
2 I E E E S O F T W A R E P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y 0 7 4 0 - 7 4 5 9 / 0 5 / $ 2 0 . 0 0 © 2 0 0 5 I E E E

article summaries
N O V E M B E R / D E C E M B E R 2 0 0 5 , V O L U M E T W E N T Y- T W O , N U M B E R S I X

PREDICTOR MODELS

Building Effective Defect-Prediction
Models in Practice
by A. Güneş Koru and Hongfang Liu, pp.
23–29. Successfully predicting defect-prone
software modules can help developers im-
prove product quality by focusing quality as-
surance activities on those modules. Emerg-
ing repositories of publicly available software
engineering data sets support research in this
area by providing static measures and defect
data that developers can use to build predic-
tion models and test their effectiveness. Strat-
ifying NASA data sets from the PROMISE

repository according to module size showed
improved prediction performance in the sub-
sets that included larger modules.

Improving After-the-Fact Tracing
and Mapping: Supporting Software
Quality Predictions
by Jane Huffman Hayes, Alex Dekhtyar, and
Senthil Karthikeyan Sundaram, pp. 30–37.
The requirements traceability matrix can suc-
cessfully predict quality before code is writ-
ten. However, its tedious development proc-
ess, requiring analysts to manually discover
and vet links between artifact levels, has
stymied widespread adoption. The authors’
tracing toolkit, called RETRO (Requirements
Tracing on Target), automates the informa-
tion retrieval process, making RTM’s devel-
opment easier. Backed by empirical results,
the authors describe RETRO’s advantages over
other information retrieval approaches.

Finding the Right Data for Software
Cost Modeling
by Zhihao Chen, Tim Menzies, Daniel Port,
and Barry Boehm, pp. 38–46. Strange to say,
when building a software cost model, some-
times it’s useful to ignore much of the avail-
able cost data. One way to do this is to per-
form data-pruning experiments after data
collection and before model building. Exper-
iments involving a set of Unix scripts that
employ a variable-subtraction algorithm

from the WEKA (Waikato Environment for
Knowledge Analysis) data-mining toolkit il-
lustrate this approach’s effectiveness.

FEATURES

The Art and Science of Software
Release Planning
by Günther Ruhe and Moshood Omolade
Saliu, pp. 47–53. Poor release planning de-
cisions can result in unsatisfied customers,
missed deadlines, unmet constraints, and
little value. The authors investigate the re-
lease planning process and propose a hy-
brid planning approach that integrates the
knowledge and experience of human ex-
perts (the “art” of release planning) with
the strength of computational intelligence
(the “science” of release planning).

Using the OPC Standard for Real-
Time Process Monitoring and Control
by Jun Liu, Khiang Wee Lim, Weng Khuen
Ho, Kay Chen Tan, Arthur Tay, and Ra-
jagopalan Srinivasan, pp. 54–59. The effort
to develop this open, nonproprietary, plug-
and-play system using the Object Linking
and Embedding for Process Control (OPC)
standard had two goals. The first was to
make lab-based research and development
work on process monitoring and control
directly and easily applicable to industrial
plants. The second was to provide a stan-
dard method for individual process moni-
toring and process control software to in-
teract and share data. This article describes
the system’s design and implementation.

Opportunistic Problem Solving in
Software Engineering
by Pierre N. Robillard, pp. 60–67. Soft-
ware development is a complex, mainly
cognitive endeavor. Studying human behav-
iors such as problem solving and oppor-
tunistic design can identify ways to im-
prove our software engineering practices.
Real and durable improvements will likely
emerge from a scientific approach based on

observing and measuring human behavior.
One finding is that synchronization meet-
ings can improve practices with significant
opportunistic problem-solving content.

Software Process Improvement in
Small Organizations: A Case Study
by Kathleen Coleman Dangle, Patricia
Larsen, Michele Shaw, and Marvin V.
Zelkowitz, pp. 68–75. A case study of a
five-year-old startup company looks at the
role of process improvement in the context
of a small organization. It explores why
the company realized that process im-
provement was necessary for continued
growth. The company is implementing
many CMM-related key practice areas,
and they should be able to achieve their
goal of CMM Level 3 in the near future.

The Economic Impact of Learning
and Flexibility on Process Decisions
by Hakan Erdogmus, pp. 76–83. Under-
standing how high-level process characteris-
tics alter a software project’s economics can
help organizations make informed decisions
and improve value creation. Two central
characteristics of iterative and incremental
development—flexibility and learning—
have much to do with whether a develop-
ment process makes economic sense.

Managing Change in Software
Process Improvement
by Lars Mathiassen, Ojelanki K.
Ngwenyama, and Ivan Aaen, pp. 84–91.
When software managers initiate software
process improvement, most are ill prepared
for the scale and complexity of the organi-
zational change involved. Although they
typically know how to deal with large soft-
ware projects, few managers have sufficient
experience with projects that transform or-
ganizations. For successful software process
improvement, managers must understand
the context of change, know the organiza-
tional elements involved, and master the
tactics that facilitate successful change.

