’s and Fitting’s Semantics

As argued above, a precise meaning or semantics must be associated with any
logic program, in order to provide a declarative specification of it. Declarative
semantics provides a mathematically precise definition of the meaning of a pro-
gram, which is independent of its procedural executions, and is easy to manip-
ulate and reason about.

In contrast, procedural semantics is usually defined as a procedural mecha-
nism that is capable of providing answers to queries. The correctness of such a
mechanism is evaluated by comparing its behaviour to the specification provided
by the declarative semantics. Without the latter, the user needs an intimate
knowledge of the procedural aspects in order to write correct programs.

The first attempt to provide a declarative semantics to logic programs is due
to [EK76], and the main motivation behind their approach is based on the idea
that one should minimize positive information as much as possible, limiting it
to facts explicitely implied by a program, making everything else false. In other
words, their semantics is based on a natural form of “closed world assumption”
[Rei78al.

Ezample 1. Consider program P :

able_mathematician(X) < physicist(X)
physicist(einstein)
president(soares)

This program has several (2—valued) models, the largest of which is the model
where both Einstein and Soares are at the same time presidents, physicists and
able mathematicians. This model does not correctly describe the intended mean-
ing of P, since there is nothing in P to imply that Soares is a physicist or that
Einstein is a president. In fact, the lack of such information should instead indi-
cate that we can assume the contrary.

This knowledge is captured by the least (2-valued) model of P :

{physicist(einstein), able_-mathematician(einstein), president(soares)}

The existence of a unique least model for every definite program (proven in
[EK76]), led to the definition of the so called “least model semantics” for definite
programs. According to that semantics an atom A is true in a program P iff it
belongs to the least model of P; otherwise A is false.

It turns out that this semantics does not apply to programs with default
negation. For example, the program P = {p « not ¢} has two minimal models,
namely {p} and {g}. Thus no least model exists.

In order to define a declarative semantics for normal logic programs with
negation as failure”, [Cla78] introduced the so called “Clark’s predicate comple-
tion”. Informally, the basic idea of completion is that in common discourse we
often tend to use “if” statements when we really mean “iff” ones. For instance,
we may use the following program P to describe the natural numbers:

natural number(0)
natural_number(succ(X)) + natural_number(X)

This program is too weak. It does not imply that nothing but 0,1, ... is a natural
number. In fact what we have in mind regarding program P is:

natural_number(X) & (X =0V (Y | X = suce(Y) A natural_number(Y")))

Based on this idea Clark defined the completion of a program P, the seman-
tics of P being determined by the 2—valued models of its completion.

However Clark’s completion semantics has some serious drawbacks. One of
the most important is that the completion of consistent programs may be in-
consistent, thus failing to assign to those programs a meaning. For example the
completion of the program {p « not p} is {p < not p}, which is inconsistent.

In [Fit85], the author showed that the inconsistency problem for Clark’s
completion can be elegantly eliminated by considering 3—valued models instead
of 2—valued ones. This led to the definition of the so—called “Fitting semantics”
for normal logic programs. In [Kun87], Kunen showed that this semantics is not
recursively enumerable, and proposed a modification.

Unfortunately, “Fitting’s semantics” inherits several problems of Clark’s com-
pletion, and in many cases leads to a semantics that appears to be too weak.
This issue has been extensively discussed in the literature (see [She88, Prz89c,
GRS91], [Dix95¢, BD96b]). Forthwith we illustrate some of these problems with
the help of examples:

Ezample 2. Consider® program P :

edge(a,b)
edge(c,d)
edge(d, c)
reachable(a)
reachable(X) < reachable(Y), edge(X,Y)

" Here we adopt the designation of “negation by default”. Recently, this designation
has been used in the literature instead of the more operational “negation as failure”.
8 This example first appeared in [GRS91].

that describes which vertices are reachable from a given vertice a in a graph.
Fitting semantics cannot conclude that vertices ¢ and d are not reachable

from a. Here the difficulty is caused by the existence of the symmetric rules
edge(ec,d), and edge(d, c).

Ezample 3. Consider P :

bird(tweety)
fly(X) < bird(X), not abnormal(X)
abnormal(X) « irregular(X)
irregular(X) < abnormal(X)

where the last two rules just state that “irregular” and “abnormal” are synony-
mous.

Based on the fact that nothing leads us to the conclusion that tweety is
abnormal, we would expect the program to derive not abnormal(tweety), and
consequently that it flies. But Clark’s completion of P is:

bird(X) & X = tweety
fly(X) & bird(X), not abnormal(X)
abnormal(X) < irregular(X)

from which it does not follow that tweety isn’t abnormal.
It is worth noting that without the last two rules both Clark’s and Fitting’s
semantics yield the expected result.

One possible explanation for such a behaviour is that the last two rules lead to
a loop. This explanation is procedural in nature. But it was the idea of replacing
procedural programming by declarative programming that brought about the
concepts of logic programming in first place and so, as argued in [PP90], it
seems that such a procedural explanation should be rejected.

The problems mentioned above are caused by the difficulty in representing
transitive closure using completion. In [Kun90] it is formally showed that both
Clark’s and Fitting’s semantics are not sufficiently expressive to represent tran-
sitive closure.

In order to solve these problems some model-theoretic approaches to declar-
ative semantics have been defined. In the beginning, such approaches did not
attempt to give a meaning to every normal logic program. On the contrary,
they were based on syntactic restrictions over programs, and only program com-
plying with such restrictions were given a semantics. Examples of syntactically
restricted program classes are stratified [ABW88], locally stratified [Prz89c] and

acyclic [AB91], and examples of semantics for restricted programs are the per-
fect model semantics [ABW88, Prz89c, Gel89b], and the weakly perfect model
semantics [PP88]. Here we will not review any of these approaches. For their

overview, the reader is referred to e.g. [PP90].

3.4 Stable model semantics

In [GL88], the authors introduce the so called “stable model semantics”. This
model theoretic declarative semantics for normal programs generalizes the pre-
viously referred semantics for restricted classes of programs, in the sense that
for such classes the results are the same and, moreover, for some non-restricted
programs a meaning is still assigned.

The basic ideas behind the stable model semantics came from the field of non—
monotonic reasoning formalism. There, literals of the form not A are viewed as
default literals that may or may not be assumed or, alternatively, as epistemic
literals ~B A expressing that A is not believed.

Informally, when one assumes true some set of (hypothetical) default literals,
and false all the others, some consequences follow according to the semantics
of definite programs [EK76]. If the consequences completely corroborate the
hypotheses made, then they form a stable model. Formally:

Definition 9 Gelfond-Lifschitz operator. Let P be a normal logic program
and I a 2-valued interpretation. The GL-transformation of P modulo I is the
program ? obtained from P by performing the following operations:

— remove from P all rules which contain a default literal not A such that A € T;
— remove from the remaining rules all default literals.

Since ? is a definite program, it has a unique least model J. We define

r{ =J.

It turns out that fixed points of the Gelfond—Lifschitz operator I for a pro-
gram P are always models of P. This result led to the definition of stable model
semantics:

Definition 10 Stable model semantics. A 2-valued interpretation I of a logic
program P is a stable model of P iff I'(I) = I.

An atom A of P is true under the stable model semantics iff A belong to all
stable models of P.

One of the main advantages of stable model semantics is its close relationship
with known non—monotonic reasoning formalisms:
As proven in [BF88], the stable models of a program P are equivalent to

Reiter’s default extensions [Rei80] of the default theory obtained from P by
identifying each program rule:

H <+ By,...,By,not Cy,...,not Cp,

3

with the default rule:

Bl,...,Bn INCl,...,NCm
H

where ~ denotes classical negation.

Moreover, from the results of [Gel87], it follows directly that stable models are
equivalent to Moore’s autoepistemic expansions [Moo85] of the theory obtained
by replacing in P every default literal not A by ~BA and then reinterpreting
the rule connective < as material implication.

In spite of the strong relationship between logic programming and non
monotonic reasoning, in the past these research areas were developing largely
independently of one another, and the exact nature of their relationship was not
closely investigated or understood.

The situation has changed significantly with the introduction of stable mod-
els, and the establishment of formal relationships between these and other non—
monotonic formalisms. In fact, in recent years increasing and productive ef-
fort has been devoted to the study of the relationships between logic program-
ming and several non monotonic reasoning formalisms. As a result, international
workshops have been organized, in whose proceedings many works and references
to the theme can be found [NMS91, PN93, MNT95, DFN97].

Such relationships turn out to be mutual beneficial. On the one hand, non—
monotonic formalisms provide elegant semantics for logic programming, specially
in what regards the meaning of default negation (or negation as failure), and
help one understand how logic programs can be used to formalize several types of
reasoning in Artificial Intelligence. On the other hand, those formalisms benefit
from the existing procedures of logic programming, and some new issues of the
former are raised and solved by the latter. Moreover, relations among non—
monotonic formalisms themselves have been facilitated and established via logic
programming.

3.5 Well-founded semantics

Despite its advantages, and of being defined for more programs than any of its
predecessors, stable model semantics still has some important drawbacks:

— First, some programs have no stable models. One such program is P =
{a < not a}.

— Even for programs with stable models, their semantics do not always lead
to the expected intended results. For example consider program P :

a <+ not b
b+ not a
c 4 not a
c 4 not c

whose only stable model is {¢, b}. Thus b and ¢ are consequences of the stable
model semantics of P. However, if one adds ¢ to P as a lemma, the semantics
of P changes, and b no longer follows. This issue is related with the property
of cumulativity ([Dix95a]).

— Moreover, it is easy to see that it is impossible to derive b from P using
any derivation procedure based on top—down (SL-like) rewriting techniques.

This is because such a procedure, beginning with the goal <— b would reach
only the first two rules of P, from which b cannot be derived. This issue is
related with the property of relevance ([Dix95b]).

— The computation of stable models is NP complete [MT91] even within sim-
ple classes of programs, such as propositional logic programs. This is an
important drawback, specially if one is interested in a program for efficiently
implementing knowledge representation and reasoning.

— Last but not least, by always insisting on 2—valued interpretations, stable
model semantics often lack expressivity.

The well-founded semantics was introduced in [GRS91], and overcomes all of
the above problems. This semantics is also closely related to some of the major
non monotonic formalisms ([AP96]).

Many different equivalent definitions of the well-founded semantics exist (e.g.

[Prz89a, Prz89h, Bry89, PP90, Dun91, Prz91a, BS91, Mon92, Dix95b, BD97h]).
Here we use the definition introduced in [PP90] because, in our view, it is the
one more technically related with the definition of stable models above®. Indeed,
it consists of a natural generalization for 3 valued interpretations of the stable
model semantics. In its definition the authors begin by introducing 3 valued (or
partial) stable models, and then show that the F least of those models coincides
with the well-founded model as first defined in [GRS91].

In order to formalize the notion of partial stable models, Przymusinski first
expand the language of programs with the additional propositional constant u
with the property of being undefined in every interpretation. Thus they assume
that every interpretation I satisfies:

I(u) = I(not u) :%

A non negative program is a program whose premises are either atoms or
u. In [PP90], it is proven that every non negative program has a 3 valued

least model. This led to the following generalization of the Gelfond-Lifschitz
I'—operator:

Definition 11 I —operator. Let P be a normal logic program, and let I be a
3—valued interpretation. The extended GL-transformation of P modulo I is the
program ? obtained from P by performing the operations:

— remove from P all rules which contain a default literal not A such that

I(A)=1;
— replace in the remaining rules of P those default literals not A such that
I(4) = 3 by w;

— remove from the remaning rules all default literals.

% For a more practical introduction to the well-founded semantics the reader is referred
to [PAA91a]. A detailed exposition based on abstract properties is given in [BD96b].

Since the resulting program is non—negative, it has a unique 3—valued least model
J. We define I'*(I) = J.

Definition 12 Well-founded semantics. A 3 valued interpretation I of a
logic program P is a partial stable model of P iff I'™* () = 1.

The well-founded semantics of P is determined by the unique F—-least partial
stable model of P, and can be obtained by the (bottom—up) iteration of I'*
starting from the empty interpretation.

An alternative equivalent definition, by means of the squared I" operator, is
given as a special case in the section on well-founded semantics with explicit
negation below.

4 Extended logic programs

Recently several authors have stressed and shown the importance of including,
beside default negation, a symmetric second kind of negation — in logic programs
[APP96], for use in deductive databases, knowledge representation, and non
monotonic reasoning

[GLI1, GL92, Ino91, Kow90, KS90, PW90, PAA91b, PAA9Ic], [PAA92,
PDA93, Wag91]. This symmetric form of negation may assume several garbs
and names (*classical, pseudo, strong, explicit) corresponding to different prop-
erties and distinct applicability. Default and symmetric negation can be related:
indeed some authors uphold the coherence principle, which stipulates that the
latter entails the former.

In this section we begin by reviewing the main motivations for introducing
this kind of symmetric negation in logic programs. Then we define an extension
of the language of programs to two negations, and briefly overview the main
proposed semantics for these programs.

4.1 Motivation

In normal logic programs the negative information is implicit, i.e. it is not pos-
sible to explicitly state falsity, and propositions are assumed false if there is
no reason to believe they are true. This is what is wanted in some cases. For
instance, in the classical example of a database that explicitly states flight con-
nections, one wants to implicitly assume that the absence of a connection in the
database means that no such connection exists.

However this is a serious limitation in other cases. As argued in [PW90,
Wag91], explicit negative information plays an important role in natural dis-
course and commonsense reasoning. The representation of some problems in
logic programming would be more natural if logic programs had some way of
explicitly representing falsity. Consider for example the statement:

“Penguins do not fly”

One way of representing this statement within logic programming could be:
no_fly(X) « penguin(X)

or equivalently:
fly' (X) + penguin(X)

as suggested in [GL89).

But these representations do not capture the connection between the predi-
cate no_fly(X) and the predication of flying. This becomes clearer if, addition-
ally, we want to represent the statement:

“Birds fly”

Clearly this statement can be represented by
fly(X) « bird(X)

then, no connection whatsoever exists between the predicates no_fly(X) and
fly(X). Intuitively one would like to have such an obvious connection estab-
lished.

The importance of these connections grows if we think of negative information
for representing exceptions to rules [Kow90]. The first statement above can be
seen as an exception to the general rule that normally birds fly. In this case we
really want to establish the connection between flying and not flying.

Exceptions expressed by sentences with negative conclusions are also common
in legislation [Kow89, Kow92]. For example, consider the provisions for depriving
British citizens of their citizenship:

40 - (1) Subject to the provisions of this section, the Secretary of
State may by order deprive any British citizen to whom this subsection
applies of his British citizenship if [...].

(5) The Secretary of State shall not deprive a person of British citi-
zenship under this section if [...].

Clearly, 40 (1) has the logical form “P if Q” whereas 40 (5) has the form “- P
if R”. Moreover, it is also clear that 40 (5) is an exception to the rule of 40 (1)

Above we argued for the need of having a symmetric negation in the head of
rules. But there are also reasons that compel us to believe symmetric negation
is needed also in their bodies. Consider the statement!°:

“ A school bus may cross railway tracks under the condition that there is no
approaching train”

10 This example is due to John McCarthy, and was published for the first time in
[GLI1].

It would be wrong to express this statement by the rule:
cross < not train

The problem is that this rule allows the bus to cross the tracks when there is no
information about either the presence or the absence of a train. The situation is
different if symmetric negation is used:

cross < —train

Then the bus is only allowed to cross the tracks if the bus driver is sure that there
is no approaching train. The difference between not p and —p in a logic program
is essential whenever we cannot assume that available positive information about
p is complete, i.e. we cannot assume that the absence of information about p
clearly denotes its falsity.

Moreover, the introduction of symmetric negation in combination with the
existing default negation allows for greater expressivity, and so for representing
statements like:

“If the driver is not sure that a train is not approaching then he should wait”

in a natural way:
wait < not —train

Examples of such combinations also appear in legislation. For example con-
sider the following article from “The British Nationality Act 19817 [HMS81]:

(2) A new-born infant who, after commencement, is found abandoned
in the United Kingdom shall acquire british citizenship by section 1.2 if
it is not shown that it is not the case that the person is born [...]

Clearly, conditions of the form “it is not shown that it is not the case that P”
can be expressed naturally by not —P.

Another motivation for introducing symmetric negation in logic programs
relates to a desired symmetry between positive and negative information. This
is of special importance when the negative information is easier to represent
than the positive one. One can first represent it negatively, and then say that
the positive information corresponds to its complement.

In order to make this clearer, take the following example [GL91]:

Exzample 4. Consider a graph description based on the predicate arc(X,Y’), which
expresses that in the graph there is an arc from vertice X to vertice Y. Now sup-
pose that we want to determine which vertices are terminals. Clearly, this is a
case where the complement information is easier to represent, i.e. it is much eas-
ier to determine which vertices are not terminal. By using symmetric negation
in combination with negation by default, one can then easily say that terminal
vertices are those which are not nonterminal:

—terminal(X) < arc¢(X,Y)
terminal(X) < not —terminal(X)

Finally, another important motivation for extending logic programming with
symmetric negation is to generalize the relationships between logic programs and
non—monotonic reasoning formalisms.

As mentioned in section 3.3, such relationships, drawn for the most recent
semantics of normal logic programs, have proven of extreme importance for both
sides, giving them mutual benefits and clarifications. However, normal logic pro-
grams just map into narrow classes of the more general non monotonic for-
malisms. For example, simple default rules such as (where ”~ is classical nega-
tion):

~a :~b a:b a:b

C C ~ C

cannot be represented by a normal logic program. Note that not even normal nor
semi—normal default rules can be represented using normal logic programs. This
is so because these programs cannot represent rules with negative conclusions,
and normal rules with positive conclusions have also positive justifications, which
is impossible in normal programs.

Since, as shown below, extended logic programs also bear a close relation-
ship to non monotonic reasoning formalisms, they improve on those of normal
programs as extended programs map into broader classes of theories in non—
monotonic formalisms, and so more general relations between several of those
formalisms can now be made via logic programs.

One example of such an improvement is that the introduction of symmetric
negation into logic programs makes it possible to represent normal and semi
normal defaults within logic programming. On the one side, this provides meth-
ods for computing consequences of normal default theories. On the other, it
allows for the appropriation in logic programming of work done using such the-
ories for representing knowledge.

4.2 Language of extended programs

As for normal logic programs, an atom over an alphabet A is an expression of
the form p(t1,...,t,), where p is a predicate symbol, and the ¢;s are terms. In
order to extend our language with a second kind of negation, we additionally
define an objective literal over A as being an atom A or its symmetric negation
—A. We also use the symbol = to denote complementary literals in the sense of
symmetric negation. Thus =—A = A. Here, a literal is either an objective literal
L or its default negation not L. We dub default literals those of the form not L.

By the extended Herbrand base of A, we mean the set of all ground objective
literals of A. Whenever unambigous we refer to the extended Herbrand base of
an alphabet, simply as Herbrand base, and denote it by H.

An extended logic program is a finite set, of rules of the form:

H« Ly,...,L, (n>0)

where H is an objective literal and each of the L;s is a literal. As for normal
programs, if n = 0 we omit the arrow symbol.

By the extended Herbrand base H of P we mean the extended Herbrand base
of the alphabet consisting of all the constants, predicate and function symbols
that explicitly appear in P.

Interpretation is defined as for normal programs, but using the extended
Herbrand base instead.

Whenever unambigous, we refer to extended logic programs simply as logic
programs or programs. As in normal programs,; a set of rules stands for all its
ground instances.

4.3 Answer-sets semantics

The first semantics defined for extended logic programs was the so—called “answer—
sets semantics” [GLI1]. There the authors defined for the first time the language
of logic programs with two kinds of negation — default negation not and what
they called ”classical” negation —, which is symmetric with respect to not .

The answer sets semantics is a generalization of the stable model semantics
for the language of extended programs. Roughly, an answer set of an extended
program P is a stable model of the normal program obtained from P by replacing
objective literals of the form —L by new atoms, say —_L.

Definition 13 The ['-operator. Let P be an extended logic program and I a
2 valued interpretation. The GL transformation of P modulo [is the program
? obtained from P by:

— first denoting every objective literal in H of the form —A by a new atom,
say —_A;
— replacing in both P and I, these objective literals by their new denotation;
— then performing the following operations:
e removing from P all rules which contain a default literal not A such that
Ael,;
e removing from the remaning rules all default literals.
Since ? is a definite program it has a unique least model J.
If J contains a pair of complementary atoms, say A and =_A, then I'(I) = H.
Otherwise, let J' be the interpretation obtained from .J by replacing the
newly introduced atoms —_A by —A. We define I'(I) = J'.

Definition 14 Answer—sets semantics. A 2—valued interpretation I of an ex-
tended logic program P is an answer—set model of P iff I'(I) = I.
An objective literal L of P is true under the answer—sets semantics iff L
belongs to all answer—sets of P; L is false iff =L is true; otherwise L is unknown.
In [GLI1], the authors showed that the answer—sets of an extended program
P are equivalent to Reiter’s default extensions of the default theory obtained
from P by identifying each program rule:

H <+ By,...,B,,-Ci,...,—-C,,,not Dy,...,not Dy,not ~Eq,..., not —F;

with the default rule:

B]7...7Bn,NC]7...7NOm ZND]7...,ND]€,E],...7E]'
HI

where H' = H if H is an atom, or H' =~ L if H = = L.

4.4 e—answer—sets semantics

Another semantics generalizing stable models for the class of extended programs
is the e—answer—sets semantics of [KS90]. There, the authors claim that ”clas-
sically” negated atoms in extended programs play the role of exceptions. Thus
they impose a preference of negative over positive objective literals.

The e—answer—sets semantics is obtainable from the answer—sets semantics
after a suitable program transformation. For the sake of simplicity, here we do
not give the formal definition of e—answer—sets, but instead show its behaviour
on an example:

Ezxample 5. Consider program P :

fly(X) « bird(X)
= fly(X) < penguin(X)
bird(X) « penguin(X)
penguin(tweety)

This program allows for both the conclusions fly(tweety) and - fly(tweety).
Thus its only answer sets is H.

In e answer sets semantics, since conclusions of the form —L are preferred
over those of the form L, —fly(tweety) overrides the conclusion fly(tweety),
and thus

{penguin(tweety), bird(tweety), - fly(tweety)}

is an e—answer—set of P.
The rationale for this overriding is that the second rule is an exception to
the first one.

4.5 Well-founded semantics with pseudo negation

In [Prz90], the author argues that the technique used in answer sets for general-
izing stable models is quite general. Based on that he defines a semantics which
generalizes the well founded semantics for the class of extended programs'', as
follows:

"' In the sequel we refer to this semantics as “well founded semantics with pseudo
negation”.

Definition 15 Well-founded semantics with pseudo negation. A
3—valued interpretation I is a partial stable model of an extended logic pro-
gram P iff I' is a partial stable model of the normal program P’, where I' and
P’ are obtained respectively from I and P, by replacing every objective literal
of the form —A by a new atom, say —_A.

The well-founded semantics with pseudo negation of P is determined by the
unique F-least partial stable model of P.

4.6 Nelson’s strong negation semantics

Based on the notions of vivid logic [Lev86] and strong negation [Nel49], [Wag91]
presents an alternative definition of the answer—sets semantics. There, the author
claims that the ——negation of extended logic programs is not classical negation
but rather Nelson’s strong negation.

In fact, consider the following program P :

b+ a
b+ —a

If real classical negation were used then b would be a consequence of P, because
for classical negation a V —a is a tautology. However, in neither of the above
mentioned semantics b follows from P.

4.7 Well-founded semantics with explicit negation

Many semantics for extended logic programs view default negation and sym-
metric negation as unrelated. To overcome this situation a new semantics for
extended logic programs was proposed in [PA92, AP96]. Well-founded Seman-
tics with Explicit Negation (WFSX for short) embeds a “coherence principle”
providing the natural missing link between both negations: if =L holds then
not L should too (similarly, if L then not —L). More recently, a paraconsistent
extension of this semantics (WFSX),) has been proposed in [ADP95, Dam96] via
an alternating fixpoint definition that we now recapitulate.

As usual, for the sake of simplicity and without loss of generality, we will re-
strict the discussion to (possibly infinite) propositional, or to ground, programs.
A non-ground program stands for its fully instantiated version, i.e. the set of
all ground instances of its rules. The alphabet of the language of the programs
is the set of atoms At. Atoms can be negated by juxtaposing them with the
explicit negation symbol “=” thereby obtaining the explicitly negated literals.
The explicit complement of a set A = {aj,as,...} is A = {-a1, —as,...}. The
set of objective literals is OLit = AtU—At. Default literals are of the form not a
and not —a, where a is an atomic proposition in the language’s alphabet. The
set of all literals is Lit = OLit U not OLit, where default negation of a set of
objective literals stands for the set comprised of the default negation of each
one.

Definition 16. An extended logic program is a set of rules of the form
Ly < Lq,...,L,,not My,...,not M, (m,n > 0)
where L; (0 <i<m) and M; (1 <j <n) are objective literals.

We begin by recalling the definition of Gelfond-Lifschitz I" operator, used in
the alternating fixpoint definition of WFS [Gel89a], WFSX, and WFSX,,.

To impose the coherence requirement Alferes and Pereira resort to the semi-
normal version of an extended logic program.

Definition17. [PA92, AP96] The semi-normal version P; of a program P is
obtained from P by adding to the (possibly empty) Body of each rule L + Body
the default literal not =L, where =L is the complement of L with respect to
explicit negation.

The semi-normal version of a program introduces a new anti-monotonic oper-
ator: I'p, (S). Below we use I'(S) to denote I'p(S), and I's(S) to denote I'p,(S).

Theorem 18. [ADP95] The operator I'ls is monotonic, for arbitrary sets of
literals.

Consequently every program has a least fixpoint of I'Ts. This defines the
semantics for paraconsistent logic programs. It also ensures that the semantics
is well-defined, i.e. assigns meaning to every extended logic program.

Definition 19. [ADP95] Let P be an extended logic program and T a fixpoint
of I'Ts, then T Unot (Hp — I'sT) is a paraconsistent partial stable model of P
(PSMp). The paraconsistent well-founded model of P, W FM,(P), is the least
PSM, under set inclusion order.

To enforce consistency on the paraconsistent partial stable models Alferes
and Pereira need only insist the extra condition T' C IyT be verified, which
succintly guarantees that for no objective literal, L and not L simultaneously
hold. So it automatically rejects contradictory models where L and —L are both
true because, by coherence, they would also entail not L and not =L. Therefore
WFSX, generalizes WFSX, as it does not impose this additional condition. Fur-
thermore, for normal logic programs, it coincides with WFS, which is definable
as the least fixpoint of I'T.

Ezample 6. Let P be the extended logic program:
a < not b. b + not c. b < not —c. c. —c. d < not d.

The sequence for determining the least fixpoint of I'Ty of program P is:

Iy = {}

L =TI'T{} = I'{a,b,c,—c,d} = {c,c}
I, = I'ly{c,—c} = I'{a,d} = {a,b,c,~c}
13:[‘1—‘5{(]/7b=c7—|c}:['{d} :IZ

Thus WFMp,(P) = {a,b, ¢, ¢, not a,not —a,not b,not —=b,not ¢, not —c,not —d}.

One of the distinguishing features of WFSX,, is that it does not enforce default
consistency, i.e. a and not a can be simultaneously true, in contradistinction to
all other semantics. In the above example this is the case for literals a, b, ¢ and
=¢. It is due to the adoption of the coherence principle: for instance, because a
and —a hold then, by coherence, not —a and not a must hold too.

5 Disjunctive Logic Programs

Recently, considerable interest and research effort'? has been given to the prob-
lem of finding a suitable extension of the logic programming paradigm beyond
the class of normal logic programs. In particular, considerable work has been
devoted to the problem of defining natural extensions of logic programming that
ensure a proper treatment of disjunctive information . However, the problem of
finding a suitable semantics for disjunctive programs and databases proved to be
far more complex than it is in the case of normal, non-disjunctive programs'?.

There are good reasons justifying this extensive research effort. In natural
discourse as well as in various programming applications we often use disjunctive
statements. One particular example of such a situation is reasoning by cases.
Other obvious examples include:

— Null values: for instance, an age “around 30” can be 28, 29, 30, 31, or 32;

— Legal rules: the judge always has some freedom for his decision, otherwise
he/she would not be needed; so laws cannot have unique models;

— Diagnosis: only at the end of a fault diagnosis do we know exactly which part
of some machine was faulty but while we are searching, different possibilities
exist;

— Biological inheritance: if the parents have blood groups A and 0, the child
must also have one of these two blood groups (example from [Lip79]);

— Natural language understanding: here there are many possibilities for ambi-
guity and they are represented most naturally by multiple intended models;

— Conflicts in multiple inheritance: if we want to keep as much information
as possible, we should assume disjunction of the inherited values [BL93].

As [EGM93, EG93, EGM94] have shown, formalisms promoting disjunctive rea-
soning are more ezpressive and they are also more natural to use since they
permit direct translation of disjunctive statements from natural language and
from informal specifications. The additional expressive power of disjunctive logic
programs significantly simplifies the problem of translation of non-monotonic
formalisms into logic programs, and, consequently, facilitates using logic pro-
gramming as an inference engine for non-monotonic reasoning. Moreover, exten-
sive recent work devoted to theoretic and algorithmic foundations of disjunctive

12 Tt suffices just to mention several recent workshops on Eztensions of Logic Program-
ming specifically devoted to this subject ([DPP95, DHSH96, Wol94, DLMW96]).

'3 The book by Minker et. al. [LMR92] provides a detailed and well-organized account
of the extensive research effort in this area. See also [Dix95¢, Min93].

programming, suggests that there are good prospects for extending the logic
programming paradigm to disjunctive programs.

What then should be viewed as an “extension of logic programming”? We
believe that in order to demonstrate that a class of programs can be justifiably
called an eztension of logic programs one should be able to argue that:

— the proposed syntaz of such programs resembles the syntax of logic pro-
grams but it applies to a significantly broader class of programs, which in-
cludes the class of disjunctive logic programs as well as the class of logic
programs with “classical” (or symmetric) negation;

— the proposed semantics of such programs constitutes an intuitively natural
extension of the semantics of normal logic programs, which, when restricted
to normal logic programs, coincides with one of the well-established seman-
tics of normal logic programs;

— there exists a reasonably simple procedural mechanism allowing, at least in
principle, to compute the semantics'.

It would be also desirable for the proposed class of programs and their semantics
to be a special case of a more general non-monotonic formalism which would
clearly link it to other well-established non-monotonic formalisms.

Several approaches to the semantics of disjunctive logic programs have been
recently proposed and studied in the literature, e.g. [LMR92, Ros92, RTS8,
GL91], [Dix92b],

[BD94, BD97b, BD97a, BD96a, EG93, EGM93, BLM90, Prz91b, Prz95b],
and [Prz95a, BDNP97, BDP96]. Since a more thorough discussion of disjunctive
programming is beyond the scope of this brief introduction, we refer the reader
to those papers, as well as to papers published in this volume, for more details.

6 Implementations

In this section we give a rough overview of what semantics have been imple-
mented so far and where they are available.

It should be noted, that the first-order versions of all semantics investigated
here are undecidable. Nevertheless it is an important task to have running sys-
tems that can handle programs with free variables, and are Goal-Oriented. To
ensure completeness (or termination) we need then additional requirements like
allowedness (to prevent floundering), and no function symbols.

Although these restrictions ensure the Herbrand-universe to be finite (and
thus we are really considering a propositional theory) we think that such a system
has great advantages over a system that can just handle ground programs. For

14 Observe that while such a mechanism cannot even in principle be efficient, due to
the inherent NP-completeness of the problem of computing answers to just positive
disjunctive programs, it can be efficient when restricted to specific subclasses of
programs and queries and it can allow efficient approximation methods for broader
classes of programs.

a language L, the fully instantiated program can be quite large and difficult to
handle effectively.

The goal-orientedness (or Relevance as mentioned above) is also important
after all this was one reason for the success of SLD-Resolution. As noted
above, such a goal-oriented approach is not possible for the stable semantics.

There are various commercial PROLOG-systems that perform variants of
SLDNF-Resolution. But in what follows, we concentrate in the following on
extensions of semantics introduced in this paper.

Currently, a library of implemented logic programming systems and interest-
ing test-cases for such systems is collected as a project of the artificial intelligence
group at Koblenz. We refer to <http://www.uni-koblenz.de/ag-ki/LP/>.

6.1 Non-Disjunctive Semantics

There are many theoretical papers that deal with the problem of implementation
([BD93, KSS91, DN95, FLMS93]) but only a few running systems. The problem
of handling and representing ground programs given a non-ground one has also
been addressed [KNS94, KNS95, EGLS96].

In [BNNS93, BNNS94] the authors showed how the problem of computing
stable models can be transformed to an Integer-Linear Programming Problem.
This has been extended in [DM93] to disjunctive programs.

Inoue et. al. show in [IKH92] how to compute stable models by transforming
programs into propositional theories and then using a model-generation theorem
prover.

In Bern, Switzerland, a group around G. Jéger is building a non-monotonic
reasoning system which incorporates various monotonic and non-monotonic log-
ics. We refer to http://lwbwww.unibe.ch:8080/LWBinfo.html.

Extended logic programs under the well-founded semantics are considered by
Pereira and his colleagues: [PAA93, ADP95, AP96]. The REVISE system, which
deals with contradiction removal pro paraconsistent programs in this semantics,
can be found in <http://www.uni-koblenz.de/ag-ki/LP/> too.

[NS96] describes an implementation of WFS and STABLE with a special eye
on complexity.

The most advanced system has been implemented by David Warren and
his group in Stony Brook based on OLDT-algorithm of [TS86]. They first de-
veloped a meta-interpreter (SLG, see [CW96]) in PROLOG and then directly
modified the WAM for a direct implementation of WFS (XSB). They use tabling-
methods and a mixture of top-Down and bottom-up evaluation to detect loops.
Their system is complete and terminating for non-floundering DATALOG. It
also works for general programs but termination is not guaranteed. This system
is described in [CW93, CSW95, CW95], and is available by anonymous ftp from
ftp.cs.sunysb.edu/pub/XSB/.

6.2 Disjunctive Semantics

There are theoretical descriptions of implementations that have not yet been
implemented: [FM95, MR95, CL95].

Here are some implemented systems. Inoue et. al. show in [IKH92] how to
compute stable models for extended disjunctive programs in a bottom-up-fashion
using a theorem prover. The approach of Bell et. al. ((NNS91]) was used by
Dix/Miiller [DM93, DM92, Miil92] to implement versions of the stationary se-
mantics of Przymusinski ([Prz91c].

Brass/Dix have implemented both D-WFS and DSTABLE for allowed DAT-
ALOG programs ([BD95]'%). An implementation of static semantics ([Prz95b])
is described in [BDP96]'6.

Seipel has implemented in his DisLog-system various (modified versions of)
semantics of Minker and his group. His system is publicly available at the URL
http://sunwww.informatik.uni-tuebingen.de:8080/dislog/dislog.tar.Z.

Finally, there is the DisLoP project undertaken by the Artificial Intelli-
gence Research Group at the University of Koblenz and headed by J. Dix and
U. Furbach ([DF96, ADN97]). This project aims at extending certain theorem
proving concepts, such as restart model elimination [BF94] and hyper tableaux
[BFN96] calculi, for disjunctive logic programming. Information on the Dis-
LoP project and related publications can be obtained from the WWW page
<http://www.uni-koblenz.de/ag-ki/DLP/>.

Acknowledgements

We wish to thank our colleagues José Jilio Alferes, Stefan Brass, Gerhard
Brewka, Carlos Damaésio, and Halina Przymusinska for our use of material
from joint publications. Luis Moniz Pereira acknowledges also the support of
JNICT /PRAXIS and its funding of the project MENTAL (#2/2.1/TIT/1593/95).

References

[AB91] K. Apt and M. Bezem. Acyclic programs. New Generation Computing,
29(3):335 363, 1991.

[AB94] Krysztof R. Apt and Roland N. Bol. Logic Programming and Negation: A
Survey. Journal of Logic Programming, 19-20:9 71, 1994.

[ABW88] K. Apt, H. Blair, and A. Walker. Towards a theory of declarative knowl-
edge. In J. Minker, editor, Foundations of Deductive Databases and Logic
Programming, pages 89 142. Morgan Kaufmann, 1988.

[ADN97] Chandrabose Aravindan, Jirgen Dix, and Ilkka Niemeld. The DisLoP-
project. Technical Report TR 1/97, University of Koblenz, Department of
Computer Science, Rheinau 1, January 1997.

!5 ftp://ftp.informatik.uni-hannover.de/software/index.html

16 ftp://ftp.informatik.uni-hannover.de/software/static/static.html

[ADPY5]

[AP96]

[APPY6]

[BD93]

[BDY4]

[BDY5]

[BD96a]

[BDI6D)

[BD97a]

[BD97h]

[BDK97]

[BDNP97]

J. J. Alferes, C. V. Damésio, and L. M. Pereira. A logic programming
system for non-monotonic reasoning. Journal of Automated Reasoning,
14(1):93 147, 1995.

Jose Julio Alferes and Luiz Moniz Pereira, editors. Reasoning with Logic
Programming, LNAT 1111, Berlin, 1996. Springer.

J. J. Alferes, L. M. Pereira, and T. Przymusinski. “Classical” negation
in non monotonic reasoning and logic programming. In H. Kautz and
B. Selman, editors, 4th Int. Symposium on Artificial Intelligence and Math-
ematics, Fort Lauderdale, USA, January 1996. Florida Atlantic University.
Roland N. Bol and L. Degerstedt. Tabulated resolution for well-founded
semantics. In Proc. Int. Logic Programming Symposium’93, Cambridge,
Mass., 1993. MIT Press.

Stefan Brass and Jirgen Dix. A disjunctive semantics based on unfold-
ing and bottom-up evaluation. In Bernd Wolfinger, editor, Innovationen
bei Rechen- und Kommunikationssystemen, (IFIP '94-Congress, Workshop
FG2: Disjunctive Logic Programming and Disjunctive Databases), pages
83 91, Berlin, 1994. Springer.

Stefan Brass and Jiirgen Dix. A General Approach to Bottom-Up
Computation of Disjunctive Semantics. In J. Dix, L. Pereira, and
T. Przymusinski, editors, Nonmonotonic Extensions of Logic Programming,
LNAI 927, pages 127 155. Springer, Berlin, 1995.

Stefan Brass and Jirgen Dix. Characterizing D-WFS: Confluence and
Iterated GCWA. In L.M. Pereira J.J. Alferes and E. Orlowska, editors,
Logics in Artificial Intelligence (JELIA ’96), LNCS 1126, pages 268 283.
Springer, 1996. (Extended version will appear in the Journal of Automated
Reasoning in 1997.).

Gerhard Brewka and Jirgen Dix. Knowledge representation with logic pro-
grams. Technical report, Tutorial Notes of the 12th European Conference
on Artificial Intelligence (ECAI ’96), 1996. Also appeared as Technical
Report 15/96, Dept. of CS of the University of Koblenz-Landau. Will ap-
pear as Chapter 6 in Handbook of Philosophical Logic, 2nd edition (1998),
Volume 6, Methodologies.

Stefan Brass and Jiirgen Dix. Characterizations of the Disjunctive Stable
Semantics by Partial Evaluation. Journal of Logic Programming, forth-
coming, 1997. (Extended abstract appeared in: Characterizations of the
Stable Semantics by Partial Evaluation LPNMR, Proceedings of the Third
International Conference, Kentucky, pages 85 98, 1995. Springer.).
Stefan Brass and Jirgen Dix. Semantics of Disjunctive Logic Programs
Based on Partial Evaluation. Journal of Logic Programming, accepted for
publication, 1997. (Extended abstract appeared in: Disjunctive Semantics
Based upon Partial and Bottom-Up Evaluation, Proceedings of the 12-th
International Logic Programming Conference, Tokyo, pages 199-213, 1995.
MIT Press.).

Gerd Brewka, Jiirgen Dix, and Kurt Konolige. Nonmonotonic Reasoning:
An Overview. CSLI Lecture Notes 73. CSLI Publications, Stanford, CA,
1997.

Stefan Brass, Jiirgen Dix, Ilkka Niemeld, and Teodor. C. Przymusinski.
Comparison and Efficient Computation of the Static and the Disjunctive
WFS. Technical report, University of Koblenz, Department of Computer

[BDP96]

[BFS8S]

[BF94]

[BFN96]

[BLO3]

[BLM90]

[BNNS93]

[BNNS94]

[Bry89]

[BS91]

[CKPR73]

[CLY5]

Science, Rheinau 1, January 1997. submitted to a conference. Preliminary
version appeared as Technical Report 2/96.

Stefan Brass, Jiirgen Dix, and Teodor. C. Przymusinski. Super Logic Pro-
grams. In L. C. Aiello, J. Doyle, and S. C. Shapiro, editors, Principles of
Knowledge Representation and Reasoning: Proceedings of the Fifth Inter-
national Conference (KR '96), pages 529 541. San Francisco, CA, Morgan
Kaufmann, 1996.

N. Bidoit and C. Froidevaux. General logic databases and programs: de-
fault logic semantics and stratification. Journal of Information and Com-
putation, 1988.

P. Baumgartner and U. Furbach. Model Elimination without Contrapos-
itives and its Application to PTTP. Journal of Automated Reasoning,
13:339 359, 1994. Short version in: Proceedings of CADE-12, Springer
LNAIT 814, 1994, pp 87-101.

Peter Baumgartner, Ulrich Furbach, and Ilkka Niemelad. Hyper tableaux.
In L.M. Pereira J.J. Alferes and E. Orlowska, editors, Logics in Artificial
Intelligence (JELIA ’96), LNCS 1126, pages 1-17. Springer, 1996.

Stefan Brass and Udo W. Lipeck. Bottom-up query evaluation with
partially ordered defaults. In Stefano Ceri, Katsumi Tanaka, and
Shalom Tsur, editors, Deductive and Object-Oriented Databases, Third
Int. Conf., (DOOD’93), number 760 in LNCS, pages 253 266, Berlin, 1993.
Springer.

Chitta Baral, Jorge Lobo, and Jack Minker. Generalized Disjunctive Well-
founded Semantics for Logic Programs: Procedural Semantics. In Z.W.
Ras, M. Zemankova, and M.L Emrich, editors, Proceedings of the 5th Int.
Symp. on Methodologies for Intelligent Systems, Knozville, TN, October
1990, pages 456 464. North-Holland, 1990.

Colin Bell, Anil Nerode, Raymond T. Ng, and V. S. Subrahmanian. Imple-
menting Stable Semantics by Linear Programming. In Luis Moniz Pereira
and Anil Nerode, editors, Logic Programming and Non-Monotonic Rea-
soning, Proceedings of the Second International Workshop, pages 23 42,
Cambridge, Mass., July 1993. Lisbon, MIT Press.

Colin Bell, Anil Nerode, Raymond T. Ng, and V. S. Subrahmanian. Mixed
Integer Programming Methods for Computing Non-Monotonic Deductive
Databases. Journal of the ACM, 41(6):1178-1215, November 1994.
Francois Bry. Logic programming as constructivism: A formaliza-
tion and its application to databases. In Proc. of the Eighth ACM
SIGACT-SIGMOD-SIGART Symposium on Principles of Database Sys-
tems (PODS’89), pages 34-50, 1989.

C. Baral and V. S. Subrahmanian. Dualities between alternative seman-
tics for logic programming and nonmonotonic reasoning. In A. Nerode,
W. Marek, and V. S. Subrahmanian, editors, LP & NMR, pages 69-86.
MIT Press, 1991.

A. Colmerauer, H. Kanoui, R. Pasero, and P. Roussel. Un systéme de com-
munication homme-machine en francais. Technical report, Groupe de In-
telligence Artificielle Universite de Aix-Marseille II, 1973.

Stefania Costantini and Gaetano A. Lanzarone. Static Semantics as
Program Transformation and Well-founded Computation. In J. Dix,
L. Pereira, and T. Przymusinski, editors, Nonmonotonic Eztensions of
Logic Programming, LNATI 927, pages 156-180. Springer, Berlin, 1995.

[Cla78]

[CSW95]

[CW93]

[CW95]

[CW96]
[Dam96]
[DF96]
[DFN97]
[DHSHY6]

[Dix91]

[Dix92al

[Dix92b]

[Dix95a]

[Dix95b]

[Dix95¢]

Keith L. Clark. Negation as Failure. In H. Gallaire and J. Minker, editors,
Logic and Data-Bases, pages 293-322. Plenum, New York, 1978.

Weidong Chen, Terrance Swift, and David S. Warren. Efficient Top-Down
Computation of Queries under the Well-Founded Semantics. Journal of
Logic Programming, 24(3):219-245, 1995.

Weidong Chen and David S. Warren. A Goal Oriented Approach to
Computing The Well-founded Semantics. Journal of Logic Programming,
17:279-300, 1993.

Weidong Chen and David S. Warren. Computing of Stable Models and its
Integration with Logical Query Processing. IEEE Transactions on Knowl-
edge and Data Engineering, 17:279-300, 1995.

Weidong Chen and David S. Warren. Tabled Evaluation with Delaying for
General Logic Programs. Journal of the ACM, 43(1):20 74, January 1996.
C. V. Damasio. Paraconsistent Extended Logic Programming with Con-
straints. PhD thesis, Universidade Nova de Lishoa, October 1996.

J. Dix and U. Furbach. The DFG-Project DisLoP on Disjunctive Logic
Programming. Computational Logic, 2:839-90, 1996.

J. Dix, U. Furbach, and A. Nerode, editors. Logic Programming and Non-
monotonic Reasoning, LNAI to appear, Berlin, 1997. Springer.

Roy Dyckhoff, Heinrich Herre, and Peter Schroeder-Heister, editors. Ez-
tensions of Logic Programming, LNAI 1050, Berlin, 1996. Springer.

J. Dix. Classifying semantics of logic programs. In A. Nerode, W. Marek,
and V. S. Subrahmanian, editors, LP é NMR, pages 166-180. MIT Press,
1991.

J. Dix. A framework for representing and characterizing semantics of logic
programs. In B. Nebel, C. Rich, and W. Swartout, editors, 3rd Int. Conf.
on Principles of Knowledge Representation and Reasoning. Morgan Kauf-
mann, 1992.

Jiirgen Dix. Classifying Semantics of Disjunctive Logic Programs. In K. R.
Apt, editor, LOGIC PROGRAMMING: Proceedings of the 1992 Joint In-
ternational Conference and Symposium, pages 798 812, Cambridge, Mass.,
November 1992. MIT Press.

Jirgen Dix. A Classification-Theory of Semantics of Normal Logic Pro-
grams: 1. Strong Properties. Fundamenta Informaticae, XXI11(3):227 255,
1995.

Jirgen Dix. A Classification-Theory of Semantics of Normal Logic Pro-
grams: II. Weak Properties. Fundamenta Informaticae, XXI1(3):257 288,
1995.

Jirgen Dix. Semantics of Logic Programs: Their Intuitions and Formal
Properties. An Overview. In Andre Fuhrmann and Hans Rott, editors,
Logic, Action and Information — Essays on Logic in Philosophy and Arti-
ficial Intelligence, pages 241-327. DeGruyter, 1995.

[DLMW96] Jirgen Dix, Donald Loveland, Jack Minker, and David. S. Warren. Dis-

[DM92]

junctive Logic Programming and databases: Nonmonotonic Aspects. Tech-
nical Report Dagstuhl Seminar Report 150, IBFI GmbH, Schloff Dagstuhl,
1996.

Jirgen Dix and Martin Miiller. Abstract Properties and Computational
Complexity of Semantics for Disjunctive Logic Programs. In Proc. of the
Workshop W1, Structural Complezrity and Recursion-theoretic Methods in
Logic Programming, following the JICSLP ’92, pages 15-28. H. Blair and

[DM93]

[DN95]

[DPPY5]

[Dun91]

[EG93]

[EGLS96]

[EGMO3]

[EGM94]

[EK76]
[Fit85]

[FLMS93]

[FM95]

[Gel87]

[Gel89a]

[Gel89D)]

[GLSS]

W. Marek and A. Nerode and J. Remmel, November 1992. also available as
Technical Report 13/93, University of Koblenz, Department of Computer
Science.

Jirgen Dix and Martin Miiller. Implementing Semantics for Disjunctive
Logic Programs Using Fringes and Abstract Properties. In Luis Moniz
Pereira and Anil Nerode, editors, Logic Programming and Non-Monotonic
Reasoning, Proceedings of the Second International Workshop, pages 43-59,
Cambridge, Mass., July 1993. Lisbon, MIT Press.

Lars Degerstedt and Ulf Nilsson. Magic Computation of Well-founded
Semantics. In J. Dix, L. Pereira, and T. Przymusinski, editors, Non-
monotonic Extensions of Logic Programming, LNAI 927 pages 181-204.
Springer, Berlin, 1995.

J. Dix, L. Pereira, and T. Przymusinski, editors. Non-Monotonic Ezten-
sions of Logic Programming, LNAI 927, Berlin, 1995. Springer.

P. M. Dung. Negation as hypotheses: An abductive framework for logic
programming. In K. Furukawa, editor, 8th Int. Conf. on LP, pages 3 17.
MIT Press, 1991.

Thomas Eiter and Georg Gottlob. Propositional Circumscription and Ex-
tended Closed World Reasoning are ITY -complete. Theoretical Computer
Science, 144(2):231-245, Addendum: vol. 118, p. 315, 1993, 1993.

T. Eiter, G. Gottlob, J. Lu, and V. S. Subrahmanian. Computing Non-
Ground Representations of Stable Models. Technical report, University of
Maryland, 1996.

Thomas Eiter, Georg Gottlob, and Heikki Mannila. Expressive Power and
Complexity of Disjunctive DATALOG. In Proceedings of Workshop on
Logic Programming with Incomplete Information, Vancouver Oct. 1993,
following ILPS’ 93, pages 59 79, 1993.

Thomas Eiter, Georg Gottlob, and Heikki Mannila. Adding disjunction
to datalog. In Proc. of the Thirteenth ACM SIGACT-SIGMOD-SIGART
Symposium on Principles of Database Systems (PODS’94), pages 267 278,
1994.

M. Van Emden and R. Kowalski. The semantics of predicate logic as a
programming language. Journal of ACM, 4(23):733 742, 1976.

M. Fitting. A Kripke-Kleene semauntics for logic programs. Journal of LP,
2(4):295-312, 1985.

J. A. Fernandez, J. Lobo, J. Minker, and V.S. Subrahmanian. Disjunctive
LP + Integrity Constraints = Stable Model Semantics. Annals of Mathe-
matics and Artificial Intelligence, 8(3-4), 1993.

J. A. Fernandez and J. Minker. Bottom-Up Computation of Perfect Mod-
els for Disjunctive Theories. Journal of Logic Programming, 25(1):33 51,
1995.

M. Gelfond. On stratified autoepistemic theories. In AAAI’87, pages 207—
211. Morgan Kaufmann, 1987.

A. Van Gelder. The alternating fixpoint of logic programs with negation.
In 8th Symposium on Principles of Database Systems. ACM SIGACT-
SIGMOD, 1989.

A. Van Gelder. Negation as failure using tight derivations for general logic
programs. Journal of LP, 6(1):109-133, 1989.

M. Gelfond and V. Lifschitz. The stable model semantics for logic pro-
gramming. In R. Kowalski and K. A. Bowen, editors, 5th Int. Conf. on

[GL8Y]

[GL91]

[GL92]

[GMNS84]
[GRS91]

[HMS81]
[TKH92]

[Ino91]

[KK71]

[KNS94]

[KNS95]

[Kow74]
[Kow79]
[Kow89]

[Kow90]

[Kow92]
[KS90]

[KSS91]

LP, pages 1070-1080. MIT Press, 1988.

Michael Gelfond and Vladimir Lifschitz. Compiling Circumscriptive The-
ories into Logic Programs. In Reinfrank, de Kleer, Ginsberg, and Sande-
wall; editors, Non-Monotonic Reasoning, LNAI 346, pages 74-99, Berlin,
January 1989. Springer.

Michael Gelfond and Vladimir Lifschitz. Classical Negation in Logic Pro-
grams and Disjunctive Databases. New Generation Computing, 9:365-387,
1991. (Extended abstract appeared in: Logic Programs with Classical
Negation. Proceedings of the 7-th International Logic Programming Con-
ference, Jerusalem, pages 579-597, 1990. MIT Press.).

M. Gelfond and V. Lifschitz. Representing actions in extended logic pro-
grams. In K. Apt, editor, Int. Joint Conf. and Symp. on LP, pages 559 573.
MIT Press, 1992.

H. Gallaire, J. Minker, and J. Nicolas. Logic and databases: a deductive
approach. ACM Computing Surveys, 16:153 185, 1984.

A. Van Gelder, K. A. Ross, and J. S. Schlipf. The well-founded semantics
for general logic programs. Journal of the ACM, 38(3):620-650, 1991.
HMSO. British Nationality Act. Her Majesty’s Stationery Office, 1981.
Katsumi Inoue, M. Koshimura, and R. Hasegawa. Embedding negation-as-
failure into a model generation theorem prover. In Deepak Kapur, editor,
Automated Deduction CADE-11, number 607 in LNAI, Berlin, 1992.
Springer.

K. Inoue. Extended logic programs with default assumptions. In Koichi
Furukawa, editor, 8th Int. Conf. on LP, pages 490 504, Cambridge, Mass.,
1991. MIT Press.

R. Kowalski and D. Khuener. Linear resolution with selection function.
Artificial Intelligence, 5:227 260, 1971.

Vadim Kagan, Anil Nerode, and V. S. Subrahmanian. Computing Definite
Logic Programs by Partial Instantiation. Annals of Pure and Applied Logic,
67:161 182, 1994.

Vadim Kagan, Anil Nerode, and V. S. Subrahmanian. Computing Minimal
Models by Partial Instantiation. Theoretical Computer Science, 155:157—
177, 1995.

R.A. Kowalski. Predicate logic as a programming language. In Proceeed-
ings IFIP’ 7/, pages 569-574. North Holland Publishing Company, 1974.
R. Kowalski. Algorithm = logic + control. Communications of the ACM,
22:424 436, 1979.

R. Kowalski. The treatment of negation in logic programs for representing
legislation. In 2nd Int. Conf. on AI and Law, pages 11-15, 1989.

R. Kowalski. Problems and promises of computational logic. In John W.
Lloyd, editor, Computational Logic, Basic Research Series, pages 1-36,
Berlin, 1990. Springer.

R. Kowalski. Legislation as logic programs. In Logic Programming in Ac-
tion, pages 203-230. Springer—Verlag, 1992.

R. Kowalski and F. Sadri. Logic programs with exceptions. In Warren and
Szeredi, editors, 7th Int. Conf. on LP, Cambridge, Mass., 1990. MIT Press.
David B. Kemp, Peter J. Stuckey, and Divesh Srivastava. Magic Sets and
Bottom-Up Evaluation of Well-Founded Models. In Vijay Saraswat and
Kazunori Ueda, editors, Proceedings of the 1991 Int. Symposium on Logic
Programming, pages 337-351. MIT, June 1991.

[Kung7]
[Kun90]
[Lev&6]
[Lip79]
[L1087]
[LMR92]
[LT85]
[LT86]
[Ming8]
[Min93]

[Min96]

[MNT95]

[Mon92]

[Moo85]

[MR95]

[MT91]

[Miil92]
[Neld9]
[NMS91]

[NNSO1]

[NS96]

Kenneth Kunen. Negation in Logic Programming. Journal of Logic Pro-
grammang, 4:289-308, 1987.

Kenneth Kunen. Some Remarks on the completed Database. Fundamenta
Informaticae, XI11:35-49, 1990.

H. Levesque. Making believers out of computers. Artificial Intelligence,
30:81 107, 1986.

W. Lipski, Jr. On semantic issues connected with incomplete information
databases. ACM Transactions on Database Systems, 4:262—296, 1979.
John W. Lloyd. Foundations of Logic Programming. Springer, Berlin,
1987. 2nd edition.

Jorge Lobo, Jack Minker, and Arcot Rajasekar. Foundations of Disjunctive
Logic Programming. MIT-Press, 1992.

John W. Lloyd and Rodney W. Topor. A basis for deductive database
systems. The Journal of Logic Programming, 2:93-109, 1985.

John W. Lloyd and Rodney W. Topor. A basis for deductive database
systems II. The Journal of Logic Programmaing, 3:55 67, 1986.

Jack Minker. Foundations of Deductive Databases. Morgan Kaufmann, 95
First Street, Los Altos, CA 94022, 1st edition, 1988.

Jack Minker. An Overview of Nonmonotonic Reasoning and Logic Pro-
gramming. Journal of Logic Programming, Special Issue, 17, 1993.

Jack Minker. Logic and databases: A 20 year retrospective. In Dino Pe-
dreschi and Carlo Zaniolo, editors, Proceedings of the International Work-
shop on Logic in Databases (LID), LNCS 1154, pages 3—58. Springer,
Berlin, 1996.

W. Marek, A. Nerode, and M. Truszczynski, editors. Logic Programming
and Nonmonotonic Reasoning, LNAI 928 Berlin, 1995. Springer.

L. Monteiro. Notes on the negation in logic programs. Technical report,
Dep. of Computer Science, Univerdade Nova de Lisboa, 1992. Course
Notes, 3rd Advanced School on AI, Azores, Portugal, 1992.

R. Moore. Semantics considerations on nonmonotonic logic. Artificial In-
telligence, 25:75 94, 1985.

Jack Minker and Carolina Ruiz. Computing stable and partial stable
models of extended disjunctive logic programs. In J. Dix, L. Pereira, and
T. Przymusinski, editors, Nonmonotonic Extensions of Logic Programming,
LNAT 927, pages 205-229. Springer, Berlin, 1995.

W. Marek and M. Truszczynski. Autoepistemic logics. Journal of the
ACM, 38(3):588 619, 1991.

Martin Miiller. Examples and Run-Time Data from KORF, 1992.

D. Nelson. Constructible falsity. JSL, 14:16—26, 1949.

A. Nerode, W. Marek, and V. S. Subrahmanian, editors. Logic Program-
ming and Non-monotonic Reasoning: Proceedings of the First Int. Ws.,
Washington D.C.; USA; 1991. The MIT Press.

Anil Nerode, Raymond T. Ng, and V.S. Subrahmanian. Computing Cir-
cumscriptive Deductive Databases. CS-TR 91-66, Computer Science Dept.,
Univ. Maryland, University of Maryland, College Park, Maryland, 20742,
USA, December 1991.

Tlkka Niemeld and Patrik Simons. Efficient implementation of the well-
founded and stable model semantics. In M. Maher, editor, Proceedings of
the Joint International Conference and Symposium on Logic Programming,
pages 289-303, Bonn, Germany, September 1996. The MIT Press.

[PA92]

[PAA91a]

[PAA91D]

[PAA9IC]

[PAA92]

[PAA93]

[PDAO3]

[PN93]

[PP8S]

[PP90]

[Prz89a]

[Prz89b]

[Prz89c]

[Prz90]

[Prz91a]

[Prz91b]

L. M. Pereira and J. J. Alferes. Well founded semantics for logic programs
with explicit negation. In B. Neumann, editor, European Conf. on Al
pages 102 106. John Wiley & Sons, 1992.

L. M. Pereira, J. J. Alferes, and J. N. Aparicio. A practical introduction to
well founded semantics. In B. Mayoh, editor, Scandinavian Conf. on AL
IOS Press, 1991.

L. M. Pereira, J. N. Aparicio, and J. J. Alferes. Counterfactual reasoning
based on revising assumptions. In Ueda and Saraswat, editors, Int. LP
Symp., pages 566 577. MIT Press, 1991.

L. M. Pereira, J. N. Aparicio, and J. J. Alferes. Nonmonotonic reasoning
with well founded semantics. In Koichi Furukawa, editor, 8th Int. Conf. on
LP, pages 475 489. MIT Press, 1991.

L. M. Pereira, J. N. Aparicio, and J. J. Alferes. Logic programming for
nonmonotonic reasoning. In Applied Logic Conf. Preproceedings by ILLC,
Amsterdam, 1992. To appear in Springer Verlag LNAIL

L. M. Pereira, J. N. Aparicio, and J. J. Alferes. Non-Monotonic Reason-
ing with Logic Programming. Journal of Logic Programming, 17:227-264,
1993.

L. M. Pereira, C. Damidsio, and J. J. Alferes. Diagnosis and debugging as
contradiction removal. In L. M. Pereira and A. Nerode, editors, 2nd Int.
Ws. on LP ¢ NMR, pages 316 330, Cambridge, Mass., 1993. MIT Press.

L. M. Pereira and A. Nerode, editors. Logic Programming and Non

monotonic Reasoning: Proceedings of the Second Int. Ws., Lisboa, Portugal,
1993. MIT Press.

H. Przymusinska and T. Przymusinski. Weakly perfect model semantics.
In R. Kowalski and K. A. Bowen, editors, 5th Int. Conf. on LP, pages
1106 1122. MIT Press, 1988.

H. Przymusinska and T. Przymusinski. Semantic issues in deductive
databases and logic programs. In R. Banerji, editor, Formal Techniques
in AL, a Sourcebook, pages 321 367. North Holland, 1990.

T. Przymusinski. Every logic program has a natural stratification and an
iterated fixed point model. In 8th Symp. on Principles of Database Systems.
ACM SIGACT-SIGMOD, 1989.

T. Przymusinski. Three valued non monotonic formalisms and logic pro-
gramming. In R. Brachman, H. Levesque, and R. Reiter, editors, st Int.
Conf. on Principles of Knowledge Representation and Reasoning, pages
341 348. Morgan Kaufmann, 1989.

Teodor Przymusinski. On the declarative and procedural Semantics of logic
Programs. Journal of Automated Reasoning, 5:167-205, 1989.

T. Przymusinski. Extended stable semantics for normal and disjunctive
programs. In Warren and Szeredi, editors, 7th Int. Conf. on LP, pages
459-477, Cambridge, Mass., 1990. MIT Press.

T. Przymusinski. Autoepistemic logic of closed beliefs and logic program-
ming. In A. Nerode, W. Marek, and V. S. Subrahmanian, editors, LP &
NMR, pages 3—20. MIT Press, 1991.

Teodor Przymusinski. Stable Semantics for Disjunctive Programs. New
Generation Computing Journal, 9:401-424, 1991. (Extended abstract ap-
peared in: Extended stable semantics for normal and disjunctive logic
programs. Proceedings of the 7-th International Logic Programming Con-
ference, Jerusalem, pages 459-477, 1990. MIT Press, Cambridge, Mass.).

[Prz91c]

[Prz95a]

[Prz95b]

[PW90]

[Rei78a]

[Rei78b]

[Rei80]

[Rei84]

[RN95]
[Ros92]

[RTSS)]

[Sak89]

[Shess]

[She90]

[ST93]

[$595]

Teodor Przymusinski. Stationary Semantics for Normal and Disjunc-
tive Logic Programs. In C. Delobel, M. Kifer, and Y. Masunaga, editors,
DOOD ’91, Proceedings of the 2nd International Conference, Berlin, De-
cember 1991. Muenchen, Springer. LNCS 566.

Teodor Przymusinski. Semantics of normal and disjunctive logic programs:
A unifying framework. In J. Dix, L. Pereira, and T. Przymusinski, editors,
Proceedings of the Workshop on Non-Monotonic Eztensions of Logic Pro-
gramming at the Eleventh International Logic Programming Conference,
ICLP’9), Santa Margherita Ligure, Italy, June 1994, pages 43 67. Springer,
1995.

Teodor Przymusinski. Static Semantics For Normal and Disjunctive Logic
Programs. Annals of Mathematics and Artificial Intelligence, 14:323 357,
1995.

D. Pearce and G. Wagner. Reasoning with negative information I: Strong
negation in logic programs. In L. Haaparanta, M. Kusch, and I. Niiniluoto,
editors, Language, Knowledge and Intentionality, pages 430-453. Acta
Philosophica Fennica 49, 1990.

R. Reiter. On closed world data bases. In H. Gallaire and J. Minker,
editors, Logic and DataBases, pages 55 76. Plenum Press, 1978.
Raymond Reiter. On closed world data bases. In Hervé Gallaire and
Jack Minker, editors, Logic and Data Bases, pages 55 76, New York, 1978.
Plenum.

Raymond Reiter. A Logic for Default-Reasoning. Artificial Intelligence,
13:81 132, 1980.

R. Reiter. Towards a logical reconstruction of relational database theory.
In M. Brodie and J. Mylopoulos, editors, On Conceptual Modelling, pages
191 233. Springer Verlag, 1984.

Stuart Russel and Peter Norvig. Artificial Intelligence A Modern Ap-
proach. Prentice Hall, New Jersey (07458, 1995.

Kenneth A. Ross. A procedural semantics for well-founded negation in
logic programs. Journal of Logic Programming, 13:1 22, 1992.

Kenneth A. Ross and Rodney A. Topor. Inferring negative Information
from disjunctive Databases. Journal of Automated Reasoning, 4:397-424,
1988.

Chiaki Sakama. Possible Model Semantics for Disjunctive Databases. In
Won Kim, Jean-Marie Nicolas, and Shojiro Nishio, editors, Deductive and
Object-Oriented Databases, Proceedings of the First International Confer-
ence (DOOD8Y9), pages 1055-1060, Kyoto, Japan, 1989. North-Holland
Publ.Co.

John C. Shepherdson. Negation in Logic Programming. In Jack Minker,
editor, Foundations of Deductive Databases, chapter 1, pages 19-88. Mor-
gan Kaufmann, 1988.

J. Shepherdson. Negation as failure, completion and stratification. In
Handbook of AI and LP, 1990.

Chiaki Sakama and Katsumi Inoue. Negation in Disjunctive Logic Pro-
grams. In D. Warren and Peter Szeredi, editors, Proceedings of the 10th
Int. Conf. on Logic Programming, Budapest, Cambridge, Mass., July 1993.
MIT Press.

Chiaki Sakama and Hirohisa Seki. Partial Deduction of Disjunctive Logic
Programs: A Declarative Approach. In Logic Program Synthesis and Trans-

[TS86]

[Wag91]

[Wol94]

[WPP77]

formation — Meta Programming in Logic, LNCS 883, pages 170-182, Berlin,
1995. Springer. Extended version to appear in Journal of Logic Program-
ming.

H. Tamaki and T. Sato. OLD Resolution with Tabulation. In Proceed-
ings of the Third International Conference on Logic Programming, London,
LNALI, pages 84 98, Berlin, June 1986. Springer.

G. Wagner. A database needs two kinds of negation. In B. Thalheim,
J. Demetrovics, and H-D. Gerhardt, editors, Mathematical Foundations of
Database Systems, LNCS 495, pages 357 371, Berlin, 1991. Springer.
Bernd Wolfinger, editor. GI-Fachgesprdach 2: Disjunktive logische Program-
mierung und disjunktive Datenbanken, pages 51-100. Springer, Berlin,
1994.

D. H. Warren, L. M. Pereira, and F. Pereira. Prolog: The language and its
implementation compared with Lisp. In Symp. on AI and Programming
Languages, pages 109 115. ACM SIGPLAN SIGART, 1977.

This article was processed using the IATRX macro package with LLNCS style

