
Prolegomena to Logic Programming forNon{Monotonic ReasoningJ�urgen Dix1 and Lu��s Moniz Pereira2 and Teodor Przymusinski31 Dept. Computer Science, University of KoblenzRheinau 1, D-56075 Koblenz, Germanydix@mailhost.uni-koblenz.de2 Dept. Computer Science and CENTRIA, Universidade Nova de Lisboa2825 Monte da Caparica, Portugallmp@di.fct.unl.pt3 Dept. Computer Science, University of California at RiversideRiverside, CA 92521, USAteodor@cs.ucr.eduAbstract. The present prolegomena consist, as all indeed do, in a crit-ical discussion serving to introduce and interpret the extended worksthat follow in this book. As a result, the book is not a mere collectionof excellent papers in their own specialty, but provides also the basics ofthe motivation, background history, important themes, bridges to otherareas, and a common technical platform of the principal formalisms andapproaches, augmented with examples.In the introduction we whet the reader's interest in the �eld of logicprogramming and non{monotonic reasoning with the promises it o�ersand with its outstanding problems too. There follows a brief historicalbackground to logic programming, from its inception to actuality, and itsrelationship to non{monotonic formalisms, stressing its semantical andprocedural aspects.The next couple of sections provide motivating examples and an overviewof the main semantics paradigms for normal programs (stable models andwell{founded) and for extended logic programs (answer{sets, e{answer{sets, Nelson's strong negation, and well{founded semantics with pseudoand with explicit negation).A subequent section is devoted to disjunctive logic programs and itsvarious semantical proposals.To conclude, a �nal section on implementation gives pointers to availablesystems and their sites.We leave out important concerns, such as paraconsistent semantics, con-tradiction removal, and updates. Hopefully they will be included in thenext book in this series. But an extensive set of references allows thereader to delve into the specialized literature.For other recent relevant complementary overviews in this area we referto [AP96, BDK97, BD96b, Min96, Dix95c].

1 IntroductionOne of the major reasons for the success story (if one is really willing to call it asuccess story) of human beings on this planet is our ability to invent tools thathelp us improve our | otherwise often quite limited | capabilities. The inven-tion of machines that are able to do interesting things, like transporting peoplefrom one place to the other (even through the air), sending moving pictures andsounds around the globe, bringing our email to the right person, and the like,is one of the cornerstones of our culture and determines to a great degree oureveryday life.Among the most challenging tools one can think of are machines that areable to handle knowledge adequately. Building smart machines is at the heart ofArti�cial Intelligence (AI). Since such machines will need tremendous amounts ofknowledge to work properly, even in very limited environments, the investigationof techniques for representing knowledge and reasoning is highly important.In the early days of AI it was still believed that modeling general purposeproblem solving capabilites, as in Newell and Simon's famous GPS (GeneralProblem Solver) program, would be su�cient to generate intelligent behaviour.This hypothesis, however, turned out to be overly optimistic. At the end ofthe sixties people realized that an approach using available knowledge aboutnarrow domains was much more fruitful. This led to the expert systems boomwhich produced many useful application systems, expert system building tools,and expert system companies. Many of the systems are still in use and savecompanies millions of dollars per year4.Nevertheless, the simple knowledge representation and reasoning methodsunderlying the early expert systems soon turned out to be insu�cient. Most ofthe systems were built based on simple rule languages, often enhanced with adhoc approaches to model uncertainty. It became apparent that more advancedmethods to handle incompleteness, defeasible reasoning, uncertainty, causalityand the like were needed.This insight led to a tremendous increase of research on the foundationsof knowledge representation and reasoning. Theoretical research in this area hasblossomed in recent years. Many advances have been made and important resultswere obtained. The technical quality of this work is often impressive.On the other hand, most of these advanced techniques have had surprisinglylittle inuence on practical applications so far. To a certain degree this is under-standable since theoretical foundations had to be laid �rst and pioneering workwas needed. However, if we do not want research in knowledge representation toremain a theoreticians' game, more emphasis on computability and applicabilityseems to be needed. We strongly believe that the kind of research presented inthis book, that is research aiming at interesting combinations of ideas from logicprogramming and non{monotonic reasoning, and its implementation, providesan important step into this direction.4 We refer the interested reader to the recent book [RN95] which gives a very detailedand nice exposition of what has been done in AI since its very beginning until today.

Research in the area of logic programming and non-monotonic reasoningmakes a signi�cant contribution not only towards the better understanding ofrelations existing between various formalizations of non-monotonic reasoning,and, hopefully, towards the eventual discovery of deeper underlying principlesof non-monotonic reasoning and logic programming, but, perhaps more impor-tantly, towards the eventual development of relatively e�cient inference enginesbased on the techniques originating in logic programming. Needless to say, theproblem of �nding e�cient inference mechanisms, capable of modelling humancommon-sense reasoning, is one of the major research and implementation prob-lems in AI. Moreover, by incorporating the recent theoretical results, the nextqualitative leap in logic programming systems is well under way.In fact, during the last decade a truly impressive body of knowledge hasbeen accumulated, providing us with a better understanding of semantic issuesin logic programming and the nature of its relationship to non-monotonic for-malisms. New, signi�cantly improved, semantics for logic programs have beenintroduced and thoroughly investigated and their close relationship to majornon-monotonic formalisms has been established. A number of fundamental re-sults describing ways in which non-monotonic theories can be translated intologic programs have been obtained. Entirely new computational mechanismsfor the new, greatly improved, semantics have been introduced and several verypromising implementations of logic programming systems based on these seman-tics have been developed.In spite of these unquestionable successes some major problems remain:1. Standard logic programs are not su�ciently expressive for the representationof large classes of knowledge bases. In particular, the inability of logic pro-grams to deal with disjunctive information proved to be a major obstacle tousing them e�ectively in various knowledge domains, in particular, it consti-tutes a major obstacle to using logic programming as a declarative speci�ca-tion language for software engineering. The problem of extending of the logicprogramming paradigm to the class of disjunctive programs and deductivedatabases turned out to be a di�cult one, as evidenced by a large numberof papers, the book [LMR92] and several workshops ([Wol94, DLMW96])devoted to this issue. It is well known that disjunctive programs are signi�-cantly more expressive than normal programs.2. In recent years, several authors have underscored the importance of extend-ing logic programming by introducing di�erent types of negation (explicit,strong or classical negation) which proved essential for knowledge represen-tation and are indispensable for the e�ective use of integrity constraints. Thisimportant enhancement of logic programming immediately leads, however,to the new basic problem of how to deal with contradiction in such extendedlogic programs. The proper de�nition of declarative and procedural seman-tics for contradiction removal is particularly crucial in applications of logicprogramming to diagnosis, database updates, and declarative debugging.3. The existing logic programming systems su�er from an important proce-dural limitation of being unable to deal with non-ground negative queries.

This well-known phenomenon, known as the oundering problem, severelyrestricts the usefulness of logic programs for knowledge representation. Sev-eral major attempts have been made recently to deal with this problem butmuch more work is still needed.4. In spite of the unquestionable progress obtained during the last decade orso, insu�cient attention has been paid to the study of various applicationsof the new logic programming paradigm and to the actual testing and exper-imentation with the new systems in various application domains. Extensiveexperimentation will allow us to better understand and evaluate their po-tential value for knowledge representation, at the same time exposing theirpossible weaknesses and inadequacies.5. While several promising implementations of logic programming systems havebeen developed recently, much more e�ort has to be devoted to this issueduring the next several years if we are to come up with a truly practical ande�cient alternative to the currently existing logic programming paradigm.These e�orts must include implementations which are capable, among oth-ers, to deal with disjunctive information, contradiction removal and con-structive negation. More work is also needed towards the development ofobject-oriented logic programming systems.In short, the advent of low cost multiprocessor machines, impressive researchprogress of the past decade as well as signi�cant advances in logic programmingimplementation techniques now provide us with a great opportunity to bring tofruition computationally e�cient implementations of extended logic program-ming. The resulting programming system must not only ensure the increasedexpressivity and declarative clarity of the new paradigm of logic programmingbut it should also be suitable to serve as an inference engine for other non-monotonic reasoning formalisms and deductive databases and as a speci�cationlanguage for software engineering.This book is the successor of [DPP95] and the next in a series addressing suchissues. To facilitate access to the book, and to this research area, we decided toprovide here an introduction and motivation for (extended and disjunctive) logicprogramming, which is commonly used as a basis for knowledge representationand non{monotonic reasoning, and applications. Other more speci�c develop-ments, such as belief revision or updates, are deliberately left out. The readeris referred to the collection of papers in this book and the references therein forsuch topics.2 Brief historical logic programming backgroundComputational Logic arose from the work begun by logicians since the mid�fties.The desire to impart the computer with the ability to reason logically led to thedevelopment of automated theorem proving, which took up the promise of giv-ing logic to arti�cial intelligence. This approach was fostered in the 1970's byColmerauer et al. [CKPR73] and Kowalski [Kow74, Kow79] as Logic Program-ming (and brought on the de�nition and implementation of Prolog [CKPR73]).

It introduced to computer science the important concept of declarative { as op-posed to procedural { programming. Ideally, a programmer should need only tobe concerned with the declarative meaning of his program, while the proceduralaspects of program's execution are handled automatically. The Prolog languagebecame the privileged vehicle approximating this ideal. The �rst Prolog compiler[WPP77] showed that it could be a practical language and helped disseminateit worldwide.Clearly, this ideal cannot possibly be ful�lled without a precise de�nition ofproper declarative semantics of logic programs and, in particular, of the meaningof negation in logic programming. Logic programs, however, do not use classicallogical negation, but rely instead on a non-monotonic operator, often referred toas \negation by failure" or \negation by default". The non-monotonicity of thisoperator allows us to view logic programs as special non-monotonic theories, andthus makes it possible to draw from the extensive research in the area of non-monotonic reasoning and use it as guidance in the search for a suitable semanticsfor logic programs.On the other hand, while logic programs constitute only a subclass of the classof all non-monotonic theories, they are su�ciently expressive to allow formal-izations of many important problems in non-monotonic reasoning and providefertile testing grounds for new formalizations. Moreover, since logic programs ad-mit relatively e�cient computational mechanisms, they can be used as inferenceengines for non-monotonic formalisms.The development of formal foundations of logic programming began in thelate 1970s, especially with the works [EK76, Cla78, Rei78b]. Further progressin this direction was achieved in the early 1980's, leading to the appearance ofthe �rst book on the foundations of logic programming [Llo87]. The selectionof logic programming as the underlying paradigm for the Japanese Fifth Gener-ation Computer Systems Project led to the rapid proliferation of various logicprogramming languages.In parallel, starting at about 1980, non{monotonic Reasoning entered intocomputer science and began to constitute a new �eld of active research. It wasoriginally initiated because Knowledge Representation and Common-Sense Rea-soning using classical logic came to its limits. Formalisms like classical logic areinherently monotonic and they seem to be too weak and therefore inadequatefor such reasoning problems.In recent years, independently of the research in logic programming, peo-ple interested in knowledge representation and non{monotonic reasoning alsotried to de�ne declarative semantics for programs containing default or explicitnegation and even disjunctions . They de�ned various semantics by appealing to(di�erent) intuitions they had about programs.Due to logic programming's declarative nature, and amenability to implemen-tation, it quickly became a prime candidate for knowledge representation. Its ad-equateness became more apparent after the relationships established in the mid1980's between logic programs and deductive databases [Rei84, GMN84, LT85],[LT86, Min88].

The use of both logic programming and deductive databases for knowledgerepresentation is based on the so called \logical approach to knowledge repre-sentation". This approach rests on the idea of providing machines with a logicalspeci�cation of the knowledge that they possess, thus making it independent ofany particular implementation, context{free, and easy to manipulate and reasonabout.Consequently, a precise meaning (or semantics) is associated with any logicprogram in order to provide its declarative speci�cation. The performance ofany computational mechanism is then evaluated by comparing its behaviourto the speci�cation provided by the declarative semantics. Finding a suitabledeclarative semantics for logic programs has been acknowledged as one of themost important and di�cult research areas of logic programming.>From the implementational point of view, for some time now programmingin logic has been shown to be a viable proposition. As a result of the e�ort to�nd simple and e�cient theorem proving strategies, Horn clause programmingunder SLD resolution was discovered and implemented [KK71, CKPR73].However, because Horn clauses admit only positive conclusions or facts, theygive rise to a monotonic semantics, i.e. one by which previous conclusions arenever questioned in spite of additional information, and thus the number ofderived conclusions cannot decrease { hence the monotonicity.Horn clause programming augmented with the NOT operator (i.e. Prolog),under the SLDNF derivation procedure [Llo87], does allow negative conclusions;these, however, are only drawn by default (or implicitly), just in case the cor-responding positive conclusion is not forthcoming in a �nite number of steps,taking the program as it stands. This condition also prevents, by de�nition, theappearance of any and all contradictions, and so does not allow for reasoningabout contradictory information.The NOT form of negation is capable of dealing with incomplete information,by assuming false exactly what is not true in a �nite manner { hence the ClosedWorld Assumption (CWA) [Rei78a] or completion semantics given to such pro-grams [Cla78]. However, irrespective of other problems with this semantics, thereremains the issue of the proper treatment of non-terminating computations, evenfor �nite programs.To deal with the di�culties faced by the completion semantics, a spate ofsemantic proposals were set forth from the late eigthies onwards, of which thewell{founded semantics of [GRS91] is an outcome. It deals semantically withnon-terminating computations, by assigning them the truth value \unde�ned",thereby giving semantics to every program. Moreover, it enjoys a number ofdesirable structural properties[Dix92a, Dix92b, Dix91, Dix95a, Dix95b, BD96a].However, the well{founded semantics deals solely with normal programs, i.e.those with only negation by default, and thus it provides no mechanism forexplicitly declaring the falsity of literals. This can be a serious limitation. In fact,recently several authors have stressed and shown the importance of including inlogic programs a symmetric form of negation, denoted :, with respect to default

negation [APP96], for use in deductive databases, knowledge representation, andnon{monotonic reasoning[GL91, GL92, Ino91, Kow90, KS90, PW90, PAA91b, AP96], [PAA92, PDA93,Wag91, PAA91c]. This symmetric negation may assume several garbs and names(*classical, pseudo, strong, explicit) corresponding to di�erent properties anddistinct applicability. Default and symmetric negation can be related: indeedsome authors uphold the coherence principle, which stipulates the latter entailsthe former.So-called extended logic programs, those which introduce a symmetric formof negation, both in the body and conclusion of rules, have been instrumentalin bridging logic programming and non{monotonic reasoning formalisms, suchas Default Logic, Auto{Epistemic Logic, and Circumscription: non{monotonicreasoning formalisms provide elegant semantics for logic programming, in par-ticular in what regards the meaning of negation as failure (or by default); non{monotonic reasoning formalisms help one understand how logic programmingcan be used to formalize and solve several problems in AI. On the other hand,non{monotonic reasoning formalisms bene�t from the existing procedures oflogic programming; and, �nally, new problems of non{monotonic reasoning areraised and solved by logic programming.Of course, introducing symmetric negation conclusions requires being ableto deal with contradiction. Indeed, information is not only normally incompletebut contradictory to boot. Consequently, not all negation by default assumptionsmight be made, but only those not partaking of contradiction. This is tantamountto the ancient and venerable logical principle of \reductio ad absurdum": if anassumption leads to contradiction withdraw it. One major contribution of workon extended logic programming is that of tackling this issue.Whereas default negation, and the revision of believed assumptions in theface of contradiction, are the two non{monotonic reasoning mechanisms availablein logic programming, their use in combination with symmetric negation addson a qualitative representational expressivity that can capture a wide varietyof logical reasoning forms, and serve as an instrument for programming them.The application domains facilitated by extended logic programming include forexample taxonomies with exceptions and preferences, reasoning about actions,model based diagnosis, belief revision, updates, and declarative debugging.It should be noted that symmetric negation di�ers from classical negation.In particular, the principle of the excluded middle is not adopted, and so neitheris case analysis, whereby if p if q, and if p if :q, then p. Indeed, propositionsare not just true or false, exclusively. For one, they may be both true and false.Moreover, once contradiction is removed, even so a proposition and its negationmay both remain unde�ned. In fact, truth in logic programming should be takenin an auto-epistemic sense: truth is provability from an agent's knowledge, andpossibily neither a proposition nor its negation might be provable from its presentknowledge { their truth-value status' might be unde�ned for both. Hence caseanalysis is not justi�ed: p may rest unde�ned if q or :q are unde�ned.This is reasonable because the truth of q is not something that either holds

or not, inasmuch as it can refer to the agent's ability to deduce q, or some otheragent's view of q. For that matter, the supposition that either q holds or doesnot hold might be contradictory with the rest of the agent's knowledge in eithercase.Also, the procedural nature of logic programming requires that each conclu-sion be supported by some identi�able rule with a true body whose conclusion itis, not simply by alternatively applicable rules, as in case analysis. Conclusionsmust be procedurally grounded on known facts. This requirement is conduciveto a sceptical view of derived knowledge, which disallows jumping to conclusionswhen that is not called for.Next we make a short technical overview of the main results in the last15 years in the area of logic program's declarative semantics. This overview isdivided into four sections. In the �rst we review some of the most importantsemantics of normal logic programs while in the second we motivate the needof extending logic programming with a second kind of negation, and overviewrecent semantics for such extended programs. The third and forth section arevery compact and not as detailed as the previous ones. In the third section wetreat disjunctive logic programming and in the fourth section we give an overviewof implemented systems and where they can be obtained.3 Normal logic programsSeveral recent overviews of normal logic programming semantics can be found inthe literature (e.g. [She88, She90, PP90, Mon92, AB94, Dix95c, BD96b]). Here,for the sake of this text's self{su�ciency and to introduce some motivation, wedistill a brief overview of the subject. In some parts we follow closely the overviewof [PP90].The structure of this section is as follows: �rst we present the language ofnormal logic programs and give some de�nitions needed in the sequel. Then webriey review the �rst approaches to the semantics of normal programs and pointout their problems. Finally, we expound in greater detail two of the more recentand important proposals, namely stable models and well{founded semantics.3.1 LanguageBy an alphabet A of a language L we mean a (�nite or countably in�nite) dis-joint set of constants, predicate symbols, and function symbols. In addition, anyalphabet is assumed to contain a countably in�nite set of distinguished variablesymbols. A term over A is de�ned recursively as either a variable, a constantor an expression of the form f(t1; : : : ; tn); where f is a function symbol of A,and the ti are terms. An atom over A is an expression of the form p(t1; : : : ; tn);where p is a predicate symbol of A, and the tis are terms. A literal is either anatom A or its negation not A: We dub default literals those of the form not A:A term (resp. atom, literal) is called ground if it does not contain variables.The set of all ground terms (resp. atoms) of A is called the Herbrand universe(resp. base) of A: For short we use H to denote the Herbrand base of A:

A normal logic program is a �nite set of rules of the form:H L1; : : : ; Ln (n � 0)where H is an atom and each of the Lis is a literal. In conformity with thestandard convention we write rules of the form H also simply as H:A normal logic program P is called de�nite if none of its rules containsdefault literals. We assume that the alphabet A used to write a program Pconsists precisely of all the constants, and predicate and function symbols thatexplicitly appear in P: By Herbrand universe (resp. base) of P we mean theHerbrand universe (resp. base) of A:By grounded version of a normal logic program P we mean the (possiblyin�nite) set of ground rules obtained from P by substituting in all possible wayseach of the variables in P by elements of its Herbrand universe.In this work we restrict ourselves to Herbrand interpretations and models5.Thus, without loss of generality (cf. [PP90]), we coalesce a normal logic programP with its grounded version.3.2 Interpretations and modelsNext we de�ne 2 and 3{valued Herbrand interpretations and models of normallogic programs. Since non{Herbrand interpretations are beyond the scope of thiswork, in the sequel we sometimes drop the quali�cation Herbrand.De�nition 1 Two{valued interpretation. A 2{valued interpretation I of anormal logic program P is any subset of the Herbrand base H of P:Clearly, any 2{valued interpretation I can be equivalently viewed as a setT [not F 6where T = I and is the set of atoms which are true in I; and F = H � T isthe set of atoms which are false in I: These interpretations are called 2{valuedbecause in them each atom is either true or false, i.e. H = T [F:As argued in [PP90], interpretations of a given program P can be thoughtof as \possible worlds" representing possible states of our knowledge about themeaning of P: Since that knowledge is likely to be incomplete, we need the abilityto describe interpretations in which some atoms are neither true nor false butrather unde�ned, i.e. we need 3{valued interpretations:De�nition 2 Three{valued interpretation. By a 3{valued interpretation Iof a program P we mean a set T [not F5 For the subject of semantics based on non{Herbrand models, and solutions to theproblems resulting from always keeping Herbrand models see e.g. [Kun87, Prz89c,GRS91].6 Where not fa1; : : : ; ang stands for fnot a1; : : : ; not ang.

where T and F are disjoint subsets of the Herbrand base H of P .The set T (the T-part of I) contains all ground atoms true in I , the set F(the F-part of I) contains all ground atoms false in I; and the truth value of theremaining atoms is unknown (or unde�ned).It is clear that 2{valued interpretations are a special case of 3{valued ones,for which H = T [F is additionally imposed.Proposition3. Any interpretation I = T [not F can equivalently be viewed asa function I : H ! V where V = �0; 12 ; 1	, de�ned by:I(A) = 8<: 0 if not A 2 I1 if A 2 I12 otherwiseOf course, for 2{valued interpretations there is no atom A such that I(A) = 12 :Models are de�ned as usual, and based on a truth valuation function:De�nition 4 Truth valuation. If I is an interpretation, the truth valuation Îcorresponding to I is a function Î : C ! V where C is the set of all formulae ofthe language, recursively de�ned as follows:{ if A is a ground atom then Î(A) = I(A).{ if S is a formula then Î(not S) = 1� Î(S).{ if S and V are formulae then� Î((S; V)) = min(Î(S); Î(V)).� Î(V S) = 1 if Î(S) � Î(V); and 0 otherwise.De�nition 5 Three{valued model. A 3{valued interpretation I is called a3{valued model of a program P i� for every ground instance of a program ruleH B we have Î(H B) = 1.The special case of 2{valued models has the following straightforward de�-nition:De�nition 6 Two{valued model. A 2{valued interpretation I is called a 2{valued model of a program P i� for every ground instance of a program ruleH B we have Î(H B) = 1.Some orderings among interpretations and models will be useful:De�nition 7 Classical ordering. If I and J are two interpretations then wesay that I � J if I(A) � J(A) for any ground atom A. If I is a collection ofinterpretations, then an interpretation I 2 I is called minimal in I if there is nointerpretation J 2 I such that J � I and I 6= J . An interpretation I is calledleast in I if I � J for any other interpretation J 2 I. A model M of a programP is called minimal (resp. least) if it is minimal (resp. least) among all modelsof P .

De�nition 8 Fitting ordering. If I and J are two interpretations then wesay that I �F J [Fit85] i� I � J . If I is a collection of interpretations, then aninterpretation I 2 I is called F-minimal in I if there is no interpretation J 2 Isuch that J �F I and I 6= J . An interpretation I is called F-least in I if I �F Jfor any interpretation J 2 I. A model M of a program P is called F-minimal(resp. F-least) if it is F-minimal (resp. F-least) among all models of P .Note that the classical ordering is related with the amount of true atoms,whereas the Fitting ordering is related with the amount of information, i.e.nonunde�nedness.3.3 Clark's and Fitting's SemanticsAs argued above, a precise meaning or semantics must be associated with anylogic program, in order to provide a declarative speci�cation of it. Declarativesemantics provides a mathematically precise de�nition of the meaning of a pro-gram, which is independent of its procedural executions, and is easy to manip-ulate and reason about.In contrast, procedural semantics is usually de�ned as a procedural mecha-nism that is capable of providing answers to queries. The correctness of such amechanism is evaluated by comparing its behaviour to the speci�cation providedby the declarative semantics. Without the latter, the user needs an intimateknowledge of the procedural aspects in order to write correct programs.The �rst attempt to provide a declarative semantics to logic programs is dueto [EK76], and the main motivation behind their approach is based on the ideathat one should minimize positive information as much as possible, limiting itto facts explicitely implied by a program, making everything else false. In otherwords, their semantics is based on a natural form of \closed world assumption"[Rei78a].Example 1. Consider program P :able mathematician(X) physicist(X)physicist(einstein)president(soares)This program has several (2{valued) models, the largest of which is the modelwhere both Einstein and Soares are at the same time presidents, physicists andable mathematicians. This model does not correctly describe the intended mean-ing of P; since there is nothing in P to imply that Soares is a physicist or thatEinstein is a president. In fact, the lack of such information should instead indi-cate that we can assume the contrary.This knowledge is captured by the least (2{valued) model of P :fphysicist(einstein); able mathematician(einstein); president(soares)g

The existence of a unique least model for every de�nite program (proven in[EK76]), led to the de�nition of the so called \least model semantics" for de�niteprograms. According to that semantics an atom A is true in a program P i� itbelongs to the least model of P ; otherwise A is false.It turns out that this semantics does not apply to programs with defaultnegation. For example, the program P = fp not qg has two minimal models,namely fpg and fqg: Thus no least model exists.In order to de�ne a declarative semantics for normal logic programs withnegation as failure7, [Cla78] introduced the so{called \Clark's predicate comple-tion". Informally, the basic idea of completion is that in common discourse weoften tend to use \if" statements when we really mean \i�" ones. For instance,we may use the following program P to describe the natural numbers:natural number(0)natural number(succ(X)) natural number(X)This program is too weak. It does not imply that nothing but 0; 1; : : : is a naturalnumber. In fact what we have in mind regarding program P is:natural number(X), (X = 0 _ (9Y j X = succ(Y) ^ natural number(Y)))Based on this idea Clark de�ned the completion of a program P , the seman-tics of P being determined by the 2{valued models of its completion.However Clark's completion semantics has some serious drawbacks. One ofthe most important is that the completion of consistent programs may be in-consistent, thus failing to assign to those programs a meaning. For example thecompletion of the program fp not pg is fp, not pg; which is inconsistent.In [Fit85], the author showed that the inconsistency problem for Clark'scompletion can be elegantly eliminated by considering 3{valued models insteadof 2{valued ones. This led to the de�nition of the so{called \Fitting semantics"for normal logic programs. In [Kun87], Kunen showed that this semantics is notrecursively enumerable, and proposed a modi�cation.Unfortunately, \Fitting's semantics" inherits several problems of Clark's com-pletion, and in many cases leads to a semantics that appears to be too weak.This issue has been extensively discussed in the literature (see [She88, Prz89c,GRS91], [Dix95c, BD96b]). Forthwith we illustrate some of these problems withthe help of examples:Example 2. Consider8 program P :edge(a; b)edge(c; d)edge(d; c)reachable(a)reachable(X) reachable(Y); edge(X;Y)7 Here we adopt the designation of \negation by default". Recently, this designationhas been used in the literature instead of the more operational \negation as failure".8 This example �rst appeared in [GRS91].

that describes which vertices are reachable from a given vertice a in a graph.Fitting semantics cannot conclude that vertices c and d are not reachablefrom a: Here the di�culty is caused by the existence of the symmetric rulesedge(c; d); and edge(d; c):Example 3. Consider P :bird(tweety)fly(X) bird(X); not abnormal(X)abnormal(X) irregular(X)irregular(X) abnormal(X)where the last two rules just state that \irregular" and \abnormal" are synony-mous.Based on the fact that nothing leads us to the conclusion that tweety isabnormal, we would expect the program to derive not abnormal(tweety); andconsequently that it ies. But Clark's completion of P is:bird(X), X = tweetyfly(X), bird(X); not abnormal(X)abnormal(X), irregular(X)from which it does not follow that tweety isn't abnormal.It is worth noting that without the last two rules both Clark's and Fitting'ssemantics yield the expected result.One possible explanation for such a behaviour is that the last two rules lead toa loop. This explanation is procedural in nature. But it was the idea of replacingprocedural programming by declarative programming that brought about theconcepts of logic programming in �rst place and so, as argued in [PP90], itseems that such a procedural explanation should be rejected.The problems mentioned above are caused by the di�culty in representingtransitive closure using completion. In [Kun90] it is formally showed that bothClark's and Fitting's semantics are not su�ciently expressive to represent tran-sitive closure.In order to solve these problems some model{theoretic approaches to declar-ative semantics have been de�ned. In the beginning, such approaches did notattempt to give a meaning to every normal logic program. On the contrary,they were based on syntactic restrictions over programs, and only program com-plying with such restrictions were given a semantics. Examples of syntacticallyrestricted program classes are strati�ed [ABW88], locally strati�ed [Prz89c] andacyclic [AB91], and examples of semantics for restricted programs are the per-fect model semantics [ABW88, Prz89c, Gel89b], and the weakly perfect modelsemantics [PP88]. Here we will not review any of these approaches. For theiroverview, the reader is referred to e.g. [PP90].

3.4 Stable model semanticsIn [GL88], the authors introduce the so{called \stable model semantics". Thismodel{theoretic declarative semantics for normal programs generalizes the pre-viously referred semantics for restricted classes of programs, in the sense thatfor such classes the results are the same and, moreover, for some non{restrictedprograms a meaning is still assigned.The basic ideas behind the stable model semantics came from the �eld of non{monotonic reasoning formalism. There, literals of the form not A are viewed asdefault literals that may or may not be assumed or, alternatively, as epistemicliterals �BA expressing that A is not believed.Informally, when one assumes true some set of (hypothetical) default literals,and false all the others, some consequences follow according to the semanticsof de�nite programs [EK76]. If the consequences completely corroborate thehypotheses made, then they form a stable model. Formally:De�nition 9 Gelfond{Lifschitz operator. Let P be a normal logic programand I a 2{valued interpretation. The GL{transformation of P modulo I is theprogram PI obtained from P by performing the following operations:{ remove from P all rules which contain a default literal not A such that A 2 I ;{ remove from the remaining rules all default literals.Since PI is a de�nite program, it has a unique least model J: We de�ne� (I) = J:It turns out that �xed points of the Gelfond{Lifschitz operator � for a pro-gram P are always models of P: This result led to the de�nition of stable modelsemantics:De�nition 10 Stable model semantics. A 2{valued interpretation I of a logicprogram P is a stable model of P i� � (I) = I:An atom A of P is true under the stable model semantics i� A belong to allstable models of P:One of the main advantages of stable model semantics is its close relationshipwith known non{monotonic reasoning formalisms:As proven in [BF88], the stable models of a program P are equivalent toReiter's default extensions [Rei80] of the default theory obtained from P byidentifying each program rule:H B1; : : : ; Bn; not C1; : : : ; not Cmwith the default rule: B1; : : : ; Bn : � C1; : : : ;� CmHwhere � denotes classical negation.

Moreover, from the results of [Gel87], it follows directly that stable models areequivalent to Moore's autoepistemic expansions [Moo85] of the theory obtainedby replacing in P every default literal not A by �BA and then reinterpretingthe rule connective as material implication.In spite of the strong relationship between logic programming and non{monotonic reasoning, in the past these research areas were developing largelyindependently of one another, and the exact nature of their relationship was notclosely investigated or understood.The situation has changed signi�cantly with the introduction of stable mod-els, and the establishment of formal relationships between these and other non{monotonic formalisms. In fact, in recent years increasing and productive ef-fort has been devoted to the study of the relationships between logic program-ming and several non{monotonic reasoning formalisms. As a result, internationalworkshops have been organized, in whose proceedings many works and referencesto the theme can be found [NMS91, PN93, MNT95, DFN97].Such relationships turn out to be mutual bene�cial. On the one hand, non{monotonic formalisms provide elegant semantics for logic programming, speciallyin what regards the meaning of default negation (or negation as failure), andhelp one understand how logic programs can be used to formalize several types ofreasoning in Arti�cial Intelligence. On the other hand, those formalisms bene�tfrom the existing procedures of logic programming, and some new issues of theformer are raised and solved by the latter. Moreover, relations among non{monotonic formalisms themselves have been facilitated and established via logicprogramming.3.5 Well{founded semanticsDespite its advantages, and of being de�ned for more programs than any of itspredecessors, stable model semantics still has some important drawbacks:{ First, some programs have no stable models. One such program is P =fa not ag:{ Even for programs with stable models, their semantics do not always leadto the expected intended results. For example consider program P :a not bb not ac not ac not cwhose only stable model is fc; bg: Thus b and c are consequences of the stablemodel semantics of P: However, if one adds c to P as a lemma, the semanticsof P changes, and b no longer follows. This issue is related with the propertyof cumulativity ([Dix95a]).{ Moreover, it is easy to see that it is impossible to derive b from P usingany derivation procedure based on top{down (SL{like) rewriting techniques.

This is because such a procedure, beginning with the goal b would reachonly the �rst two rules of P; from which b cannot be derived. This issue isrelated with the property of relevance ([Dix95b]).{ The computation of stable models is NP{complete [MT91] even within sim-ple classes of programs, such as propositional logic programs. This is animportant drawback, specially if one is interested in a program for e�cientlyimplementing knowledge representation and reasoning.{ Last but not least, by always insisting on 2{valued interpretations, stablemodel semantics often lack expressivity.The well{founded semantics was introduced in [GRS91], and overcomes all ofthe above problems. This semantics is also closely related to some of the majornon{monotonic formalisms ([AP96]).Many di�erent equivalent de�nitions of the well{founded semantics exist (e.g.[Prz89a, Prz89b, Bry89, PP90, Dun91, Prz91a, BS91, Mon92, Dix95b, BD97b]).Here we use the de�nition introduced in [PP90] because, in our view, it is theone more technically related with the de�nition of stable models above9. Indeed,it consists of a natural generalization for 3{valued interpretations of the stablemodel semantics. In its de�nition the authors begin by introducing 3{valued (orpartial) stable models, and then show that the F{least of those models coincideswith the well{founded model as �rst de�ned in [GRS91].In order to formalize the notion of partial stable models, Przymusinski �rstexpand the language of programs with the additional propositional constant uwith the property of being unde�ned in every interpretation. Thus they assumethat every interpretation I satis�es:Î(u) = Î(not u) = 12A non{negative program is a program whose premises are either atoms oru: In [PP90], it is proven that every non{negative program has a 3{valuedleast model. This led to the following generalization of the Gelfond{Lifschitz�{operator:De�nition 11 � �{operator. Let P be a normal logic program, and let I be a3{valued interpretation. The extended GL{transformation of P modulo I is theprogram PI obtained from P by performing the operations:{ remove from P all rules which contain a default literal not A such thatI(A) = 1;{ replace in the remaining rules of P those default literals not A such thatI(A) = 12 by u;{ remove from the remaning rules all default literals.9 For a more practical introduction to the well{founded semantics the reader is referredto [PAA91a]. A detailed exposition based on abstract properties is given in [BD96b].

Since the resulting program is non{negative, it has a unique 3{valued least modelJ: We de�ne � �(I) = J:De�nition 12 Well{founded semantics. A 3{valued interpretation I of alogic program P is a partial stable model of P i� � �(I) = I:The well{founded semantics of P is determined by the unique F{least partialstable model of P; and can be obtained by the (bottom{up) iteration of � �starting from the empty interpretation.An alternative equivalent de�nition, by means of the squared � operator, isgiven as a special case in the section on well{founded semantics with explicitnegation below.4 Extended logic programsRecently several authors have stressed and shown the importance of including,beside default negation, a symmetric second kind of negation : in logic programs[APP96], for use in deductive databases, knowledge representation, and non{monotonic reasoning[GL91, GL92, Ino91, Kow90, KS90, PW90, PAA91b, PAA91c], [PAA92,PDA93, Wag91]. This symmetric form of negation may assume several garbsand names (*classical, pseudo, strong, explicit) corresponding to di�erent prop-erties and distinct applicability. Default and symmetric negation can be related:indeed some authors uphold the coherence principle, which stipulates that thelatter entails the former.In this section we begin by reviewing the main motivations for introducingthis kind of symmetric negation in logic programs. Then we de�ne an extensionof the language of programs to two negations, and briey overview the mainproposed semantics for these programs.4.1 MotivationIn normal logic programs the negative information is implicit, i.e. it is not pos-sible to explicitly state falsity, and propositions are assumed false if there isno reason to believe they are true. This is what is wanted in some cases. Forinstance, in the classical example of a database that explicitly states ight con-nections, one wants to implicitly assume that the absence of a connection in thedatabase means that no such connection exists.However this is a serious limitation in other cases. As argued in [PW90,Wag91], explicit negative information plays an important rôle in natural dis-course and commonsense reasoning. The representation of some problems inlogic programming would be more natural if logic programs had some way ofexplicitly representing falsity. Consider for example the statement:\Penguins do not y"

One way of representing this statement within logic programming could be:no fly(X) penguin(X)or equivalently: fly0(X) penguin(X)as suggested in [GL89].But these representations do not capture the connection between the predi-cate no fly(X) and the predication of ying. This becomes clearer if, addition-ally, we want to represent the statement:\Birds y"Clearly this statement can be represented byfly(X) bird(X)then, no connection whatsoever exists between the predicates no fly(X) andfly(X): Intuitively one would like to have such an obvious connection estab-lished.The importance of these connections grows if we think of negative informationfor representing exceptions to rules [Kow90]. The �rst statement above can beseen as an exception to the general rule that normally birds y. In this case wereally want to establish the connection between ying and not ying.Exceptions expressed by sentences with negative conclusions are also commonin legislation [Kow89, Kow92]. For example, consider the provisions for deprivingBritish citizens of their citizenship:40 - (1) Subject to the provisions of this section, the Secretary ofState may by order deprive any British citizen to whom this subsectionapplies of his British citizenship if [: : :].(5) The Secretary of State shall not deprive a person of British citi-zenship under this section if [: : :].Clearly, 40 (1) has the logical form \P if Q" whereas 40 (5) has the form \: Pif R". Moreover, it is also clear that 40 (5) is an exception to the rule of 40 (1)Above we argued for the need of having a symmetric negation in the head ofrules. But there are also reasons that compel us to believe symmetric negationis needed also in their bodies. Consider the statement10:\ A school bus may cross railway tracks under the condition that there is noapproaching train"10 This example is due to John McCarthy, and was published for the �rst time in[GL91].

It would be wrong to express this statement by the rule:cross not trainThe problem is that this rule allows the bus to cross the tracks when there is noinformation about either the presence or the absence of a train. The situation isdi�erent if symmetric negation is used:cross :trainThen the bus is only allowed to cross the tracks if the bus driver is sure that thereis no approaching train. The di�erence between not p and :p in a logic programis essential whenever we cannot assume that available positive information aboutp is complete, i.e. we cannot assume that the absence of information about pclearly denotes its falsity.Moreover, the introduction of symmetric negation in combination with theexisting default negation allows for greater expressivity, and so for representingstatements like:\ If the driver is not sure that a train is not approaching then he should wait"in a natural way: wait not :trainExamples of such combinations also appear in legislation. For example con-sider the following article from \The British Nationality Act 1981" [HMS81]:(2) A new{born infant who, after commencement, is found abandonedin the United Kingdom shall acquire british citizenship by section 1.2 ifit is not shown that it is not the case that the person is born [: : :]Clearly, conditions of the form \it is not shown that it is not the case that P"can be expressed naturally by not :P:Another motivation for introducing symmetric negation in logic programsrelates to a desired symmetry between positive and negative information. Thisis of special importance when the negative information is easier to representthan the positive one. One can �rst represent it negatively, and then say thatthe positive information corresponds to its complement.In order to make this clearer, take the following example [GL91]:Example 4. Consider a graph description based on the predicate arc(X;Y), whichexpresses that in the graph there is an arc from vertice X to vertice Y: Now sup-pose that we want to determine which vertices are terminals. Clearly, this is acase where the complement information is easier to represent, i.e. it is much eas-ier to determine which vertices are not terminal. By using symmetric negationin combination with negation by default, one can then easily say that terminalvertices are those which are not nonterminal::terminal(X) arc(X;Y)terminal(X) not :terminal(X)

Finally, another important motivation for extending logic programming withsymmetric negation is to generalize the relationships between logic programs andnon{monotonic reasoning formalisms.As mentioned in section 3.3, such relationships, drawn for the most recentsemantics of normal logic programs, have proven of extreme importance for bothsides, giving them mutual bene�ts and clari�cations. However, normal logic pro-grams just map into narrow classes of the more general non{monotonic for-malisms. For example, simple default rules such as (where "�" is classical nega-tion): � a : � bc a : bc a : b� ccannot be represented by a normal logic program. Note that not even normal norsemi{normal default rules can be represented using normal logic programs. Thisis so because these programs cannot represent rules with negative conclusions,and normal rules with positive conclusions have also positive justi�cations, whichis impossible in normal programs.Since, as shown below, extended logic programs also bear a close relation-ship to non{monotonic reasoning formalisms, they improve on those of normalprograms as extended programs map into broader classes of theories in non{monotonic formalisms, and so more general relations between several of thoseformalisms can now be made via logic programs.One example of such an improvement is that the introduction of symmetricnegation into logic programs makes it possible to represent normal and semi{normal defaults within logic programming. On the one side, this provides meth-ods for computing consequences of normal default theories. On the other, itallows for the appropriation in logic programming of work done using such the-ories for representing knowledge.4.2 Language of extended programsAs for normal logic programs, an atom over an alphabet A is an expression ofthe form p(t1; : : : ; tn); where p is a predicate symbol, and the tis are terms. Inorder to extend our language with a second kind of negation, we additionallyde�ne an objective literal over A as being an atom A or its symmetric negation:A: We also use the symbol : to denote complementary literals in the sense ofsymmetric negation. Thus ::A = A. Here, a literal is either an objective literalL or its default negation not L: We dub default literals those of the form not L:By the extended Herbrand base of A; we mean the set of all ground objectiveliterals of A: Whenever unambigous we refer to the extended Herbrand base ofan alphabet, simply as Herbrand base, and denote it by H:An extended logic program is a �nite set of rules of the form:H L1; : : : ; Ln (n � 0)where H is an objective literal and each of the Lis is a literal. As for normalprograms, if n = 0 we omit the arrow symbol.

By the extended Herbrand baseH of P we mean the extended Herbrand baseof the alphabet consisting of all the constants, predicate and function symbolsthat explicitly appear in P:Interpretation is de�ned as for normal programs, but using the extendedHerbrand base instead.Whenever unambigous, we refer to extended logic programs simply as logicprograms or programs. As in normal programs, a set of rules stands for all itsground instances.4.3 Answer{sets semanticsThe �rst semantics de�ned for extended logic programs was the so{called \answer{sets semantics" [GL91]. There the authors de�ned for the �rst time the languageof logic programs with two kinds of negation { default negation not and whatthey called "classical" negation :, which is symmetric with respect to not :The answer{sets semantics is a generalization of the stable model semanticsfor the language of extended programs. Roughly, an answer{set of an extendedprogram P is a stable model of the normal program obtained from P by replacingobjective literals of the form :L by new atoms, say : L:De�nition 13 The �{operator. Let P be an extended logic program and I a2{valued interpretation. The GL{transformation of P modulo I is the programPI obtained from P by:{ �rst denoting every objective literal in H of the form :A by a new atom,say : A;{ replacing in both P and I; these objective literals by their new denotation;{ then performing the following operations:� removing from P all rules which contain a default literal not A such thatA 2 I ;� removing from the remaning rules all default literals.Since PI is a de�nite program it has a unique least model J:If J contains a pair of complementary atoms, say A and : A; then � (I) = H:Otherwise, let J 0 be the interpretation obtained from J by replacing thenewly introduced atoms : A by :A: We de�ne � (I) = J 0:De�nition 14 Answer{sets semantics. A 2{valued interpretation I of an ex-tended logic program P is an answer{set model of P i� � (I) = I:An objective literal L of P is true under the answer{sets semantics i� Lbelongs to all answer{sets of P ; L is false i� :L is true; otherwise L is unknown.In [GL91], the authors showed that the answer{sets of an extended programP are equivalent to Reiter's default extensions of the default theory obtainedfrom P by identifying each program rule:H B1; : : : ; Bn;:C1; : : : ;:Cm; not D1; : : : ; not Dk; not :E1; : : : ; not :Ej

with the default rule:B1; : : : ; Bn;� C1; : : : ;� Cm : � D1; : : : ;� Dk; E1; : : : ; EjH 0where H 0 = H if H is an atom, or H 0 =� L if H = :L.4.4 e{answer{sets semanticsAnother semantics generalizing stable models for the class of extended programsis the e{answer{sets semantics of [KS90]. There, the authors claim that "clas-sically" negated atoms in extended programs play the rôle of exceptions. Thusthey impose a preference of negative over positive objective literals.The e{answer{sets semantics is obtainable from the answer{sets semanticsafter a suitable program transformation. For the sake of simplicity, here we donot give the formal de�nition of e{answer{sets, but instead show its behaviouron an example:Example 5. Consider program P :fly(X) bird(X):fly(X) penguin(X)bird(X) penguin(X)penguin(tweety)This program allows for both the conclusions fly(tweety) and :fly(tweety):Thus its only answer{sets is H:In e{answer{sets semantics, since conclusions of the form :L are preferredover those of the form L; :fly(tweety) overrides the conclusion fly(tweety);and thus fpenguin(tweety); bird(tweety);:fly(tweety)gis an e{answer{set of P:The rationale for this overriding is that the second rule is an exception tothe �rst one.4.5 Well{founded semantics with pseudo negationIn [Prz90], the author argues that the technique used in answer{sets for general-izing stable models is quite general. Based on that he de�nes a semantics whichgeneralizes the well{founded semantics for the class of extended programs11, asfollows:11 In the sequel we refer to this semantics as \well{founded semantics with pseudonegation".

De�nition 15 Well{founded semantics with pseudo negation. A3{valued interpretation I is a partial stable model of an extended logic pro-gram P i� I 0 is a partial stable model of the normal program P 0; where I 0 andP 0 are obtained respectively from I and P; by replacing every objective literalof the form :A by a new atom, say : A:The well{founded semantics with pseudo negation of P is determined by theunique F{least partial stable model of P:4.6 Nelson's strong negation semanticsBased on the notions of vivid logic [Lev86] and strong negation [Nel49], [Wag91]presents an alternative de�nition of the answer{sets semantics. There, the authorclaims that the :{negation of extended logic programs is not classical negationbut rather Nelson's strong negation.In fact, consider the following program P :b ab :aIf real classical negation were used then b would be a consequence of P , becausefor classical negation a _ :a is a tautology. However, in neither of the abovementioned semantics b follows from P:4.7 Well{founded semantics with explicit negationMany semantics for extended logic programs view default negation and sym-metric negation as unrelated. To overcome this situation a new semantics forextended logic programs was proposed in [PA92, AP96]. Well-founded Seman-tics with Explicit Negation (WFSX for short) embeds a \coherence principle"providing the natural missing link between both negations: if :L holds thennot L should too (similarly, if L then not :L). More recently, a paraconsistentextension of this semantics (WFSXp) has been proposed in [ADP95, Dam96] viaan alternating �xpoint de�nition that we now recapitulate.As usual, for the sake of simplicity and without loss of generality, we will re-strict the discussion to (possibly in�nite) propositional, or to ground, programs.A non-ground program stands for its fully instantiated version, i.e. the set ofall ground instances of its rules. The alphabet of the language of the programsis the set of atoms At. Atoms can be negated by juxtaposing them with theexplicit negation symbol \:" thereby obtaining the explicitly negated literals.The explicit complement of a set A = fa1; a2; : : :g is :A = f:a1;:a2; : : :g. Theset of objective literals is OLit = At[:At. Default literals are of the form not aand not :a, where a is an atomic proposition in the language's alphabet. Theset of all literals is Lit = OLit [not OLit, where default negation of a set ofobjective literals stands for the set comprised of the default negation of eachone.

De�nition 16. An extended logic program is a set of rules of the formL0 L1; : : : ; Lm; not M1; : : : ; not Mn (m;n � 0)where Li (0 � i � m) and Mj (1 � j � n) are objective literals.We begin by recalling the de�nition of Gelfond-Lifschitz � operator, used inthe alternating �xpoint de�nition of WFS [Gel89a],WFSX, and WFSXp.To impose the coherence requirement Alferes and Pereira resort to the semi-normal version of an extended logic program.De�nition 17. [PA92, AP96] The semi-normal version Ps of a program P isobtained from P by adding to the (possibly empty) Body of each rule L Bodythe default literal not :L; where :L is the complement of L with respect toexplicit negation.The semi-normal version of a program introduces a new anti-monotonic oper-ator: �Ps(S). Below we use � (S) to denote �P (S), and �s(S) to denote �Ps(S).Theorem18. [ADP95] The operator ��s is monotonic, for arbitrary sets ofliterals.Consequently every program has a least �xpoint of ��s. This de�nes thesemantics for paraconsistent logic programs. It also ensures that the semanticsis well-de�ned, i.e. assigns meaning to every extended logic program.De�nition 19. [ADP95] Let P be an extended logic program and T a �xpointof ��s, then T [not (HP � �sT) is a paraconsistent partial stable model of P(PSMp). The paraconsistent well-founded model of P , WFMp(P), is the leastPSMp under set inclusion order.To enforce consistency on the paraconsistent partial stable models Alferesand Pereira need only insist the extra condition T � �sT be veri�ed, whichsuccintly guarantees that for no objective literal, L and not L simultaneouslyhold. So it automatically rejects contradictory models where L and :L are bothtrue because, by coherence, they would also entail not L and not :L. ThereforeWFSXp generalizes WFSX, as it does not impose this additional condition. Fur-thermore, for normal logic programs, it coincides with WFS, which is de�nableas the least �xpoint of ��:Example 6. Let P be the extended logic program:a not b: b not c: b not :c: c: :c: d not d:The sequence for determining the least �xpoint of ��s of program P is:I0 = fgI1 = ��sfg = �fa; b; c;:c; dg = fc;:cgI2 = ��sfc;:cg = �fa; dg = fa; b; c;:cgI3 = ��sfa; b; c;:cg = �fdg = I2ThusWFMp(P) = fa; b; c;:c; not a; not :a; not b; not :b; not c; not :c; not :dg.

One of the distinguishing features of WFSXp is that it does not enforce defaultconsistency, i.e. a and not a can be simultaneously true, in contradistinction toall other semantics. In the above example this is the case for literals a, b, c and:c. It is due to the adoption of the coherence principle: for instance, because aand :a hold then, by coherence, not :a and not a must hold too.5 Disjunctive Logic ProgramsRecently, considerable interest and research e�ort12 has been given to the prob-lem of �nding a suitable extension of the logic programming paradigm beyondthe class of normal logic programs. In particular, considerable work has beendevoted to the problem of de�ning natural extensions of logic programming thatensure a proper treatment of disjunctive information . However, the problem of�nding a suitable semantics for disjunctive programs and databases proved to befar more complex than it is in the case of normal, non-disjunctive programs13.There are good reasons justifying this extensive research e�ort. In naturaldiscourse as well as in various programming applications we often use disjunctivestatements. One particular example of such a situation is reasoning by cases.Other obvious examples include:{ Null values: for instance, an age \around 30" can be 28, 29, 30, 31, or 32;{ Legal rules: the judge always has some freedom for his decision, otherwisehe/she would not be needed; so laws cannot have unique models;{ Diagnosis: only at the end of a fault diagnosis do we know exactly which partof some machine was faulty but while we are searching, di�erent possibilitiesexist;{ Biological inheritance: if the parents have blood groups A and 0, the childmust also have one of these two blood groups (example from [Lip79]);{ Natural language understanding: here there are many possibilities for ambi-guity and they are represented most naturally by multiple intended models;{ Conicts in multiple inheritance: if we want to keep as much informationas possible, we should assume disjunction of the inherited values [BL93].As [EGM93, EG93, EGM94] have shown, formalisms promoting disjunctive rea-soning are more expressive and they are also more natural to use since theypermit direct translation of disjunctive statements from natural language andfrom informal speci�cations. The additional expressive power of disjunctive logicprograms signi�cantly simpli�es the problem of translation of non-monotonicformalisms into logic programs, and, consequently, facilitates using logic pro-gramming as an inference engine for non-monotonic reasoning. Moreover, exten-sive recent work devoted to theoretic and algorithmic foundations of disjunctive12 It su�ces just to mention several recent workshops on Extensions of Logic Program-ming speci�cally devoted to this subject ([DPP95, DHSH96, Wol94, DLMW96]).13 The book by Minker et. al. [LMR92] provides a detailed and well-organized accountof the extensive research e�ort in this area. See also [Dix95c, Min93].

programming, suggests that there are good prospects for extending the logicprogramming paradigm to disjunctive programs.What then should be viewed as an \extension of logic programming"? Webelieve that in order to demonstrate that a class of programs can be justi�ablycalled an extension of logic programs one should be able to argue that:{ the proposed syntax of such programs resembles the syntax of logic pro-grams but it applies to a signi�cantly broader class of programs, which in-cludes the class of disjunctive logic programs as well as the class of logicprograms with \classical" (or symmetric) negation;{ the proposed semantics of such programs constitutes an intuitively naturalextension of the semantics of normal logic programs, which, when restrictedto normal logic programs, coincides with one of the well-established seman-tics of normal logic programs;{ there exists a reasonably simple procedural mechanism allowing, at least inprinciple, to compute the semantics14.It would be also desirable for the proposed class of programs and their semanticsto be a special case of a more general non-monotonic formalism which wouldclearly link it to other well-established non-monotonic formalisms.Several approaches to the semantics of disjunctive logic programs have beenrecently proposed and studied in the literature, e.g. [LMR92, Ros92, RT88,GL91], [Dix92b],[BD94, BD97b, BD97a, BD96a, EG93, EGM93, BLM90, Prz91b, Prz95b],and [Prz95a, BDNP97, BDP96]. Since a more thorough discussion of disjunctiveprogramming is beyond the scope of this brief introduction, we refer the readerto those papers, as well as to papers published in this volume, for more details.6 ImplementationsIn this section we give a rough overview of what semantics have been imple-mented so far and where they are available.It should be noted, that the �rst-order versions of all semantics investigatedhere are undecidable. Nevertheless it is an important task to have running sys-tems that can handle programs with free variables , and are Goal-Oriented . Toensure completeness (or termination) we need then additional requirements likeallowedness (to prevent oundering), and no function symbols.Although these restrictions ensure the Herbrand-universe to be �nite (andthus we are really considering a propositional theory) we think that such a systemhas great advantages over a system that can just handle ground programs. For14 Observe that while such a mechanism cannot even in principle be e�cient, due tothe inherent NP-completeness of the problem of computing answers to just positivedisjunctive programs, it can be e�cient when restricted to speci�c subclasses ofprograms and queries and it can allow e�cient approximation methods for broaderclasses of programs.

a language L, the fully instantiated program can be quite large and di�cult tohandle e�ectively.The goal-orientedness (or Relevance as mentioned above) is also important| after all this was one reason for the success of SLD-Resolution. As notedabove, such a goal-oriented approach is not possible for the stable semantics.There are various commercial PROLOG-systems that perform variants ofSLDNF-Resolution. But in what follows, we concentrate in the following onextensions of semantics introduced in this paper.Currently, a library of implemented logic programming systems and interest-ing test-cases for such systems is collected as a project of the arti�cial intelligencegroup at Koblenz. We refer to <http://www.uni-koblenz.de/ag-ki/LP/>.6.1 Non-Disjunctive SemanticsThere are many theoretical papers that deal with the problem of implementation([BD93, KSS91, DN95, FLMS93]) but only a few running systems. The problemof handling and representing ground programs given a non-ground one has alsobeen addressed [KNS94, KNS95, EGLS96].In [BNNS93, BNNS94] the authors showed how the problem of computingstable models can be transformed to an Integer-Linear Programming Problem.This has been extended in [DM93] to disjunctive programs.Inoue et. al. show in [IKH92] how to compute stable models by transformingprograms into propositional theories and then using a model-generation theoremprover.In Bern, Switzerland, a group around G. J�ager is building a non-monotonicreasoning system which incorporates various monotonic and non-monotonic log-ics. We refer to http://lwbwww.unibe.ch:8080/LWBinfo.html.Extended logic programs under the well-founded semantics are considered byPereira and his colleagues: [PAA93, ADP95, AP96]. The REVISE system, whichdeals with contradiction removal pro paraconsistent programs in this semantics,can be found in <http://www.uni-koblenz.de/ag-ki/LP/> too.[NS96] describes an implementation of WFS and STABLE with a special eyeon complexity.The most advanced system has been implemented by David Warren andhis group in Stony Brook based on OLDT-algorithm of [TS86]. They �rst de-veloped a meta-interpreter (SLG, see [CW96]) in PROLOG and then directlymodi�ed the WAM for a direct implementation of WFS (XSB). They use tabling-methods and a mixture of top-Down and bottom-up evaluation to detect loops.Their system is complete and terminating for non-oundering DATALOG. Italso works for general programs but termination is not guaranteed. This systemis described in [CW93, CSW95, CW95], and is available by anonymous ftp fromftp.cs.sunysb.edu/pub/XSB/.

6.2 Disjunctive SemanticsThere are theoretical descriptions of implementations that have not yet beenimplemented: [FM95, MR95, CL95].Here are some implemented systems. Inoue et. al. show in [IKH92] how tocompute stable models for extended disjunctive programs in a bottom-up-fashionusing a theorem prover. The approach of Bell et. al. ([NNS91]) was used byDix/M�uller [DM93, DM92, M�ul92] to implement versions of the stationary se-mantics of Przymusinski ([Prz91c].Brass/Dix have implemented both D-WFS and DSTABLE for allowed DAT-ALOG programs ([BD95]15). An implementation of static semantics ([Prz95b])is described in [BDP96]16.Seipel has implemented in his DisLog-system various (modi�ed versions of)semantics of Minker and his group. His system is publicly available at the URLhttp://sunwww.informatik.uni-tuebingen.de:8080/dislog/dislog.tar.Z.Finally, there is the DisLoP project undertaken by the Arti�cial Intelli-gence Research Group at the University of Koblenz and headed by J. Dix andU. Furbach ([DF96, ADN97]). This project aims at extending certain theoremproving concepts, such as restart model elimination [BF94] and hyper tableaux[BFN96] calculi, for disjunctive logic programming. Information on the Dis-LoP project and related publications can be obtained from the WWW page<http://www.uni-koblenz.de/ag-ki/DLP/>.AcknowledgementsWe wish to thank our colleagues Jos�e J�ulio Alferes, Stefan Brass, GerhardBrewka, Carlos Dam�asio, and Halina Przymusinska for our use of materialfrom joint publications. Lu��s Moniz Pereira acknowledges also the support ofJNICT/PRAXIS and its funding of the project MENTAL (#2/2.1/TIT/1593/95).References[AB91] K. Apt and M. Bezem. Acyclic programs. New Generation Computing,29(3):335{363, 1991.[AB94] Krysztof R. Apt and Roland N. Bol. Logic Programming and Negation: ASurvey. Journal of Logic Programming, 19-20:9{71, 1994.[ABW88] K. Apt, H. Blair, and A. Walker. Towards a theory of declarative knowl-edge. In J. Minker, editor, Foundations of Deductive Databases and LogicProgramming, pages 89{142. Morgan Kaufmann, 1988.[ADN97] Chandrabose Aravindan, J�urgen Dix, and Ilkka Niemel�a. The DisLoP-project. Technical Report TR 1/97, University of Koblenz, Department ofComputer Science, Rheinau 1, January 1997.15 ftp://ftp.informatik.uni-hannover.de/software/index.html16 ftp://ftp.informatik.uni-hannover.de/software/static/static.html

[ADP95] J. J. Alferes, C. V. Dam�asio, and L. M. Pereira. A logic programmingsystem for non-monotonic reasoning. Journal of Automated Reasoning,14(1):93{147, 1995.[AP96] Jose Julio Alferes and Luiz Moniz Pereira, editors. Reasoning with LogicProgramming, LNAI 1111, Berlin, 1996. Springer.[APP96] J. J. Alferes, L. M. Pereira, and T. Przymusinski. \Classical" negationin non monotonic reasoning and logic programming. In H. Kautz andB. Selman, editors, 4th Int. Symposium on Arti�cial Intelligence and Math-ematics, Fort Lauderdale, USA, January 1996. Florida Atlantic University.[BD93] Roland N. Bol and L. Degerstedt. Tabulated resolution for well{foundedsemantics. In Proc. Int. Logic Programming Symposium'93, Cambridge,Mass., 1993. MIT Press.[BD94] Stefan Brass and J�urgen Dix. A disjunctive semantics based on unfold-ing and bottom-up evaluation. In Bernd Wol�nger, editor, Innovationenbei Rechen- und Kommunikationssystemen, (IFIP '94-Congress, WorkshopFG2: Disjunctive Logic Programming and Disjunctive Databases), pages83{91, Berlin, 1994. Springer.[BD95] Stefan Brass and J�urgen Dix. A General Approach to Bottom-UpComputation of Disjunctive Semantics. In J. Dix, L. Pereira, andT. Przymusinski, editors, Nonmonotonic Extensions of Logic Programming,LNAI 927, pages 127{155. Springer, Berlin, 1995.[BD96a] Stefan Brass and J�urgen Dix. Characterizing D-WFS: Conuence andIterated GCWA. In L.M. Pereira J.J. Alferes and E. Orlowska, editors,Logics in Arti�cial Intelligence (JELIA '96), LNCS 1126, pages 268{283.Springer, 1996. (Extended version will appear in the Journal of AutomatedReasoning in 1997.).[BD96b] Gerhard Brewka and J�urgen Dix. Knowledge representation with logic pro-grams. Technical report, Tutorial Notes of the 12th European Conferenceon Arti�cial Intelligence (ECAI '96), 1996. Also appeared as TechnicalReport 15/96, Dept. of CS of the University of Koblenz-Landau. Will ap-pear as Chapter 6 in Handbook of Philosophical Logic, 2nd edition (1998),Volume 6, Methodologies.[BD97a] Stefan Brass and J�urgen Dix. Characterizations of the Disjunctive StableSemantics by Partial Evaluation. Journal of Logic Programming, forth-coming, 1997. (Extended abstract appeared in: Characterizations of theStable Semantics by Partial Evaluation LPNMR, Proceedings of the ThirdInternational Conference, Kentucky , pages 85{98, 1995. Springer.).[BD97b] Stefan Brass and J�urgen Dix. Semantics of Disjunctive Logic ProgramsBased on Partial Evaluation. Journal of Logic Programming, accepted forpublication, 1997. (Extended abstract appeared in: Disjunctive SemanticsBased upon Partial and Bottom-Up Evaluation, Proceedings of the 12-thInternational Logic Programming Conference, Tokyo, pages 199{213, 1995.MIT Press.).[BDK97] Gerd Brewka, J�urgen Dix, and Kurt Konolige. Nonmonotonic Reasoning:An Overview. CSLI Lecture Notes 73. CSLI Publications, Stanford, CA,1997.[BDNP97] Stefan Brass, J�urgen Dix, Ilkka Niemel�a, and Teodor. C. Przymusinski.Comparison and E�cient Computation of the Static and the DisjunctiveWFS. Technical report, University of Koblenz, Department of Computer

Science, Rheinau 1, January 1997. submitted to a conference. Preliminaryversion appeared as Technical Report 2/96.[BDP96] Stefan Brass, J�urgen Dix, and Teodor. C. Przymusinski. Super Logic Pro-grams. In L. C. Aiello, J. Doyle, and S. C. Shapiro, editors, Principles ofKnowledge Representation and Reasoning: Proceedings of the Fifth Inter-national Conference (KR '96), pages 529{541. San Francisco, CA, MorganKaufmann, 1996.[BF88] N. Bidoit and C. Froidevaux. General logic databases and programs: de-fault logic semantics and strati�cation. Journal of Information and Com-putation, 1988.[BF94] P. Baumgartner and U. Furbach. Model Elimination without Contrapos-itives and its Application to PTTP. Journal of Automated Reasoning,13:339{359, 1994. Short version in: Proceedings of CADE-12, SpringerLNAI 814, 1994, pp 87{101.[BFN96] Peter Baumgartner, Ulrich Furbach, and Ilkka Niemel�a. Hyper tableaux.In L.M. Pereira J.J. Alferes and E. Orlowska, editors, Logics in Arti�cialIntelligence (JELIA '96), LNCS 1126, pages 1{17. Springer, 1996.[BL93] Stefan Brass and Udo W. Lipeck. Bottom-up query evaluation withpartially ordered defaults. In Stefano Ceri, Katsumi Tanaka, andShalom Tsur, editors, Deductive and Object-Oriented Databases, ThirdInt. Conf., (DOOD'93), number 760 in LNCS, pages 253{266, Berlin, 1993.Springer.[BLM90] Chitta Baral, Jorge Lobo, and Jack Minker. Generalized Disjunctive Well-founded Semantics for Logic Programs: Procedural Semantics. In Z.W.Ras, M. Zemankova, and M.L Emrich, editors, Proceedings of the 5th Int.Symp. on Methodologies for Intelligent Systems, Knoxville, TN, October1990, pages 456{464. North-Holland, 1990.[BNNS93] Colin Bell, Anil Nerode, Raymond T. Ng, and V. S. Subrahmanian. Imple-menting Stable Semantics by Linear Programming. In Luis Moniz Pereiraand Anil Nerode, editors, Logic Programming and Non-Monotonic Rea-soning, Proceedings of the Second International Workshop, pages 23{42,Cambridge, Mass., July 1993. Lisbon, MIT Press.[BNNS94] Colin Bell, Anil Nerode, Raymond T. Ng, and V. S. Subrahmanian. MixedInteger Programming Methods for Computing Non-Monotonic DeductiveDatabases. Journal of the ACM, 41(6):1178{1215, November 1994.[Bry89] Fran�cois Bry. Logic programming as constructivism: A formaliza-tion and its application to databases. In Proc. of the Eighth ACMSIGACT-SIGMOD-SIGART Symposium on Principles of Database Sys-tems (PODS'89), pages 34{50, 1989.[BS91] C. Baral and V. S. Subrahmanian. Dualities between alternative seman-tics for logic programming and nonmonotonic reasoning. In A. Nerode,W. Marek, and V. S. Subrahmanian, editors, LP & NMR, pages 69{86.MIT Press, 1991.[CKPR73] A. Colmerauer, H. Kanoui, R. Pasero, and P. Roussel. Un syst�eme de com-munication homme-machine en fran�cais. Technical report, Groupe de In-telligence Arti�cielle Universite de Aix-Marseille II, 1973.[CL95] Stefania Costantini and Gaetano A. Lanzarone. Static Semantics asProgram Transformation and Well-founded Computation. In J. Dix,L. Pereira, and T. Przymusinski, editors, Nonmonotonic Extensions ofLogic Programming, LNAI 927, pages 156{180. Springer, Berlin, 1995.

[Cla78] Keith L. Clark. Negation as Failure. In H. Gallaire and J. Minker, editors,Logic and Data-Bases, pages 293{322. Plenum, New York, 1978.[CSW95] Weidong Chen, Terrance Swift, and David S. Warren. E�cient Top-DownComputation of Queries under the Well-Founded Semantics. Journal ofLogic Programming, 24(3):219{245, 1995.[CW93] Weidong Chen and David S. Warren. A Goal Oriented Approach toComputing The Well-founded Semantics. Journal of Logic Programming,17:279{300, 1993.[CW95] Weidong Chen and David S. Warren. Computing of Stable Models and itsIntegration with Logical Query Processing. IEEE Transactions on Knowl-edge and Data Engineering, 17:279{300, 1995.[CW96] Weidong Chen and David S. Warren. Tabled Evaluation with Delaying forGeneral Logic Programs. Journal of the ACM, 43(1):20{74, January 1996.[Dam96] C. V. Dam�asio. Paraconsistent Extended Logic Programming with Con-straints. PhD thesis, Universidade Nova de Lisboa, October 1996.[DF96] J. Dix and U. Furbach. The DFG-Project DisLoP on Disjunctive LogicProgramming. Computational Logic, 2:89{90, 1996.[DFN97] J. Dix, U. Furbach, and A. Nerode, editors. Logic Programming and Non-monotonic Reasoning, LNAI to appear, Berlin, 1997. Springer.[DHSH96] Roy Dyckho�, Heinrich Herre, and Peter Schroeder-Heister, editors. Ex-tensions of Logic Programming, LNAI 1050, Berlin, 1996. Springer.[Dix91] J. Dix. Classifying semantics of logic programs. In A. Nerode, W. Marek,and V. S. Subrahmanian, editors, LP & NMR, pages 166{180. MIT Press,1991.[Dix92a] J. Dix. A framework for representing and characterizing semantics of logicprograms. In B. Nebel, C. Rich, and W. Swartout, editors, 3rd Int. Conf.on Principles of Knowledge Representation and Reasoning. Morgan Kauf-mann, 1992.[Dix92b] J�urgen Dix. Classifying Semantics of Disjunctive Logic Programs. In K. R.Apt, editor, LOGIC PROGRAMMING: Proceedings of the 1992 Joint In-ternational Conference and Symposium, pages 798{812, Cambridge, Mass.,November 1992. MIT Press.[Dix95a] J�urgen Dix. A Classi�cation-Theory of Semantics of Normal Logic Pro-grams: I. Strong Properties. Fundamenta Informaticae, XXII(3):227{255,1995.[Dix95b] J�urgen Dix. A Classi�cation-Theory of Semantics of Normal Logic Pro-grams: II. Weak Properties. Fundamenta Informaticae, XXII(3):257{288,1995.[Dix95c] J�urgen Dix. Semantics of Logic Programs: Their Intuitions and FormalProperties. An Overview. In Andre Fuhrmann and Hans Rott, editors,Logic, Action and Information { Essays on Logic in Philosophy and Arti-�cial Intelligence, pages 241{327. DeGruyter, 1995.[DLMW96] J�urgen Dix, Donald Loveland, Jack Minker, and David. S. Warren. Dis-junctive Logic Programming and databases: Nonmonotonic Aspects. Tech-nical Report Dagstuhl Seminar Report 150, IBFI GmbH, Schlo� Dagstuhl,1996.[DM92] J�urgen Dix and Martin M�uller. Abstract Properties and ComputationalComplexity of Semantics for Disjunctive Logic Programs. In Proc. of theWorkshop W1, Structural Complexity and Recursion-theoretic Methods inLogic Programming, following the JICSLP '92, pages 15{28. H. Blair and

W. Marek and A. Nerode and J. Remmel, November 1992. also available asTechnical Report 13/93, University of Koblenz, Department of ComputerScience.[DM93] J�urgen Dix and Martin M�uller. Implementing Semantics for DisjunctiveLogic Programs Using Fringes and Abstract Properties. In Luis MonizPereira and Anil Nerode, editors, Logic Programming and Non-MonotonicReasoning, Proceedings of the Second International Workshop, pages 43{59,Cambridge, Mass., July 1993. Lisbon, MIT Press.[DN95] Lars Degerstedt and Ulf Nilsson. Magic Computation of Well-foundedSemantics. In J. Dix, L. Pereira, and T. Przymusinski, editors, Non-monotonic Extensions of Logic Programming, LNAI 927, pages 181{204.Springer, Berlin, 1995.[DPP95] J. Dix, L. Pereira, and T. Przymusinski, editors. Non-Monotonic Exten-sions of Logic Programming, LNAI 927, Berlin, 1995. Springer.[Dun91] P. M. Dung. Negation as hypotheses: An abductive framework for logicprogramming. In K. Furukawa, editor, 8th Int. Conf. on LP, pages 3{17.MIT Press, 1991.[EG93] Thomas Eiter and Georg Gottlob. Propositional Circumscription and Ex-tended Closed World Reasoning are �P2 -complete. Theoretical ComputerScience, 144(2):231{245, Addendum: vol. 118, p. 315, 1993, 1993.[EGLS96] T. Eiter, G. Gottlob, J. Lu, and V. S. Subrahmanian. Computing Non-Ground Representations of Stable Models. Technical report, University ofMaryland, 1996.[EGM93] Thomas Eiter, Georg Gottlob, and Heikki Mannila. Expressive Power andComplexity of Disjunctive DATALOG. In Proceedings of Workshop onLogic Programming with Incomplete Information, Vancouver Oct. 1993,following ILPS' 93, pages 59{79, 1993.[EGM94] Thomas Eiter, Georg Gottlob, and Heikki Mannila. Adding disjunctionto datalog. In Proc. of the Thirteenth ACM SIGACT-SIGMOD-SIGARTSymposium on Principles of Database Systems (PODS'94), pages 267{278,1994.[EK76] M. Van Emden and R. Kowalski. The semantics of predicate logic as aprogramming language. Journal of ACM, 4(23):733{742, 1976.[Fit85] M. Fitting. A Kripke-Kleene semantics for logic programs. Journal of LP,2(4):295{312, 1985.[FLMS93] J. A. Fern�andez, J. Lobo, J. Minker, and V.S. Subrahmanian. DisjunctiveLP + Integrity Constraints = Stable Model Semantics. Annals of Mathe-matics and Arti�cial Intelligence, 8(3-4), 1993.[FM95] J. A. Fern�andez and J. Minker. Bottom-Up Computation of Perfect Mod-els for Disjunctive Theories. Journal of Logic Programming, 25(1):33{51,1995.[Gel87] M. Gelfond. On strati�ed autoepistemic theories. In AAAI'87, pages 207{211. Morgan Kaufmann, 1987.[Gel89a] A. Van Gelder. The alternating �xpoint of logic programs with negation.In 8th Symposium on Principles of Database Systems. ACM SIGACT-SIGMOD, 1989.[Gel89b] A. Van Gelder. Negation as failure using tight derivations for general logicprograms. Journal of LP, 6(1):109{133, 1989.[GL88] M. Gelfond and V. Lifschitz. The stable model semantics for logic pro-gramming. In R. Kowalski and K. A. Bowen, editors, 5th Int. Conf. on

LP, pages 1070{1080. MIT Press, 1988.[GL89] Michael Gelfond and Vladimir Lifschitz. Compiling Circumscriptive The-ories into Logic Programs. In Reinfrank, de Kleer, Ginsberg, and Sande-wall, editors, Non-Monotonic Reasoning, LNAI 346, pages 74{99, Berlin,January 1989. Springer.[GL91] Michael Gelfond and Vladimir Lifschitz. Classical Negation in Logic Pro-grams and Disjunctive Databases. New Generation Computing, 9:365{387,1991. (Extended abstract appeared in: Logic Programs with ClassicalNegation. Proceedings of the 7-th International Logic Programming Con-ference, Jerusalem, pages 579-597, 1990. MIT Press.).[GL92] M. Gelfond and V. Lifschitz. Representing actions in extended logic pro-grams. In K. Apt, editor, Int. Joint Conf. and Symp. on LP, pages 559{573.MIT Press, 1992.[GMN84] H. Gallaire, J. Minker, and J. Nicolas. Logic and databases: a deductiveapproach. ACM Computing Surveys, 16:153{185, 1984.[GRS91] A. Van Gelder, K. A. Ross, and J. S. Schlipf. The well-founded semanticsfor general logic programs. Journal of the ACM, 38(3):620{650, 1991.[HMS81] HMSO. British Nationality Act. Her Majesty's Stationery O�ce, 1981.[IKH92] Katsumi Inoue, M. Koshimura, and R. Hasegawa. Embedding negation-as-failure into a model generation theorem prover. In Deepak Kapur, editor,Automated Deduction | CADE-11, number 607 in LNAI, Berlin, 1992.Springer.[Ino91] K. Inoue. Extended logic programs with default assumptions. In KoichiFurukawa, editor, 8th Int. Conf. on LP, pages 490{504, Cambridge, Mass.,1991. MIT Press.[KK71] R. Kowalski and D. Khuener. Linear resolution with selection function.Arti�cial Intelligence, 5:227{260, 1971.[KNS94] Vadim Kagan, Anil Nerode, and V. S. Subrahmanian. Computing De�niteLogic Programs by Partial Instantiation. Annals of Pure and Applied Logic,67:161{182, 1994.[KNS95] Vadim Kagan, Anil Nerode, and V. S. Subrahmanian. Computing MinimalModels by Partial Instantiation. Theoretical Computer Science, 155:157{177, 1995.[Kow74] R.A. Kowalski. Predicate logic as a programming language. In Proceeed-ings IFIP' 74, pages 569{574. North Holland Publishing Company, 1974.[Kow79] R. Kowalski. Algorithm = logic + control. Communications of the ACM,22:424{436, 1979.[Kow89] R. Kowalski. The treatment of negation in logic programs for representinglegislation. In 2nd Int. Conf. on AI and Law, pages 11{15, 1989.[Kow90] R. Kowalski. Problems and promises of computational logic. In John W.Lloyd, editor, Computational Logic, Basic Research Series, pages 1{36,Berlin, 1990. Springer.[Kow92] R. Kowalski. Legislation as logic programs. In Logic Programming in Ac-tion, pages 203{230. Springer{Verlag, 1992.[KS90] R. Kowalski and F. Sadri. Logic programs with exceptions. In Warren andSzeredi, editors, 7th Int. Conf. on LP, Cambridge, Mass., 1990. MIT Press.[KSS91] David B. Kemp, Peter J. Stuckey, and Divesh Srivastava. Magic Sets andBottom-Up Evaluation of Well-Founded Models. In Vijay Saraswat andKazunori Ueda, editors, Proceedings of the 1991 Int. Symposium on LogicProgramming, pages 337{351. MIT, June 1991.

[Kun87] Kenneth Kunen. Negation in Logic Programming. Journal of Logic Pro-gramming, 4:289{308, 1987.[Kun90] Kenneth Kunen. Some Remarks on the completed Database. FundamentaInformaticae, XIII:35{49, 1990.[Lev86] H. Levesque. Making believers out of computers. Arti�cial Intelligence,30:81{107, 1986.[Lip79] W. Lipski, Jr. On semantic issues connected with incomplete informationdatabases. ACM Transactions on Database Systems, 4:262{296, 1979.[Llo87] John W. Lloyd. Foundations of Logic Programming. Springer, Berlin,1987. 2nd edition.[LMR92] Jorge Lobo, Jack Minker, and Arcot Rajasekar. Foundations of DisjunctiveLogic Programming. MIT-Press, 1992.[LT85] John W. Lloyd and Rodney W. Topor. A basis for deductive databasesystems. The Journal of Logic Programming, 2:93{109, 1985.[LT86] John W. Lloyd and Rodney W. Topor. A basis for deductive databasesystems II. The Journal of Logic Programming, 3:55{67, 1986.[Min88] Jack Minker. Foundations of Deductive Databases. Morgan Kaufmann, 95First Street, Los Altos, CA 94022, 1st edition, 1988.[Min93] Jack Minker. An Overview of Nonmonotonic Reasoning and Logic Pro-gramming. Journal of Logic Programming, Special Issue, 17, 1993.[Min96] Jack Minker. Logic and databases: A 20 year retrospective. In Dino Pe-dreschi and Carlo Zaniolo, editors, Proceedings of the International Work-shop on Logic in Databases (LID), LNCS 1154, pages 3{58. Springer,Berlin, 1996.[MNT95] W. Marek, A. Nerode, and M. Truszczy�nski, editors. Logic Programmingand Nonmonotonic Reasoning, LNAI 928, Berlin, 1995. Springer.[Mon92] L. Monteiro. Notes on the negation in logic programs. Technical report,Dep. of Computer Science, Univerdade Nova de Lisboa, 1992. CourseNotes, 3rd Advanced School on AI, Azores, Portugal, 1992.[Moo85] R. Moore. Semantics considerations on nonmonotonic logic. Arti�cial In-telligence, 25:75{94, 1985.[MR95] Jack Minker and Carolina Ruiz. Computing stable and partial stablemodels of extended disjunctive logic programs. In J. Dix, L. Pereira, andT. Przymusinski, editors, Nonmonotonic Extensions of Logic Programming,LNAI 927, pages 205{229. Springer, Berlin, 1995.[MT91] W. Marek and M. Truszczynski. Autoepistemic logics. Journal of theACM, 38(3):588{619, 1991.[M�ul92] Martin M�uller. Examples and Run-Time Data from KORF, 1992.[Nel49] D. Nelson. Constructible falsity. JSL, 14:16{26, 1949.[NMS91] A. Nerode, W. Marek, and V. S. Subrahmanian, editors. Logic Program-ming and Non{monotonic Reasoning: Proceedings of the First Int. Ws.,Washington D.C., USA, 1991. The MIT Press.[NNS91] Anil Nerode, Raymond T. Ng, and V.S. Subrahmanian. Computing Cir-cumscriptive Deductive Databases. CS-TR 91-66, Computer Science Dept.,Univ. Maryland, University of Maryland, College Park, Maryland, 20742,USA, December 1991.[NS96] Ilkka Niemel�a and Patrik Simons. E�cient implementation of the well-founded and stable model semantics. In M. Maher, editor, Proceedings ofthe Joint International Conference and Symposium on Logic Programming,pages 289{303, Bonn, Germany, September 1996. The MIT Press.

[PA92] L. M. Pereira and J. J. Alferes. Well founded semantics for logic programswith explicit negation. In B. Neumann, editor, European Conf. on AI,pages 102{106. John Wiley & Sons, 1992.[PAA91a] L. M. Pereira, J. J. Alferes, and J. N. Apar��cio. A practical introduction towell founded semantics. In B. Mayoh, editor, Scandinavian Conf. on AI.IOS Press, 1991.[PAA91b] L. M. Pereira, J. N. Apar��cio, and J. J. Alferes. Counterfactual reasoningbased on revising assumptions. In Ueda and Saraswat, editors, Int. LPSymp., pages 566{577. MIT Press, 1991.[PAA91c] L. M. Pereira, J. N. Apar��cio, and J. J. Alferes. Nonmonotonic reasoningwith well founded semantics. In Koichi Furukawa, editor, 8th Int. Conf. onLP, pages 475{489. MIT Press, 1991.[PAA92] L. M. Pereira, J. N. Apar��cio, and J. J. Alferes. Logic programming fornonmonotonic reasoning. In Applied Logic Conf. Preproceedings by ILLC,Amsterdam, 1992. To appear in Springer{Verlag LNAI.[PAA93] L. M. Pereira, J. N. Apar�icio, and J. J. Alferes. Non-Monotonic Reason-ing with Logic Programming. Journal of Logic Programming, 17:227{264,1993.[PDA93] L. M. Pereira, C. Dam�asio, and J. J. Alferes. Diagnosis and debugging ascontradiction removal. In L. M. Pereira and A. Nerode, editors, 2nd Int.Ws. on LP & NMR, pages 316{330, Cambridge, Mass., 1993. MIT Press.[PN93] L. M. Pereira and A. Nerode, editors. Logic Programming and Non{monotonic Reasoning: Proceedings of the Second Int. Ws., Lisboa, Portugal,1993. MIT Press.[PP88] H. Przymusinska and T. Przymusinski. Weakly perfect model semantics.In R. Kowalski and K. A. Bowen, editors, 5th Int. Conf. on LP, pages1106{1122. MIT Press, 1988.[PP90] H. Przymusinska and T. Przymusinski. Semantic issues in deductivedatabases and logic programs. In R. Banerji, editor, Formal Techniquesin AI, a Sourcebook, pages 321{367. North Holland, 1990.[Prz89a] T. Przymusinski. Every logic program has a natural strati�cation and aniterated �xed point model. In 8th Symp. on Principles of Database Systems.ACM SIGACT-SIGMOD, 1989.[Prz89b] T. Przymusinski. Three{valued non{monotonic formalisms and logic pro-gramming. In R. Brachman, H. Levesque, and R. Reiter, editors, 1st Int.Conf. on Principles of Knowledge Representation and Reasoning, pages341{348. Morgan Kaufmann, 1989.[Prz89c] Teodor Przymusinski. On the declarative and procedural Semantics of logicPrograms. Journal of Automated Reasoning, 5:167{205, 1989.[Prz90] T. Przymusinski. Extended stable semantics for normal and disjunctiveprograms. In Warren and Szeredi, editors, 7th Int. Conf. on LP, pages459{477, Cambridge, Mass., 1990. MIT Press.[Prz91a] T. Przymusinski. Autoepistemic logic of closed beliefs and logic program-ming. In A. Nerode, W. Marek, and V. S. Subrahmanian, editors, LP &NMR, pages 3{20. MIT Press, 1991.[Prz91b] Teodor Przymusinski. Stable Semantics for Disjunctive Programs. NewGeneration Computing Journal, 9:401{424, 1991. (Extended abstract ap-peared in: Extended stable semantics for normal and disjunctive logicprograms. Proceedings of the 7-th International Logic Programming Con-ference, Jerusalem, pages 459{477, 1990. MIT Press, Cambridge, Mass.).

[Prz91c] Teodor Przymusinski. Stationary Semantics for Normal and Disjunc-tive Logic Programs. In C. Delobel, M. Kifer, and Y. Masunaga, editors,DOOD '91, Proceedings of the 2nd International Conference, Berlin, De-cember 1991. Muenchen, Springer. LNCS 566.[Prz95a] Teodor Przymusinski. Semantics of normal and disjunctive logic programs:A unifying framework. In J. Dix, L. Pereira, and T. Przymusinski, editors,Proceedings of the Workshop on Non-Monotonic Extensions of Logic Pro-gramming at the Eleventh International Logic Programming Conference,ICLP'94, Santa Margherita Ligure, Italy, June 1994, pages 43{67. Springer,1995.[Prz95b] Teodor Przymusinski. Static Semantics For Normal and Disjunctive LogicPrograms. Annals of Mathematics and Arti�cial Intelligence, 14:323{357,1995.[PW90] D. Pearce and G. Wagner. Reasoning with negative information I: Strongnegation in logic programs. In L. Haaparanta, M. Kusch, and I. Niiniluoto,editors, Language, Knowledge and Intentionality, pages 430{453. ActaPhilosophica Fennica 49, 1990.[Rei78a] R. Reiter. On closed{world data bases. In H. Gallaire and J. Minker,editors, Logic and DataBases, pages 55{76. Plenum Press, 1978.[Rei78b] Raymond Reiter. On closed world data bases. In Herv�e Gallaire andJack Minker, editors, Logic and Data Bases, pages 55{76, New York, 1978.Plenum.[Rei80] Raymond Reiter. A Logic for Default-Reasoning. Arti�cial Intelligence,13:81{132, 1980.[Rei84] R. Reiter. Towards a logical reconstruction of relational database theory.In M. Brodie and J. Mylopoulos, editors, On Conceptual Modelling, pages191{233. Springer{Verlag, 1984.[RN95] Stuart Russel and Peter Norvig. Arti�cial Intelligence | A Modern Ap-proach. Prentice Hall, New Jersey 07458, 1995.[Ros92] Kenneth A. Ross. A procedural semantics for well-founded negation inlogic programs. Journal of Logic Programming, 13:1{22, 1992.[RT88] Kenneth A. Ross and Rodney A. Topor. Inferring negative Informationfrom disjunctive Databases. Journal of Automated Reasoning, 4:397{424,1988.[Sak89] Chiaki Sakama. Possible Model Semantics for Disjunctive Databases. InWon Kim, Jean-Marie Nicolas, and Shojiro Nishio, editors, Deductive andObject-Oriented Databases, Proceedings of the First International Confer-ence (DOOD89), pages 1055{1060, Kyoto, Japan, 1989. North-HollandPubl.Co.[She88] John C. Shepherdson. Negation in Logic Programming. In Jack Minker,editor, Foundations of Deductive Databases, chapter 1, pages 19{88. Mor-gan Kaufmann, 1988.[She90] J. Shepherdson. Negation as failure, completion and strati�cation. InHandbook of AI and LP, 1990.[SI93] Chiaki Sakama and Katsumi Inoue. Negation in Disjunctive Logic Pro-grams. In D. Warren and Peter Szeredi, editors, Proceedings of the 10thInt. Conf. on Logic Programming, Budapest, Cambridge, Mass., July 1993.MIT Press.[SS95] Chiaki Sakama and Hirohisa Seki. Partial Deduction of Disjunctive LogicPrograms: A Declarative Approach. In Logic Program Synthesis and Trans-

formation { Meta Programming in Logic, LNCS 883, pages 170{182, Berlin,1995. Springer. Extended version to appear in Journal of Logic Program-ming.[TS86] H. Tamaki and T. Sato. OLD Resolution with Tabulation. In Proceed-ings of the Third International Conference on Logic Programming, London,LNAI, pages 84{98, Berlin, June 1986. Springer.[Wag91] G. Wagner. A database needs two kinds of negation. In B. Thalheim,J. Demetrovics, and H-D. Gerhardt, editors, Mathematical Foundations ofDatabase Systems, LNCS 495, pages 357{371, Berlin, 1991. Springer.[Wol94] BerndWol�nger, editor. GI-Fachgespr�ach 2: Disjunktive logische Program-mierung und disjunktive Datenbanken, pages 51{100. Springer, Berlin,1994.[WPP77] D. H. Warren, L. M. Pereira, and F. Pereira. Prolog: The language and itsimplementation compared with Lisp. In Symp. on AI and ProgrammingLanguages, pages 109{115. ACM SIGPLAN{SIGART, 1977.

This article was processed using the LaTEX macro package with LLNCS style

