
Edge-Sets:

An Effective Evolutionary Coding of Spanning Trees

Günther R. Raidl
Institute of Computer Graphics and Algorithms

Vienna University of Technology
Favoritenstraße 9–11/1861, 1040 Vienna, Austria

raidl@ads.tuwien.ac.at

Bryant A. Julstrom
Department of Computer Science

St. Cloud State University
St. Cloud, MN, U.S.A.

julstrom@eeyore.stcloudstate.edu

Abstract

The fundamental design choices in an evolutionary algorithm are its representation of
candidate solutions and the operators that will act on that representation. We propose
representing spanning trees in evolutionary algorithms for network design problems
directly as sets of their edges, and we describe initialization, recombination, and mu-
tation operators for this representation. The operators offer locality, heritability, and
computational efficiency. Initialization and recombination depend on an underlying ran-
dom spanning tree algorithm; three choices for this algorithm, based on the minimum
spanning tree algorithms of Prim and Kruskal and on random walks, respectively, are
examined analytically and empirically. We demonstrate the usefulness of the edge-set
encoding in an evolutionary algorithm for the NP-hard degree-constrained minimum
spanning tree problem. The algorithm’s operators are easily extended to generate only
feasible spanning trees and to incorporate local, problem-specific heuristics. Compar-
isons of this algorithm to others that encode candidate spanning trees via the Blob
Code, with network random keys, and as strings of weights indicate the superiority of
the edge-set encoding, particularly on larger instances.

Keywords: Spanning trees, network design, edge-set representation, One-Max-Tree
problem, degree constraints, evolutionary algorithms, hybridization.

1 Introduction

Let G be a weighted, connected, undirected graph with node set V and edges E. A spanning
tree on G is a maximal, acyclic subgraph of G; that is, it connects all of G’s nodes and
contains no cycles. A spanning tree’s cost is the sum of the costs of its edges; a spanning
tree with the smallest possible cost is a minimum spanning tree (MST) on G. When the
graph’s edge costs are fixed and the search is unconstrained, the well-known algorithms
of Kruskal [1] and Prim [2] identify MSTs in times that are polynomial in the number of
nodes, as do more recent algorithms such as that described by Chazelle [3].

53

However, many variants of the MST problem are computationally difficult. Some seek to
minimize objective functions other than the simple sum of a tree’s fixed edge weights. For
example, in the optimum communication spanning tree problem [4], a tree’s cost depends
on communication demands between each pair of nodes and on the tree’s structure. In
another version of this problem, edge costs are time-dependent [5].

Often, only spanning trees that satisfy particular constraints are feasible. Examples of such
constraints include the degree constraint [6], which requires that no node in a spanning
tree have more than d ≥ 2 incident edges; leaf constraints [7], which specify or bound the
number of leaves a spanning tree may have; the diameter constraint [8], which bounds the
longest path in a spanning tree between any two nodes; and capacity constraints [9], which
limit the capacity of edges.

Other combinatorial problems can be mapped to spanning tree problems. These include
the rectilinear Steiner problem [10], which seeks the shortest tree composed of vertical
and horizontal line segments that connects a collection of points in the plane, and the
fixed-charge transportation problem [11], which seeks an economical plan for distributing
a commodity from sources to destinations. Finally, some spanning tree problems seek to
optimize several objective functions simultaneously [12].

Most such problems are NP-hard, and we can apply exact optimization algorithms only to
small instances of them. For larger instances, we turn to heuristic techniques, including
evolutionary algorithms (EAs).

Researchers have described EAs for all the MST-related problems listed above and others.
Most often, these algorithms have used implicit representations to encode spanning trees
and have applied decoding algorithms to identify the spanning trees that genotypes repre-
sent. They have applied positional operators like k-point crossover and position-by-position
mutation to these genotypes; these operators exchange, rearrange, and modify symbols in
parent genotypes.

We propose representing spanning trees for evolutionary search directly as sets of their
edges. Applied to this representation, traditional initialization algorithms and positional
crossover and mutation operators are unlikely to generate edge-sets that form spanning
trees, so we describe new operators that are based on random spanning tree algorithms.
With these operators, the edge-set representation exhibits significant advantages over pre-
vious codings of spanning trees. Evaluating edge-sets is fast, as are both recombination and
mutation; under these operators, edge-sets have strong heritability and locality; it is usually
easy to incorporate problem-specific heuristics into hybrid algorithms; and the operators
can often handle constraints effectively.

Section 2 lists desirable qualities of an evolutionary coding and its operators and examines
previous codings of spanning trees in this context. Section 3 describes the edge-set repre-
sentation and initialization, crossover, and mutation operators for it. Section 3.1 addresses
the surprisingly subtle issue of generating random spanning trees and derives the probabili-
ties that various algorithms will generate trees of particular shapes. Section 4 examines the
impact of the random spanning tree algorithm in an EA for a simple test problem called
One-Max-Tree. Section 5 describes the specialization of the edge-set representation and its
operators to the degree-constrained minimum spanning tree problem and demonstrates how
edge-cost-based heuristics can be incorporated. In a comparison with other spanning tree
representations, we find that in general the EA with edge-sets identifies the best solutions
and is fastest for large, hard problem instances. This suggests the general usefulness of the
edge-set representation in evolutionary algorithms for computationally hard spanning tree
problems.

54

2 Representing Spanning Trees

An evolutionary algorithm’s structure and parameter settings affect its performance, but
the primary determinants of an EA’s success or failure are the coding by which its genotypes
represent candidate solutions and the interaction of the coding with the EA’s recombination
and mutation operators. Debate continues on when, how, and why EAs work, but most
researchers agree on the relevance of the following features of evolutionary codings and their
operators.

• Space: Chromosomes should not require extravagant amounts of memory.

• Time: The time complexities of evaluating, recombining, and mutating genotypes
should be small. When genotypes represent spanning trees, evaluation may include
decoding a genotype to identify the spanning tree it represents.

• Feasibility: All genotypes, particularly those generated by crossover and mutation,
should represent feasible solutions.

• Coverage: The coding should be able to represent all feasible solutions. The en-
tire search space, or at least one optimal solution, should be reachable via the EA’s
operators.

• Bias: In general, representations of all solutions should be equally likely, though bias
may be an advantage if the favored solutions are near-optimal.

• Locality: A mutated genotype should usually represent a solution similar to that of
its parent. Here, a mutated genotype should represent a tree that consists mostly of
edges also found in its parent.

• Heritability: Offspring of crossover should represent solutions that combine substruc-
tures of their parental solutions. Here, offspring should represent trees consisting
mostly of parental edges.

• Constraints: Decoding of genotypes and the crossover and mutation operators should
be able to enforce problem-specific constraints. Here, such a constraint might bound
the degrees of spanning trees’ vertices.

• Hybrids: The operators should be able to incorporate problem-dependent heuristics.
Here, such a heuristic might favor edges of lower cost.

One more consideration is particular to EAs that search spaces of subgraphs.

• Sparse graphs: Some codings can represent spanning trees only on complete graphs.
Can the coding also be used to represent subgraphs of graphs that do not contain
every possible edge?

The following sections describe codings of spanning trees of a graph G = (V, E) on n = |V |
nodes with m = |E| edges in terms of these considerations, except hybridization. Table 1
summarizes this discussion and includes entries for the edge-set representation.

55

Table 1: Properties of commonly used spanning tree encoding techniques and the new
edge-set representation: Space, time, feasibility, coverage, bias, locality and heritability,
ability to consider constraints, hybridizability, and applicability to sparse graphs; n = |V |,
m = |E|.
Representation Space Time Feasib. Cover. Bias Loc./Herit. Const. Hybrid. Sparse G

Char. vector O(m) O(m) worst yes none high avg. good good

Predecessor O(n) O(n) poor yes none high avg. good poor

Prüfer numbers O(n) O(n log n) yes yes none low poor poor poor

Blob Code O(n) O(n2) yes yes none avg. poor poor poor

Link-&-node biased O(m + n) O(m + n log n) yes yes high avg. good good good

Node-only biased O(n) O(m + n log n) yes no high avg. good good good

Netw. rand. keys O(m) O(m log m) yes yes low high good possib. good

Edge-set O(n) O(n) yes yes depends highest good good good

2.1 Characteristic Vectors

A characteristic vector is a binary string whose positions correspond to items in a set. Each
bit indicates whether or not the corresponding item is included in the structure the string
represents. When such a vector represents a spanning tree, the items are the edges of G,
and the vector indicates whether each edge is or is not part of the tree. Several researchers,
including Davis et al. [13] and Piggott and Suraweera [14], have used characteristic vectors
to represent spanning trees in evolutionary algorithms. These EAs have applied positional
operators like k-point crossover and position-by-position mutation.

A characteristic vector requires space proportional to m. In a complete graph, m = n(n−
1)/2 and the size of the search space is 2n(n−1)/2. However, only a tiny fraction of these
genotypes represent feasible solutions, since a complete graph G has only nn−2 distinct
spanning trees [15]. Penalizing genotypes that do not represent spanning trees has not been
effective [14]. Repair strategies have been more successful [16], but they require additional
computation and weaken the coding’s locality and heritability.

2.2 The Predecessor Coding

A more compact representation of spanning trees is the predecessor or determinant coding,
in which an arbitrary node in G is designated the root, and a genotype lists each other
node’s predecessor in the path from the node to the root in the represented spanning tree:
if pred(i) is j, then node j is adjacent to node i and nearer the root. Thus a genotype is
a string of length n − 1 over {1, 2, . . . , n}, and when such a genotype encodes a spanning
tree, its edges can be made explicit in time that is O(n).

Applied to such genotypes, positional crossover and mutation operators will generate infea-
sible solutions, requiring again penalization or repair [17, 18]. Abuali et al. [19] described
a repair mechanism that applies to spanning trees on sparse as well as complete graphs.
Chu et al. [20] used the predecessor coding with both a penalty and repair in a genetic al-
gorithm for the degree-constrained minimum spanning tree problem. Berry et al. [21] used
it with special variation operators that produced only feasible solutions for the optimum
communication spanning tree problem. Chou et al. [22] performed further investigations
on this encoding with respect to the degree-constrained minimum spanning tree problem.

56

2.3 Prüfer Numbers

Cayley’s Formula identifies as nn−2 the number of distinct spanning trees on a complete
graph with n nodes [15, 23, pp. 98–106]. Prüfer [24] presented a constructive proof of this
result: a pair of inverse mappings between spanning trees on n nodes and vectors of length
n− 2 over integers labeling the nodes. These vectors are called Prüfer numbers, and they
encode spanning trees via Prüfer’s mappings.

This coding is deceptively appealing. Prüfer numbers can be encoded and decoded in
times that are O(n log n). Because every Prüfer number represents a unique spanning tree,
they support positional genetic operators like k-point crossover and position-by-position
mutation without requiring repair or penalization. The degree of each node in a spanning
tree is one more than the number of times its label appears in the tree’s Prüfer number.

However, many researchers have pointed out that Prüfer numbers have poor locality and
heritability and are thus unsuitable for evolutionary search [17, 25, 26]. Patterns of val-
ues in Prüfer numbers do not represent consistent substructures of spanning trees, so the
mutation of a single symbol may change many edges in the represented tree, and crossover
often generates offspring whose trees share few edges with their parents’ trees. Further,
Prüfer numbers cannot be easily used on incomplete graphs, and it is difficult to implement
constraints (except on degrees) or local heuristics.

Nonetheless, researchers have encoded spanning trees as Prüfer numbers in evolutionary
algorithms for a variety of problems. These include the degree-constrained minimum span-
ning tree problem [18, 27], the minimum spanning tree problem with time-dependent edge
costs [5], the fixed-charge transportation problem [12], and a bicriteria network design
problem [28]. A recent comparison of codings in EAs for several spanning tree problems
demonstrated the inferiority of Prüfer numbers [29].

There are many other mappings like Prüfer’s from strings of n− 2 node labels to spanning
trees. Recently, Picciotto [30] and Deo and Micikevicius [31] described several of them. One,
called the Blob Code, exhibits stronger locality and heritability than do Prüfer numbers,
and an EA for the One-Max-Tree problem performed significantly better when it encoded
spanning trees via the Blob Code than with Prüfer numbers [32]. As in Prüfer numbers,
each node’s degree in the spanning tree a string represents via the Blob Code is one more
than the number of times the node’s label appears in the string. The Blob Code’s decoding
takes time that in the worst case is O(n2) but is on average significantly faster.

2.4 Link-and-Node Biasing

Palmer and Kershenbaum [17] proposed a versatile coding of spanning trees that they called
link-and-node biasing. In this coding, a genotype is a string of numerical weights associated
with a graph’s nodes and, optionally, with its edges. The tree such a genotype represents is
identified by temporarily adding each node’s weight to the costs of all the edges to which the
node is incident; if present, edge weights are added to their edges’ costs, too. Then Prim’s
algorithm is used to find a minimum spanning tree from the modified edge costs. Because of
the application of Prim’s algorithm, decoding (when implemented with a Fibonacci heap)
requires time that is Θ(m + n log n). Decoding can enforce constraints, though at the cost
of additional computation. Any string of weights is a valid genotype, so positional crossover
and mutation operators can be applied.

57

In general, there exist spanning trees that cannot be represented by node weights alone; edge
weights are necessary to render every spanning tree reachable. Edge weights also reduce the
bias of this representation toward star-like structures [33]. However, edge weights increase
the size of each genotype on a complete graph from n values to n+n(n−1)/2 = n(n+1)/2.

Raidl and Julstrom [34] proposed a variant of this coding, called weight-coding, in an EA for
the degree-constrained minimum spanning tree problem. In weight-coding, the weights in
each genotype are initially selected from a log-normal distribution, and the biasing scheme
is multiplicative rather than additive. The decoding algorithm was modified to yield only
trees that satisfy the problem’s degree constraint. Krishnamoorthy et al. [18] described
another variant of link-and-node-biasing, which they called problem search space, for the
degree-constrained minimum spanning tree problem.

2.5 Network Random Keys

Bean [35] described random keys to encode permutations; Rothlauf et al. [36, 37] adapted
random keys to represent spanning trees and called them network random keys. In this
coding, a genotype is a string of real-valued weights, one for each edge. To identify the
tree a genotype represents, the edges are sorted by their weights and Kruskal’s minimum
spanning tree algorithm considers the edges in sorted order. As with link-and-node-biasing,
any string of weights is a valid genotype and positional crossover and mutation operators
may be used.

Because they represent trees via Kruskal’s algorithm, network random keys are dispropor-
tionately likely to encode star-like trees and disproportionately unlikely to encode path-like
trees, a phenomenon that Section 3.1.2 below examines. Each genotype requires space that
is O(m), and decoding is computationally expensive—O(m log m)—because it requires sort-
ing the edges. Thus, network random keys are effective only for small or sparse problems.
Rothlauf et al. [36] reported good results with this coding on instances of the optimum
communication spanning tree problem of up to 26 nodes. Schindler et al. [38] further
investigated random network keys in an evolution strategy framework.

2.6 Other Representations

Other representations of spanning trees are less often used. In degree-based permutations
[39], a genotype consists of two strings. The first holds a permutation of the node labels, and
the second holds the nodes’ degrees. The tree this pair represents is obtained by connecting
the nodes in the specified order and with the specified degrees. In Prüfer-based permutations
[40], a genotype holds indices into a list of multiple copies of the node labels. These indices
specify the order in which labels are removed from the list and concatenated to an initially
empty Prüfer number, which in turn represents a spanning tree. Not surprisingly, neither
of these codings exhibits strong locality or heritability under positional operators.

Knowles and Corne [25] described a coding of spanning trees whose degrees do not exceed a
bound d ≥ 2. In it, a genotype is an array of n · d integers that influence the order in which
a variant of Prim’s algorithm attaches the nodes to a growing spanning tree. On several
hard instances of the degree-constrained minimum spanning tree problem, an EA using this
coding outperformed several other heuristics. Section 5 below compares this coding with
the edge-set representation.

58

11

3
1

8

5

10

6

9

2

4

7 (10,4), (9,4), (5,8) }

(3,8), (7,1), (4,11), (4,5),

{ (6,2), (12,9), (2,10), (7,9),

12

Figure 1: A spanning tree on twelve nodes and an edge-set that represents it.

To our knowledge and with the exception of our own recent work [41, 42], only the follow-
ing publications have considered EAs for spanning tree problems that represent candidate
spanning trees directly as sets of their edges. Li and Bouchebaba [43] proposed crossover
and mutation operators based on edges, paths, and subtrees of spanning trees in an EA for
the optimum communication spanning tree problem. Li [44] described the tree representa-
tion in more detail. However, most of the crossover and mutation operators described for
it require O(n2) time; our operators, which the next section describes, are more efficient.
Recently, Rothlauf has considered representations for genetic and evolutionary algorithms
[37]; he also presents a direct representation of spanning trees.

3 The Edge-Set Representation and its Operators

We propose representing spanning trees directly as sets of their edges; Figure 1 shows a
spanning tree on twelve nodes and an edge-set that represents it. This representation can
be implemented in an array or a hash table whose entries are the pairs of nodes that define
each edge. The latter data structure allows insertion, lookup, and deletion of individual
edges in constant time; both require space that is linear in the number n of nodes.

An evolutionary algorithm requires an initial population of diverse genotypes. For the
edge-set representation, we therefore need an algorithm that generates spanning trees at
random. This algorithm is also the basis for the recombination operator. Recombination of
two parent spanning trees merges their edge-sets and derives a new random spanning tree
from this union. Recombination can be considered an extension of uniform crossover into
the domain of spanning trees.

Since creating random spanning trees is such a fundamental task, Section 3.1 describes
several algorithms for this purpose and examines them analytically. Section 3.2 compares
these algorithms empirically. Section 3.3 describes recombination of parent edge-sets based
on the generation of random spanning trees, and Section 3.4 presents mutation for edge-sets
that represent spanning trees.

3.1 Creating Random Spanning Trees

When an evolutionary algorithm searches a space of spanning trees, its initial population
consists of genotypes that represent random trees. It is not as simple as it might seem to
choose spanning trees of a graph so that all are equally likely. Techniques based on Prim’s
and Kruskal’s minimum spanning tree algorithms do not associate uniform probabilities
with spanning trees; techniques that do are limited in their application, computationally
tedious, or not guaranteed to terminate.

59

3.1.1 Extending Prim’s Algorithm

Prim’s algorithm [2] greedily builds a minimum spanning tree from a start node by repeat-
edly appending the lowest-cost edge that joins a new node to the growing tree. Choosing
each new edge at random rather than according to its cost yields a procedure we call
PrimRST:

procedure PrimRST(V ,E):
T ← ∅;
choose a random starting node s ∈ V ;
C ← {s}; (* set of connected nodes *)
A ← {e ∈ E | e = (s, v), v ∈ V }; (* eligible edges *)
while C 6= V do

choose an edge (u, v) ∈ A, u ∈ C at random;
A ← A− {(u, v)};
if v 6∈ C then (* connect v to the partial tree *)

T ← T ∪ (u, v);
C ← C ∪ {v};
A ← A ∪ {e ∈ E | e = (v, w) ∧ w 6∈ C};

return T .

Representing the graph G = (V, E) with adjacency lists [45, pp. 232–233] allows fast iden-
tification of the edges adjacent to each newly connected node and the implementation of
PrimRST in time that is O(m). If G is complete, it is necessary only to keep track of the
set of nodes currently in the spanning tree (C in the sketch above) and its complement
V −C; each new edge is identified by choosing one node at random from each set, and the
algorithm’s time and space are both only O(n).

Not only is PrimRST simple and efficient, but it can easily be extended to return only trees
that satisfy various constraints. Constraints on a tree’s degree, diameter, and capacity, for
example, can be honored by accepting only edges whose inclusion does not render the tree
invalid.

Unfortunately, PrimRST yields trees of some structures with much higher probabilities than
others. The edges adjacent to PrimRST’s starting node are in the set A of eligible edges
from the beginning and are therefore more likely to be included in the tree than are edges
adjacent to later nodes. Thus, the trees that have the highest probability under PrimRST
are stars, in which one root node connects to all the others.

More formally, consider the probabilities that PrimRST returns a star and a Hamiltonian
path on a complete graph G of n nodes; the tendencies these probabilities indicate also
hold for incomplete graphs.

The first two edges PrimRST fixes always share a node. A star is created if in each following
step i = 3, . . . , n− 1, a new node is connected to this common root, which is the case with
probability 1/i. The probability that PrimRST returns a star is therefore

1 · 1 · 1
3
· 1
4
· 1
5
· · · 1

n− 1
=

2
(n− 1)!

.

There are n distinct stars on n nodes, so the probability of a particular star is

pstar =
1
n
· 2
(n− 1)!

=
2
n!

.

60

2 4 6 8 10 12 14 16 18 20
−8

−6

−4

−2

0

2

4

6

-6

-4

-2

1

6

4

2

-8

10

10

10

10

10

10

10

ppath/punif

pstar/punif

n

Figure 2: PrimRST: Normalized probabilities of creating a particular path or a particular
star for a complete graph on n nodes.

The number of distinct spanning trees on n nodes is nn−2 [15]; an unbiased algorithm would
assign each the probability

punif =
1

nn−2
.

The probability pstar that PrimRST generates a particular star is greater than this uniform
probability for any n ≥ 4:

2
n!

>
1

nn−2
⇐⇒ 2 >

n!
nn−2

.

Conversely, the trees that have the smallest probabilities are (Hamiltonian) paths, in which
all nodes, except two leaves, have degree two. The probability that PrimRST returns any
path is

1 · 1 · 2
3
· 2
4
· 2
5
· · · 2

n− 1
=

2n−2

(n− 1)!
.

The first two edges chosen will always form part of a path; each subsequent edge must be
incident to one of the leaves of the partial path.

A complete, undirected graph on n nodes contains n!/2 Hamiltonian paths, so the proba-
bility that PrimRST will return a particular one of them is

ppath =
2
n!
· 2n−2

(n− 1)!
=

2n−1

(n− 1)!n!
.

This probability is less than the uniform probability punif = 1/nn−2 for n ≥ 4; see Ap-
pendix A for a proof of this result.

Figure 2 shows the normalized probabilities pstar/punif and ppath/punif plotted against the
number n of nodes in the graph. Even for small n, the probability of a particular path
is several orders of magnitude smaller than that of a particular star, and the difference
increases dramatically with n. The probability that PrimRST returns a particular general
tree always lies between the probabilities of a path and a star.

On the other hand, the probability that PrimRST will return some path is greater than
the probability that it will return some star by a factor of 2n−3, because there are so many
more paths than stars.

61

3.1.2 Extending Kruskal’s Algorithm

Kruskal’s algorithm [1] also applies a greedy strategy to build a minimum spanning tree of
a graph G. It examines G’s edges in order of increasing cost and includes in the tree those
that connect previously unconnected components. Examining the edges in random order
yields a procedure we call KruskalRST :

procedure KruskalRST(V ,E):
T ← ∅;
A ← E;
while |T | < |V | − 1 do

choose an edge (u, v) ∈ A at random;
A ← A− {(u, v)};
if u and v are not yet connected in T then

T ← T ∪ {(u, v)};
return T .

By using a union-find data structure with weight balancing and path compression [45,
pp. 183–189], the determination that two nodes are or are not connected in the devel-
oping spanning tree can be carried out in nearly constant time. Thus the total time for
KruskalRST is O(m), as with PrimRST in its general case.

Also like PrimRST, KruskalRST is more likely to generate some trees than others. We ex-
amine some probabilities in complete graphs, but the tendencies apply generally, as before.

Consider the probability that KruskalRST returns a particular star. There are n− 1 edges
in the star and

(
n
2

)
edges in G, so the probability that the first edge KruskalRST chooses

is in the star is (n − 1)/
(
n
2

)
. At each following step, one of the star’s remaining unchosen

edges must be included in T , and the total number of eligible edges is
(
n
2

)− (|T |
2

)
; an edge

is eligible unless it joins two nodes already in the star.

Thus the probability that KruskalRST identifies the star is

pstar =
n− 1(

n
2

) · n− 2(
n
2

)− 1
· n− 3(

n
2

)− (
3
2

) · n− 4(
n
2

)− (
4
2

) · · · 1(
n
2

)− (
n−1

2

) =
(n− 1)!

∏n−1
i=1

((
n
2

)− (
i
2

)) .

Since

n−1∏

i=1

((
n

2

)
−

(
i

2

))
=

1
2n−1

·
n−1∏

i=1

(n(n− 1)− i(i− 1))

=
1

2n−1
·

n−1∏

i=1

(n− i)(n + i− 1)

=
1

2n−1
· (n− 1)! · (2n− 2)!

(n− 1)!
=

(2n− 2)!
2n−1

,

we can write

pstar =
2n−1(n− 1)!

(2n− 2)!
.

This probability is again larger than punif , but smaller than the probability that PrimRST
returns the same star.

62

2 4 6 8 10 12 14 16 18 20
−8

−6

−4

−2

0

2

4

6

10

10

10

10

10

10

10

-6

-4

-2

1

6

4

2

-8

pany/punif

pstar/punif

n

Figure 3: KruskalRST: Normalized probabilities of creating a particular star and a lower
bound for the creation of any particular structure for a complete graph on n nodes.

The exact probability that KruskalRST returns a path is much harder to identify. Instead,
we derive a lower bound pany for the probability that KruskalRST returns a particular
spanning tree of any structure, including a path.

Consider the cases in which KruskalRST identifies the n− 1 edges of the target tree before
any others. The orders in which the target tree’s edges and the

(
n
2

) − (n − 1) remaining
edges are examined are irrelevant, so the bound we seek is

pany =
(n− 1)! (n(n− 1)/2− n + 1)!

(n(n− 1)/2)!
=

1(
n(n−1)/2

n−1

) .

This computation ignores the cases in which KruskalRST discards edges before the tree
is finished, so the bound is not tight. Still, it shows that KruskalRST returns paths (in
particular) with substantially higher probabilities than does PrimRST. Figure 3 plots the
ratios of probabilities pstar/punif and pany/punif against the number n of nodes in G for
KruskalRST. Comparing this figure with Figure 2 makes clear that KruskalRST is much
less biased than PrimRST.

KruskalRST can honor constraints by rejecting edges that would render partial solutions
invalid, but it is not as flexible as PrimRST. Local constraints, as on nodes’ degrees (Sec-
tion 5), can be maintained in this way, but constraints involving large parts of spanning
trees, as on trees’ diameters or the capacities of edges in a communications network [46],
usually cannot. In the latter cases, KruskalRST may generate valid, unconnected subtrees
that cannot be connected to form a feasible solution.

3.1.3 A Random Walk through G

Both PrimRST and KruskalRST associate non-uniform probabilities with the spanning
trees of a graph G, though the latter is less biased than the former. This section describes
three mechanisms that generate spanning trees in an unbiased way.

Section 2.3 described Prüfer numbers: vectors of length n − 2 over an alphabet of n node
labels that are in one-to-one correspondence with the spanning trees on n nodes. It is
easy to generate random Prüfer numbers with uniform probabilities; decoding them yields
unbiased random spanning trees. This is an effective and efficient mechanism when the
underlying graph G is complete.

63

Guénoche [47] described a random spanning tree algorithm for general graphs. It is based
on the fact that the number of distinct spanning trees in a graph can be found by computing
a determinant of size n×n, and it requires time that is O(n5). Colbourne [48] modified the
algorithm to require fewer determinant computations and reduced its time to O(n3). This
might be acceptable for the initialization of an EA’s population, but is too expensive to be
the basis of a recombination operator.

Broder [49] described a probabilistic method based on a random walk in G. A particle
begins at an arbitrary node in G. At each step, it moves over a randomly chosen adjacent
edge to one of its neighbors. When the particle visits a node for the first time, the edge it
traverses joins the spanning tree. The algorithm terminates when the particle has visited
every node and thus completed a spanning tree. We call this algorithm RandWalkRST :

procedure RandWalkRST(V ,E):
T ← ∅;
v0 ← a random node of G;
mark v0 as visited;
while |T | < n− 1 do

v1 ← a random neighbor of v0;
if v1 has not yet been visited then

T ← T ∪ {(v0, v1)};
mark v1 as visited;

v0 ← v1;
return T .

Broder showed that this process returns spanning trees with uniform probabilities. While
its worst-case time is unbounded—the particle may never visit some nodes—its expected
time is O(n log n) for almost all graphs and O(n3) for a few special cases.

Like PrimRST, RandWalkRST can honor constraints by disallowing edges that would vi-
olate them, though such a strategy will in general render non-uniform the probabilities of
valid spanning trees.

Broder [49] also described a mechanism that walks randomly not through the graph but
through the space of spanning trees on it. It begins with an arbitrary spanning tree, then
repeatedly replaces a random edge with a new one that reconnects the tree. The distribution
of spanning trees generated by this scheme converges to a uniform distribution even if G is
incomplete, and the distribution is nearly uniform after a number of steps that is polynomial
in n.

3.2 An Empirical Comparison

To further examine properties of spanning trees created by PrimRST and KruskalRST,
we applied these algorithms and RandWalkRST to complete graphs of different sizes and
measured the diameters of the resulting general spanning trees. A tree’s diameter is the
number of edges in a longest path in the tree. This value expresses the similarities of the
tree to a star, which has the minimum diameter of two, and to a path, which has the
maximum diameter of n− 1.

In the experiments, the number n of nodes ranged from three to 1 000, and each random
tree algorithm was called 500 times for each size. Figure 4 summarizes the results of these

64

1 2 5 10 20 50 10
0

20
0

50
0

10
00

n

0

30

60

90

120

di
am

et
er

PrimRST

RandWalkRST

KruskalRST

Figure 4: Average diameters (bold lines) with standard deviations added and subtracted
(thin lines) of random spanning trees created by PrimRST, KruskalRST, and Rand-
WalkRST on complete graphs of n nodes.

trials; it plots the average diameters of the trees the three algorithms returned against the
size of the underlying graph.

The results conform to the analyses in the preceding sections. At each number of nodes
greater than three, PrimRST returned trees of the smallest average diameter, thus the most
like stars. KruskalRST returned trees of larger average diameter, thus less like stars than
those of PrimRST. RandWalkRST returned trees of the largest average diameter, thus the
least like stars and the most like paths.

These differences were consistent and increased with n. When n = 1 000, the average
diameter of the PrimRST trees was about a quarter of that of RandWalkRST’s trees,
and the average diameter of KruskalRST’s trees was about 2/3 of the latter value. Both
KruskalRST and especially PrimRST are biased toward shallow, star-like structures.

3.3 Recombination

To provide good heritability, a recombination operator must build an offspring spanning
tree that consists mostly or entirely of edges found in the offspring’s parents. This can be
done by applying any of the random tree algorithms described in the previous section to the
graph Gcr = (V, T1 ∪ T2), where T1 and T2 are the edge-sets of the parental trees. Figure 5
illustrates this operation.

When recombination applies PrimRST, it builds adjacency lists from the two parental
edge-sets. In this case, |T1 ∪ T2| ≤ 2n − 2, and the time recombination requires is O(n).
Recombination based on KruskalRST also requires time that is linear in n.

In the absence of constraints, it is always possible to build an offspring spanning tree
using only edges from the two parents. However, when a problem constrains spanning
trees, recombination using only parental edges, whether based on PrimRST, KruskalRST,
or some other algorithm, may generate infeasible trees. When recombination runs out of

65

T1

T2
RST(T1 ∪ T2)T1 ∪ T2

Figure 5: Recombination of spanning trees by applying a random spanning tree algorithm
to the union of the parental edge-sets.

(a)

(b)

Figure 6: Mutation by either (a) including a new edge and removing another from the
introduced cycle or (b) by removing a randomly chosen edge, determining the separated
components, and reconnecting them by a new edge.

feasible edges from T1 ∪ T2, it must include feasible edges from E − (T1 ∪ T2); i.e., edges
found in neither parent. Usually, only a few non-parental edges are necessary to build a
valid offspring, and this strategy avoids complex repair and penalty mechanisms. Section 5
demonstrates this for degree-constraints on the nodes.

We distinguish variants of the recombination operator by the random spanning tree algo-
rithms they use and their treatment of edges appearing in both parents. Recombination
may favor such common edges, always including them in an offspring, or it may treat all
parental edges equally. Section 4 below compares these alternatives. As demonstrated in
Section 5, recombination may also modify edges’ probabilities heuristically, favoring, for
example, feasible edges of lower cost.

3.4 Mutation

Mutation (re-)introduces genetic information into the population. To provide high locality,
a mutation operator should usually make a small change in a parent solution. Here, the
smallest possible change is the replacement of one spanning tree edge with another feasible
edge.

This replacement can be implemented in two ways. The first, which Figure 6(a) depicts,
chooses an edge at random from E − T and includes it in T . This creates a cycle. The
operator then chooses a random edge in the cycle and removes it from T . If T is temporarily
represented by adjacency lists, a depth-first search can quickly identify the cycle, and the
operator’s time is O(n).

The second approach, which Figure 6(b) illustrates, deletes a random edge from T and
replaces it with a random new edge that reconnects the tree. On a complete graph and

66

without constraints, this operation’s time is also O(n), but it may be computationally more
expensive on an incomplete graph or under constraints.

4 The One-Max-Tree Problem

We compare the techniques just described in a steady-state EA for a simple spanning
tree problem called One-Max-Tree. In the well-known One-Max problem [50], a bit string’s
fitness is the number of 1’s it contains. In the One-Max-Tree problem [51], a target spanning
tree on a complete base graph is specified, and the fitness of any other tree is the number
of edges that it shares with the target. An EA that supports meaningful building blocks
should be able to solve this problem easily.

The evolutionary algorithm for One-Max-Tree is conventional. At each step, it selects
two parents in binary tournaments with replacement. It recombines them to generate
one offspring, which is then mutated. The resulting solution replaces the worst in the
population, except when it duplicates an existing solution. In the latter case, to preserve
diversity in the population, the EA discards the offspring.

Initialization of the population and recombination are based on PrimRST, KruskalRST,
or RandWalkRST, as the previous section described. In recombination, either all parental
edges are treated equally, or edges appearing in both parents are favored and automatically
appear in their offspring. We identify the latter variants with the symbol ‘*’.

The resulting six versions of the EA were applied to instances of One-Max-Tree of 10 to
100 nodes. The target trees were randomly chosen stars, general trees (generated by Rand-
WalkRST), and paths. The EA’s population size was 100 throughout, and the algorithm
was run 50 independent times for each combination of initialization and recombination
technique, problem size, and target tree structure. The EA always identified the target
tree, though the number of evaluations it required to do so varied. Table 2 lists the average
numbers evals of evaluations required to identify the target and their standard deviations s.

The most prominent result is that regardless of the RST-algorithm used for initialization
and recombination, the EA usually identified stars more quickly than general trees and
much more quickly than paths, and the differences became larger as the number of nodes
increased. Figure 7 plots the average numbers of iterations needed to identify the target
against the problem size for the EA with RandWalkRST. Since RandWalkRST does not
favor stars, we might be surprised that it identifies them most rapidly. The explanation
lies in the fact that the space of spanning trees is most sparse near stars; the EA can reach
them from nearby structures most easily.

More formally, let G be a complete graph on n nodes and let two spanning trees be neighbors
if they differ in exactly one edge. If G is complete, a star has only (n− 1)(n− 2) = O(n2)
neighbors, while a path has 1

6n(n− 1)(n + 1)− n + 1 = O(n3) neighbors [52].

Due to the large differences in the probabilities of KruskalRST and especially PrimRST for
creating star- versus path-like structures, one might expect that the random spanning tree
algorithm underlying initialization and recombination would substantially affect the EA’s
performance. However, Table 2 indicates that this is not the case. Columns δP,K and δK,R

list the relative differences (evals1−evals2)/min(evals1, evals2), where evals1 and evals2 are
the numbers of evaluations needed to identify the target tree when the EA used PrimRST
and KruskalRST, respectively KruskalRST and RandWalkRST. In general, the differences
are small and the variances are large. Columns αP,K and αK,R list the error probabilities in

67

Table 2: Average numbers of iterations needed by the EA using PrimRST, KruskalRST, or
RandWalkRST during initialization and recombination to solve the One-Max-Tree problem
for different target structures; in the ∗-variants, recombination favored edges appearing in
both parents.

PrimRST KruskalRST RandWalkRSTStruct. n
evals s evals s evals s

δP,K αP,K δK,R αK,R

star 10 446 113 737 180 797 172 -65% 0.0% -8% 4.6%
20 1 062 247 2 512 552 2 906 504 -137% 0.0% -16% 0.0%
50 14 742 4 973 27 823 7 759 29 267 7 221 -89% 0.0% -5% 16.9%

100 113 654 29 018 192 248 45 193 196 431 41 498 -69% 0.0% -2% 31.5%

tree 10 836 196 813 187 890 217 3% 27.0% -10% 2.9%
20 3 318 796 3 598 1 210 3 626 1 108 -8% 8.7% -1% 45.2%
50 66 353 28 546 74 092 25 102 69 994 25 333 -12% 7.7% 6% 20.9%

100 625 461 138 955 717 727 193 749 792 127 207 169 -15% 0.4% -10% 3.3%

path 10 1 026 254 821 199 784 236 25% 0.0% 5% 19.8%
20 5 314 1 445 3 654 574 3 254 732 45% 0.0% 12% 0.1%
50 127 065 56 306 111 331 52 128 98 801 40 056 14% 7.5% 13% 9.0%

100 1 188 204 358 886 1 166 542 387 468 1 234 315 296 382 2% 38.6% -6% 16.4%

PrimRST* KruskalRST* RandWalkRST*Struct. n
evals s evals s evals s

δP∗,K∗ αP∗,K∗ δK∗,R∗ αK∗,R∗

star 10 393 69 540 102 488 99 -37% 0.0% 11% 0.6%
20 1 243 402 1 922 728 1 530 315 -55% 0.0% 26% 0.0%
50 10 616 3 133 13 232 3 475 11 777 3 292 -25% 0.0% 12% 1.7%

100 64 444 15 352 64 895 12 427 66 431 15 375 -1% 43.6% -2% 29.2%

tree 10 507 121 513 131 486 108 -1% 41.2% 5% 13.8%
20 1 485 395 1 527 325 1 714 545 -3% 28.2% -12% 2.0%
50 17 514 5 890 15 514 4 764 16 479 4 458 13% 3.2% -6% 14.9%

100 101 661 26 280 108 767 26 427 98 116 25 471 -7% 9.0% 11% 2.1%

path 10 531 109 461 110 471 89 15% 0.1% -2% 67.9%
20 1 479 504 1 386 383 1 503 473 7% 15.1% -8% 8.8%
50 16 559 4 778 16 841 4 435 19 162 7 327 -2% 38.0% -14% 2.9%

100 129 456 35 014 124 792 43 770 110 784 25 648 4% 27.9% 13% 2.7%

t-tests of the hypotheses that differences exist; we may conclude with high confidence only
that PrimRST is the best choice when searching for star-like trees.

Thus the EA is robust with respect to the probabilities associated with spanning trees during
initialization and recombination. We have investigated this robustness in more detail [53]
and concluded that the probabilities associated with edges play a much more significant
role than do the probabilities associated with trees. If the underlying graph is complete,
edges are equally likely regardless of which of the three RST algorithms is used.

The lower half of Table 2 summarizes the trials in which the EA used the *-variants of
recombination, which favor edges that appear in both parents. Differences among these
versions of the EA were small and similar to the differences among the non-* recombination
operators. However, compared to those operators, the *-variants enabled the EA to identify
target trees using substantially fewer evaluations. For example, when targets were general
random trees on 100 nodes, the EA required only about 15% as many evaluations to find
them with the *-recombinations as it did with the non-* operators.

We conclude that the three random spanning tree algorithms are about equally effective in
this EA, and that recombination should conserve edges found in both parents. The bias
toward stars of PrimRST and KruskalRST is unimportant compared to the good locality
and heritability of the edge-set coding of spanning trees and the operators applied to it.

68

0 25 50 75 100
n

1x101

1x102

1x103

1x104

1x105

1x106

1x107

ite
ra

tio
ns

random tree

star

path

Figure 7: Average numbers of iterations needed by the EA with RandWalkRST to solve
the One-Max-Tree problem with stars, random trees, or paths as target.

0 250 500 750 1000
n

0

10

20

30

40

tim
e

pe
r

ite
ra

tio
n

[m
s]

RandWalkRST*

KruskalRST*

PrimRST*

Figure 8: Average CPU times for a single iteration of the EA including selection, crossover
based on either PrimRST*, KruskalRST*, or RandWalkRST*, and mutation.

Another important comparison between the three random spanning tree algorithms is
the time they require, particularly in recombination. We have seen that PrimRST and
KruskalRST can be implemented in time that is essentially linear in the number n of
nodes, but RandWalkRST has expected time that is O(n log n) for most graphs and O(n3)
for some cases, and its time is unbounded in the worst case.

Figure 8 plots the average CPU time per iteration through 10 000 iterations of the EA
using PrimRST*, KruskalRST*, and RandWalkRST* in recombination against the number
of nodes in the graph. The curves for PrimRST* and KruskalRST* confirm their linear
times. They also illustrate the larger constant in the time of PrimRST*, which uses more
complex data structures than does KruskalRST*, in particular a temporary array of ad-
jacency lists. The computational effort of RandWalkRST* is slightly greater than linear,
but still reasonable. In our implementation, only for n > 350 does RandWalkRST*’s time
exceed that of PrimRST*, and the difference is still less than 20% when n = 1 000. All
three *-variants of the EA scale well to larger problem instances; KruskalRST* holds an
advantage due to its simpler data structures.

69

For problems computationally more challenging than One-Max-Tree, we suggest considering
all three random spanning tree algorithms and choosing the one that can best be adapted
to a problem’s constraints and hybridized with local heuristics, as the following section
demonstrates using the degree-constrained minimum spanning tree problem.

5 The Degree-Constrained Minimum Spanning Tree Prob-
lem

In a graph, the degree of a node is the number of edges adjacent to it, and the degree
of the graph is the maximum degree of its nodes. In a weighted, undirected graph G,
consider all the spanning trees whose degrees do not exceed a bound d ≥ 2. Among these, a
tree of minimum cost is a degree-constrained minimum spanning tree (d-MST); the degree-
constrained minimum spanning tree problem seeks such a tree. That is, if c(e) is the cost
of an edge e ∈ E, it seeks a spanning tree T ⊆ E that minimizes

C =
∑

e∈T

c(e),

subject to the constraint
degree(T) ≤ d.

This problem is clearly NP-hard: When d = 2, it becomes the search for a Hamiltonian
path of minimum cost [54, p. 206].

Nevertheless, when the nodes are points in the plane and the edge costs are the Euclidean
distances between them, the problem is relatively easy. In this case, there always exists an
unconstrained minimum spanning tree of degree no more than five [55]. Finding a d-MST in
the plane is NP-hard when d = 3 and is conjectured to remain so when d = 4 [56]. Branch-
and-bound techniques can find exact solutions for problem instances of several hundred
points in reasonable computing times [6, 18], and several authors have described effective
polynomial-time approximation schemes and heuristics [57, 58].

In general, however, edge costs need not satisfy the triangle inequality. An unconstrained
minimum spanning tree may have degree up to n− 1, and when a graph has a high-degree
unconstrained MST, identifying a d-MST for it is usually hard. Even for graphs of moderate
size, exact algorithms and many heuristics are slow, and evolutionary algorithms are useful.

As in most previous work on the d-MST problem, we consider the case in which the under-
lying graph G is complete. However, our approach can be modified for incomplete graphs.

5.1 Satisfying the Degree Constraint

An EA employing the edge-set representation can guarantee that every tree it generates
satisfies the degree constraint if we appropriately modify the initialization, recombination,
and mutation operators.

To create spanning trees of degree no more than d for the algorithm’s initial population,
each of PrimRST, KruskalRST, and RandWalkRST accepts a newly-chosen edge only if its
inclusion does not violate the degree constraint. Since the underlying graph is complete,
this does not prevent each algorithm from always returning a spanning tree. Checking the

70

(b) partial T(a) T1 ∪ T2 (c) completed T

(d = 3)

Figure 9: Recombination with KruskalRST for the 3-MST problem: The partial solution
in (b) cannot feasibly be completed with parental edges shown in (a). Therefore, an edge
from E − (T1 ∪ T2) must be included (c).

feasibility of each new edge can be done quickly; it does not increase the time complexity
of the random spanning tree algorithms.

For recombination, the random spanning tree algorithms are modified in the same way, but
because of the degree constraint, it may become impossible to complete an offspring span-
ning tree using only parental edges. Figure 9 shows an example of this under KruskalRST.

In such a case, recombination must include non-parental edges. How this is done depends
on the random spanning tree algorithm.

• Under PrimRST, two nodes are chosen at random, one from the nodes in the spanning
tree T whose degrees are less than d and the other from the unconnected vertices.
The edge connecting these two nodes is included in the set of eligible edges. With
this modification, recombination can still be implemented in time that is linear in n.

• Under KruskalRST, after the parental edges have been exhausted, it is simple to
examine the non-parental edges in random order until the offspring tree has been
completed. The resulting algorithm’s time is, however, O(m) = O(n2).

A more efficient technique identifies the unconnected components of the incomplete
solution. These are connected by repeatedly adding edges between random nodes from
different components and with degrees less than the bound. This process requires time
that is only O(n).

• Under RandWalkRST, when the tree cannot be expanded with a parental edge, the
walk proceeds from a random connected node of degree less than d to any unconnected
node. This scheme requires keeping track of the unconnected nodes that may yet be
connected to the tree via a feasible parental edge; depending on the implementation,
maintaining this information can increase the algorithm’s expected time considerably.

During mutation, it is straightforward to ensure that the new edge does not violate the
degree constraint. If mutation inserts a new random edge before deleting one from the
cycle it completes, the following two special cases must be considered.

• If the new edge violates the degree constraint at both of its end-nodes, the edge
is not suitable for insertion and is therefore discarded; the selection of a new edge is
repeated. The probability of this case is small, so it does not much affect performance.

• If the new edge violates the degree constraint at one of its end-nodes, the edge to be
removed must be the other edge adjacent to this node in the cycle.

71

5.2 Heuristics Based on Edge-Costs

Including problem-specific knowledge in an EA often improves its performance. We consider
here a technique that is useful for many spanning tree problems: Choose edges to be included
in candidate spanning trees according to probabilities that are higher for edges of lower cost.

We have previously investigated empirically the probability that an edge appears in a near-
optimal degree-constrained spanning tree as a function of the edge’s cost-based rank [59].
On a complete graph of 100 nodes with several different cost structures, for example, it
was consistently the case that about 98% of the edges in near-optimal trees with d = 3
had ranks less than 300 = 3n; that is, they were among the cheapest 6.1% of all the edges
in the graph. These results support the intuition that candidate solutions should favor
low-cost edges. The following sections describe computationally efficient implementations
of this favoritism in KruskalRST initialization, KruskalRST* recombination, and mutation
via insertion-before-deletion.

Heuristic Initialization. To favor low-cost edges when generating the initial population,
KruskalRST begins by sorting all the edges by their costs. It builds the population’s first
spanning tree by examining edges in sorted order; that is, in order of increasing costs. The
remaining trees are created with less heuristic bias by randomly permuting the cheapest
k edges in the sorted list, before KruskalRST scans it. The number of edges permuted
increases with each tree according to the formula

k = α(i− 1)n/P,

where P is the population size, i is the index of the next tree (i = 1, . . . , P), and α is a
parameter that controls the heuristic bias, thus the diversity of the initial population.

Heuristic Recombination. To build an offspring spanning tree, KruskalRST* recombination
includes edges common to both parents, examines in random order the remaining parental
edges E′ = (T1 ∪ T2) − (T1 ∩ T2), and completes the offspring with non-parental edges
if necessary. To favor low-cost edges, the operator chooses each next edge from E′ in a
2-tournament with replacement; the contestant with lower cost is examined next. This
technique is simple and efficient, it favors low-cost edges without excluding more expensive
ones, and it does not increase the time complexity of the operator.

We have compared several similar heuristic recombination operators in EAs for the traveling
salesman and d-MST problems [59]. While an absolutely greedy strategy that always selects
the cheapest edge in E′ performed slightly better on problem instances that were simple or
small, tournament-based selection was better on large and misleading instances.

Heuristic Mutation. Mutation via insertion-before-deletion is also extended to favor the
insertion of low-cost edges. The edge to be inserted can be selected via a tournament on
E−T , but this set is large, so such a tournament must also be large to reliably return edges
of low cost. In several experiments, the following strategy was more effective.

Sort the edges in E by their costs; then each edge has a rank, with ties broken randomly.
Identify a rank, thus an edge, by sampling the random variable

R = b|N (0, β n)|c mod m + 1 ,

where N (0, β n) is a normally distributed random variable with mean 0 and standard de-
viation β n. Note that the values of R are integers between 1 and m = |E|. The parameter

72

0 10 20 30 40 50 60 70
0.00

0.02

0.04

0.06

0.08

 ß=1

 ß=1.5

 ß=2

 ß=3

 ß=5
0.2/

0.4/

0.6/

0.8/

0
2 3 4 5 6 71

se
le

ct
io

n
pr

ob
ab

ili
ty

cost−based rank

n

n n n n n n

n

n

n

n

Figure 10: Heuristic mutation: Probability that an edge is selected for insertion as a function
of its cost-based rank in E for β=1, 1.5, 2, 3, and 5.

β controls the strength of the scheme’s bias towards low-cost edges; Figure 10 shows the
probability density function of R for various values of β, assuming that n À 1 and m À n.

This scheme may select an edge already in T or an otherwise infeasible edge, but the
probability that this will happen is small; such an edge is discarded and the selection
repeated. If the graph’s edges are sorted in a pre-processing step, this scheme can select
each edge in constant expected time, and the expected time of mutation remains O(n).

5.3 Empirical Comparisons

The edge-set representation of spanning trees, with and without the cost-based heuristics
just described, was compared to three competing codings in a steady-state EA for the d-
MST problem. When the algorithm represents candidate spanning trees by their edge-sets
and non-heuristic operators are used, we identify it as ES-EA. The variant that includes
edge-cost-based heuristics is called HES-EA. The competing codings represent spanning
trees as strings via the Blob Code [32] (Section 2.3), as network random keys [36] (Sec-
tion 2.5), and as strings of real-valued weights that influence a decoding algorithm [34]
(Section 2.4). We identify the variants of the EA that use these codings as BC-EA, NRK-
EA, and WE-EA, respectively.

All five variants initialize their populations with random solutions, according to their cod-
ings of spanning trees. They select parents from the population in binary tournaments with
replacement. They create offspring via crossover with a probability of 80% and by always
applying one mutation. Each offspring, if it does not duplicate an existing solution, replaces
the worst solution in the population.

The algorithms’ populations always contain 500 candidate trees. In HES-EA, the parame-
ters α and β, which control the degree of heuristic bias in initialization and mutation, are
both 1.5. BC-EA applies uniform crossover, position-by-position mutation, and to com-
ply with the degree constraint, the initialization and repair strategies described by Zhou
and Gen [7] for Prüfer numbers. NRK-EA uses uniform crossover and position-by-position
mutation as suggested in [51]; the degree constraint is enforced by decoding solutions via
a variant of Kruskal’s algorithm that accepts only feasible edges. WE-EA selects the val-
ues in its initial solutions from a normal distribution, and generates offspring via uniform

73

Table 3: Average results on structured-hard problem instances for problem-space-search
(PSS) and EAs employing the Blob Code (BC-EA), network random keys (NRK-EA), the
weighted coding (WE-EA), and the edge-set representation (ES-EA), optionally including
edge-cost-based heuristics (HES-EA).

Instance PSS BC-EA NRK-EA WE-EA ES-EA HES-EA

name n d Copt %-gap %-gap s %-gap s %-gap s %-gap s Opt %-gap s Opt

SHRD150 15 3 582 1.72 7.15 2.50 0.03 0.10 3.44 2.39 0.02 0.08 47 0.00 0.00 50
4 430 2.79 12.07 4.26 0.00 0.00 4.64 0.07 0.00 0.00 50 0.00 0.00 50
5 339 0.00 15.55 7.68 0.00 0.00 2.27 3.69 0.00 0.00 50 0.00 0.00 50

SHRD200 20 3 1 088 2.02 8.85 3.67 0.18 0.15 0.26 0.17 0.06 0.10 34 0.12 0.12 20
4 802 2.00 11.96 4.67 0.17 0.35 0.18 0.13 0.04 0.11 39 0.03 0.05 39
5 627 1.28 16.95 7.76 0.26 0.33 0.48 0.03 0.05 0.16 43 0.00 0.00 50

SHRD250 25 3 1 745 2.35 9.44 3.47 0.44 0.88 0.65 0.18 0.01 0.02 40 0.17 0.17 5
4 1 276 1.10 15.20 7.14 0.42 0.57 0.62 0.33 0.05 0.08 31 0.05 0.09 35
5 999 2.50 17.40 6.71 0.47 0.50 0.00 0.00 0.00 0.00 50 0.00 0.00 50

SHRD300 30 3 2 592 2.04 8.67 2.50 0.74 1.17 0.13 0.08 0.07 0.07 14 0.29 0.18 4
4 1 905 1.63 14.57 6.32 1.02 1.45 0.10 0.05 0.12 0.15 20 0.09 0.22 33
5 1 504 1.46 19.42 8.55 1.19 1.32 0.22 0.11 0.14 0.18 19 0.42 0.45 18

crossover and a mutation operator that resets weights to new normal random values, as
described by Raidl and Julstrom [34]. All five variants stop when the best solution has not
improved for 100 000 iterations.

Knowles and Corne [25] have observed that simple greedy heuristics can usually find near-
optimal solutions to instances of the d-MST problem with Euclidean or randomly dis-
tributed edge costs. Similarly, HES-EA and WE-EA can in most cases identify optimal
solutions to such problems with few evaluations. We compare the EA variants on more
challenging instances that have high-degree unconstrained minimum spanning trees and
low-cost edges chosen to mislead greedy heuristics.

From Krishnamoorthy et al. [18] we adopt the “structured hard” instance set, which con-
tains four d-MST instances from 15 to 30 nodes with unconstrained MSTs of high degree.
Here, the maximum degree d was set in turn to 3, 4, and 5, and each EA variant was run
50 times on each of the resulting twelve instances.

Table 3 shows the results of these trials, along with optimal values generated by a com-
putationally expensive branch-and-cut algorithm, not yet published, and the previously
published results of the problem-space-search EA (PSS) of Krishnamoorthy et al. [18].

A trial’s percentage gap %-gap is the percentage by which the cost C of the trial’s best tree
exceeds the optimum cost Copt of the problem instance:

%-gap =
C − Copt

Copt
· 100%.

For each EA-variant on each problem instance, Table 3 displays the average %-gap over the
corresponding trials and the standard deviation s of the gaps. For ES-EA and HES-EA,
columns Opt show the number of trials that found an optimal spanning tree (out of 50
trials per instance).

Table 3 reveals clear differences in performance among the EA variants. The edge-set rep-
resentation with and without heuristics (HES-EA and ES-EA) gave in general the best

74

Table 4: Average results on hard misleading instances with maximum degree d = 5 for
Knowles and Corne’s EA (KC-EA) and EAs using the Blob Code (BC-EA), network random
keys (NRK-EA), the weighted coding (WE-EA), and the edge-set representation (ES-EA),
optionally including edge-cost-based heuristics (HES-EA).

Instance KC-EA BC-EA NRK-EA WE-EA ES-EA HES-EA

name n Copt %-gap %-gap s %-gap s %-gap s %-gap s %-gap s Opt

M1 50 6.60 28.37 136.56 27.12 7.85 4.16 0.41 0.20 1.19 2.02 0.00 0.00 50
M2 50 5.78 35.18 163.28 33.08 11.75 5.90 9.01 3.46 1.45 2.97 <0.01 0.01 49
M3 50 5.50 9.54 133.75 25.94 5.40 2.80 16.20 5.88 0.92 1.65 0.00 0.00 50

M4 100 11.08 23.48 217.16 33.06 53.88 12.26 3.60 2.78 6.58 5.93 <0.01 0.01 49
M5 100 11.33 36.59 224.50 33.29 58.62 13.05 4.59 4.61 10.78 6.18 <0.01 0.01 49
M6 100 10.19 44.71 253.88 33.39 71.33 13.45 6.89 1.68 14.70 8.93 0.01 0.05 46

M7 200 18.33 13.96 296.69 31.97 146.60 13.54 0.34 0.14 17.64 6.36 0.02 0.04 31
M8 200 19.16 37.60 313.29 30.33 166.17 14.13 0.87 0.95 26.30 7.55 0.02 0.03 26
M9 200 16.13 2.06 313.17 32.13 153.89 13.24 0.36 0.57 9.78 3.76 0.01 0.01 15

M10 300 40.69∗ – 175.48 15.26 89.67 5.07 13.71 2.93 19.99 3.09 0.06 0.04 1
M11 400 54.69∗ – 212.72 22.78 137.93 4.74 20.34 2.73 37.84 3.84 1.00 0.93 1
M12 500 79.34∗ – 171.53 12.90 117.38 3.82 29.09 1.23 34.04 3.02 1.09 0.74 1

results, followed by the weighted coding (WE-EA), network random keys (NRK-EA), prob-
lem space search (PSS), and the Blob Code (BC-ES). The latter’s performance was de-
cisively the worst. ES-EA and HES-EA returned similarly good results, which were the
best on all the instances except SHRD300, where WE-EA sometimes performed slightly
better. On SHRD250 with d = 5, all three, HES-EA, ES-EA, and WE-EA, found optimum
solutions in all trials. On the remaining instances, of 15, 20, and 25 nodes, t-tests indicate
the superiority of ES-EA and HES-EA to WE-EA at a significance level much smaller than
1%. NRK-EA performed as well as (H)ES-EA only on the smallest instance SHRD150,
where it also identified optimum solutions most of the time. HES-EA was usually the
fastest of the competing algorithms, though all terminated on average within 15 seconds
on a Pentium-III/800MHz PC.

Because operations on edge-sets are fast, (H)ES-EA scales well to larger problem instances.
We demonstrate this, and further compare the five EA-variants, on a set of larger “hard
and misleading” d-MST instances. Nine of these instances, of 50, 100, and 200 nodes,
were developed by Knowles and Corne [25]; we created three more instances with similar
structure of 300, 400, and 500 nodes. These instances are hard for simple greedy algorithms
because they contain low-cost edges that do not appear in optimum solutions. These edges
mislead greedy heuristics—e.g., Prim’s MST algorithm modified to accept only edges that
satisfy the degree constraint [6]—so that they produce only poor solutions. Knowles and
Corne [25] describe the creation of such instances in detail. In all twelve instances, the
degree constraint was set to d = 5. Each EA was run 50 times on each instance.

Table 4 reports the results of these trials and reprints the results of the EA of Knowles and
Corne [25] (Section 2.6) on the first nine instances. For these instances, the costs of optimal
trees were again determined by branch-and-cut and were used to compute the percentage
gaps of the EA-results. For the remaining three instances, percentage gaps were computed
in terms of the lowest costs observed in all the trials on them; these costs are marked by
‘*’ in the table.

Differences in the algorithms’ performances are readily apparent and without exception
significant at a level far less than 1%. HES-EA always returned the best results; on instances

75

Table 5: Average numbers of evaluations and CPU times until the best solutions for runs
on hard misleading problem instances. The runs of NRK-EA and WE-EA on M11 and M12
were terminated after 100 000 evaluations.

Instance BC-EA NRK-EA WE-EA ES-EA HES-EA
name n evals t [s] evals t [s] evals t [s] evals t [s] evals t [s]
M1 50 122 332 17 59 133 74 26 732 36 68 534 17 5 331 2
M4 100 221 378 58 113 504 633 78 824 408 202 678 97 12 958 7
M7 200 386 840 222 200 625 5 188 98 551 2 373 475 084 466 16 415 20
M10 300 531 862 506 249 008 15 723 265 684 16 793 969 885 1 396 36 124 69
M11 400 665 009 905 99 166 14 179 99 519 12 631 1 321 372 2 585 47 290 140
M12 500 848 315 1 525 99 268 27 341 99 801 19 026 1 793 420 8 466 60 701 240

of up to 200 nodes it often found optimal trees, as column Opt documents. It is followed by
WE-EA, ES-EA, the algorithm of Knowles and Corne (KC-EA) and, trailing far behind,
NRK-EA and finally BC-EA. The superiority of HES-EA becomes more decisive as the
instances become larger. Here, local heuristics based on edge-costs, as they appear in
HES-EA and implicitly in WE-EA, are an obvious advantage.

In the experiments Table 4 summarizes, the trials of NRK-EA and WE-EA on the 400-
and 500-node instances exceeded their allotted run-times and were terminated after a to-
tal of 100 000 evaluations. Table 5 shows the EAs’ average numbers of evaluations and
average CPU times until the best solutions have been identified on instances of six sizes.
While the times of HES-EA, BC-EA, and ES-EA increase relatively slowly with n, the
times WE-EA and NRK-EA require grow rapidly. Decoding strings of weights to degree-
constrained spanning trees requires modifying all the edge costs and then applying a variant
of Prim’s algorithm that considers the degree-constraint; its time is O(n2 log n). Similarly,
sorting edges according to network random keys and applying Kruskal’s algorithm requires
O(m log m) time.

6 Conclusion

The most important factor in an evolutionary algorithm’s performance is the interaction of
its coding of candidate solutions with the operators it applies to them. We have proposed
that spanning trees be represented directly as sets of their edges, and we have described
initialization, recombination, and mutation operators for the edge-set encoding. These
operators offer strong locality and heritability and computational efficiency.

For the initialization and recombination operators, three algorithms that generate random
spanning trees were investigated. PrimRST and, to a lesser degree, KruskalRST are dis-
proportionately likely to yield star-like trees, but RandWalkRST generates spanning trees
with uniform probabilities. Nonetheless, tests using the One-Max-Tree problem indicate
that an EA’s performance depends little on this choice. Operators that use KruskalRST
are slightly faster because of its simpler data structures, but the choice should be based on
how easily operators can accommodate problem-specific constraints and be hybridized with
other heuristics.

Recombination of spanning trees should always include in the offspring edges that are
common to both parents. Our studies indicate the clear benefits of this strategy, regardless
of the underlying random spanning tree algorithm, target tree structure, or problem size.

76

The edge-set representation was applied in an EA for the degree-constrained minimum
spanning tree problem. With small modifications, the initialization, recombination, and
mutation operators all efficiently maintained the degree constraint, and they were easily
extended to accommodate heuristics that probabilistically prefer low- to high-cost edges.
These heuristics substantially improve the EA’s performance.

Tests on two sets of hard d-MST problem instances indicate the superiority of edge-sets,
particularly when the variation operators implement edge-cost-based heuristics, to several
other codings of spanning trees—the Blob Code, network random keys, and strings of
weights—in evolutionary search. The edge-set-coded EA identified better solutions on most
instances, and it scaled up more efficiently to larger problem sizes.

Acknowledgments

The authors would like to thank the anonymous reviewers and David Fogel for their their
valueable comments on a previous version of this article. This work has been supported by
the Austrian Science Fund (FWF) under the grant P13602–INF.

References

[1] J. B. Kruskal, “On the shortest spanning subtree of a graph and the traveling salesman
problem,” Proceedings of the American Mathematics Society, vol. 7, no. 1, pp. 48–50,
1956.

[2] R. Prim, “Shortest connection networks and some generalizations,” Bell System Tech-
nical Journal, vol. 36, pp. 1389–1401, 1957.

[3] Bernard Chazelle, “A minimum spanning tree algorithm with inverse-Ackermann type
complexity,” Journal of the Association for Computing Machinery, vol. 47, no. 6, pp.
1028–1047, 2000.

[4] T. C. Hu, “Optimum communication spanning trees,” SIAM Journal of Computing,
vol. 3, pp. 188–195, 1974.

[5] M. L. Gargano, W. Edelson, and O. Koval, “A genetic algorithm with feasible search
space for minimal spanning trees with time-dependent edge costs,” in Genetic Pro-
gramming 1998: Proceedings of the Third Annual Conference, John R. Koza, Wolfgang
Banzhaf, Kumar Chellapilla, Kalyanmoy Deb, Marco Dorigo, David B. Fogel, Hitoshi
Iba, and Rick L. Riolo, Eds. 1998, p. 495, Morgan Kaufmann.

[6] S. C. Narula and C. A. Ho, “Degree-constrained minimum spanning trees,” Computers
and Operations Research, vol. 7, pp. 239–249, 1980.

[7] G. Zhou and M. Gen, “Genetic algorithms on leaf-constrained minimum spanning tree
problem,” Beijing Mathematics, vol. 7, no. 2, pp. 50–62, 1998.

[8] L. R. Esau and K. C. Williams, “On teleprocessing system design,” IBM Systems
Journal, vol. 5, pp. 142–147, 1966.

[9] C. H. Papadimitriou, “The complexity of the capacitated tree problem,” Networks,
vol. 8, pp. 217–230, 1978.

77

[10] M. Hanan, “On Steiner’s problem with rectilinear distance,” SIAM Journal of Applied
Mathematics, vol. 14, no. 2, pp. 255–265, 1966.

[11] G. M. Guisewite and P. M. Pardalos, “Minimum concave-cost network flow problems:
Applications, complexity and algorithms,” Annals of Operations Research, vol. 25, pp.
75–100, 1990.

[12] M. Gen and Yinzhen Li, “Spanning tree-based genetic algorithm for the bicriteria fixed
charge transportation problem,” In Angeline et al. [60], pp. 2265–2271.

[13] L. Davis, D. Orvosh, A. Cox, and Y. Qiu, “A genetic algorithm for survivable network
design,” in Proceedings of the Fifth International Conference on Genetic Algorithms,
Stephanie Forrest, Ed. 1993, pp. 408–415, Morgan Kaufmann.

[14] P. Piggott and F. Suraweera, “Encoding graphs for genetic algorithms: An inves-
tigation using the minimum spanning tree problem,” in Progress in Evolutionary
Computation, Xin Yao, Ed., LNAI 956, pp. 305–314. Springer, 1995.

[15] A. Cayley, “A theorem on trees,” Quarterly Journal of Mathematics, vol. 23, pp.
376–378, 1889.

[16] Les Berry, Bruce Murtagh, and Steve Sugden, “A genetic-based approach to tree net-
work synthesis with cost constraints,” in Proceedings of the Second European Congress
on Intelligent Techniques and Soft Computing, H. Zimmermann, Ed., Aachen, Ger-
many, 1994, pp. 626–629.

[17] C. C. Palmer and A. Kershenbaum, “Representing trees in genetic algorithms,” in Pro-
ceedings of the First IEEE Conference on Evolutionary Computation, David Schaffer,
Hans-Paul Schwefel, and David B. Fogel, Eds. 1994, pp. 379–384, IEEE Press.

[18] Mohan Krishnamoorthy and Andreas T. Ernst, “Comparison of algorithms for the
degree constrained minimum spanning tree,” Journal of Heuristics, vol. 7, pp. 587–
611, 2001.

[19] F. N. Abuali, R. L. Wainwright, and D. A. Schoenefeld, “Determinant factorization:
A new encoding scheme for spanning trees applied to the probabilistic minimum span-
ning tree problem,” in Proceedings of the Sixth International Conference on Genetic
Algorithms, Larry J. Eshelman, Ed. 1995, pp. 470–477, Morgan Kaufmann.

[20] C.-H. Chu, G. Premkumar, C. Chou, and J. Sun, “Dynamic degree constrained net-
work design: A genetic algorithm approach,” in Proceedings of the 1999 Genetic and
Evolutionary Computation Conference, Wolfgang Banzhaf, Jason Daida, Agoston E.
Eiben, Max H. Garzon, Vasant Honavar, Mark Jakiela, and Robert E. Smith, Eds.
1999, pp. 141–148, Morgan Kaufmann.

[21] Les Berry, Bruce Murtagh, Steve Sugden, and Graham McMahon, “Application of
a genetic-based algorithm for optimal design of tree-structured communication net-
works,” in Proceedings of the Regional Teletraffic Engineering Conference of the In-
ternational Teletraffic Congress, South Africa, 1995, pp. 361–370.

[22] Hsinghua Chou, G. Premkumar, and Chao-Hsien Chu, “Genetic algorithms for com-
munications network design—An empirical study of the factors that influence perfor-
mance,” IEEE Transactions on Evolutionary Computation, vol. 5, no. 3, pp. 236–249,
2001.

78

[23] S. Even, Algorithmic Combinatorics, The Macmillan Company, New York, 1973.

[24] H. Prüfer, “Neuer Beweis eines Satzes über Permutationen,” Archiv für Mathematik
und Physik, vol. 27, pp. 141–144, 1918.

[25] J. Knowles and D. Corne, “A new evolutionary approach to the degree constrained
minimum spanning tree problem,” IEEE Transactions on Evolutionary Computation,
vol. 4, no. 2, pp. 125–134, 2000.

[26] Franz Rothlauf and David Goldberg, “Pruefernumbers and genetic algorithms: A
lesson how the low locality of an encoding can harm the performance of GAs,” in
Parallel Problem Solving from Nature – PPSN VI, Kalyanmoy Deb, Günther Rodolph,
Xin Yao, and Hans-Paul Schwefel, Eds. 2000, vol. 1917 of LNCS, pp. 395–404, Springer.

[27] G. Zhou and M. Gen, “Approach to degree-constrained minimum spanning tree prob-
lem using genetic algorithm,” Engineering Design & Automation, vol. 3, no. 2, pp.
157–165, 1997.

[28] J. R. Kim and M. Gen, “Genetic algorithm for solving bicriteria network topology
design problem,” In Angeline et al. [60], pp. 2272–2279.

[29] Jens Gottlieb, Bryant A. Julstrom, Günther R. Raidl, and Franz Rothlauf, “Prüfer
numbers: A poor representation of spanning trees for evolutionary search,” in Pro-
ceedings of the 2001 Genetic and Evolutionary Computation Conference, Lee Spector,
Erik Goodman, Annie Wu, W. Langdon, Hans-Michael Voigt, Mitsuo Gen, Sandip
Sen, Marco Dorigo, Shahram Pezeshk, Max Garzon, and Edmund Burke, Eds. 2000,
pp. 343–350, Morgan Kaufmann.

[30] Sally Picciotto, How to Encode a Tree, Ph.D. thesis, University of California, San
Diego, 1999.

[31] Narsingh Deo and Paulius Micikevicius, “Comparison of Prüfer-like codes for labeled
trees,” in 32. Southeastern International Conference on Combinatorics, Graph Theory,
and Computing, Baton Rouge, LA, 2001.

[32] Bryant A. Julstrom, “The Blob Code: A better string coding of spanning trees for evo-
lutionary search,” in 2001 Genetic and Evolutionary Computation Conference Work-
shop Program, Robert Heckendorn, Ed., San Francisco, CA, 2001, pp. 256–261.

[33] Thomas Gaube and Franz Rothlauf, “The link and node biased encoding revisited:
Bias and adjustment of parameters,” In Boers et al. [61], pp. 11–19.

[34] Günther R. Raidl and Bryant A. Julstrom, “A weighted coding in a genetic algorithm
for the degree-constrained minimum spanning tree problem,” in Proceedings of the 2000
ACM Symposium on Applied Computing, Janice Carroll, Ernesto Damiani, Hisham
Haddad, and Dave Oppenheim, Eds. 2000, pp. 440–445, ACM Press.

[35] J. C. Bean, “Genetic algorithms and random keys for sequencing and optimization,”
ORSA Journal on Computing, vol. 6, no. 2, pp. 154–160, 1994.

[36] Franz Rothlauf, David Goldberg, and Armin Heinzl, “Bad codings and the utility
of well-designed genetic algorithms,” in Proceedings of the 2000 Genetic and Evolu-
tionary Computation Conference, Darrell Whitley, David Goldberg, Erick Cantu-Paz,
Lee Spector, Ian Parmee, and Hans-Georg Beyer, Eds. 2000, pp. 355–362, Morgan
Kaufmann.

79

[37] Franz Rothlauf, Representations for Genetic and Evolutionary Algorithms, Studies in
Fuzziness and Soft Computing. Physica, Heidelberg, 2002.

[38] Barbara Schindler, Franz Rothlauf, and Hans-Josef Pesch, “Evolution strategies, net-
work random keys, and the One-Max Tree problem,” in Applications of Evolutionary
Computing: EvoWorkshops 2002, Stefano Cagnoni, Jens Gottlieb, Emma Hart, Mar-
tin Middendorf, and Günther R. Raidl, Eds. 2002, vol. 2279 of LNCS, pp. 143–152,
Springer.

[39] M. Gen, G. Zhou, and J. R. Kim, “Genetic algorithms for solving network design
problems: State-of-the-art survey,” Evolutionary Optimization, vol. 1, no. 2, pp. 121–
141, 1999.

[40] William Edelson and Michael Gargano, “Feasible encodings for GA solutions of con-
strained minimal spanning tree problems,” In Armstrong [62], pp. 82–89.

[41] Günther R. Raidl, “An efficient evolutionary algorithm for the degree-constrained
minimum spanning tree problem,” in Proceedings of the 2000 IEEE Congress on
Evolutionary Computation, Carlos Fonseca, Jong-Hwan Kim, and Alice Smith, Eds.
2000, pp. 104–111, IEEE Press.

[42] Bryant A. Julstrom, “Encoding rectilinear Steiner trees as lists of edges,” In Lamont
et al. [63], pp. 356–360.

[43] Y. Li and Y. Bouchebaba, “A new genetic algorithm for the optimal communica-
tion spanning tree problem,” in Proceedings of Artificial Evolution: Fourth European
Conference, Cyril Fonlupt, Jin-Kao Hao, Evelyne Lutton, Edmund Ronald, and Marc
Schoenauer, Eds. 1999, vol. 1829 of LNCS, pp. 162–173, Springer.

[44] Y. Li, “An effective implementation of a direct spanning tree representation in GAs,”
In Boers et al. [61], pp. 11–19.

[45] Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman, Data Structures and Algo-
rithms, Addison-Wesley, Reading, MA, 1983.

[46] Günther R. Raidl and Christina Drexel, “A predecessor coding in an evolutionary
algorithm for the capacitated minimum spanning tree problem,” In Armstrong [62],
pp. 309–316.

[47] A. Guénoche, “Random spanning tree,” Journal of Algorithms, vol. 2, pp. 214–220,
1983.

[48] Charles J. Colbourne, Robert P. J. Day, and Louis D. Nel, “Unranking and ranking
spanning trees of a graph,” Journal of Algorithms, vol. 10, no. 2, pp. 249–270, 1989.

[49] Andrei Broder, “Generating random spanning trees,” in IEEE 30th Annual Symposium
on Foundations of Computer Science. 1989, pp. 442–447, IEEE.

[50] D. H. Ackley, A Connectionist Machine for Genetic Hill Climbing, Kluwer Academic
Press, Boston, 1987.

[51] Franz Rothlauf, David Goldberg, and Armin Heinzl, “Network random keys – a tree
network representation scheme for genetic and evolutionary algorithms,” Evolutionary
Computation, vol. 10, no. 1, pp. 75–97, 2002.

80

[52] Franz Rothlauf and David Goldberg, “Tree network design with genetic algorithms
– An investigation in the locality of the Pruefernumber encoding,” in Late Breaking
Papers at the 1999 Genetic and Evolutionary Computation Conference, Scott Brave
and Annie S. Wu, Eds., Orlando, FL, 1999, pp. 238–243.

[53] B. A. Julstrom and G. R. Raidl, “Initialization is robust in evolutionary algorithms that
encode spanning trees as sets of edges,” in Proceedings of the 2002 ACM Symposium
on Applied Computing, Gary Lamont et al., Eds. 2002, pp. 547–552, ACM Press.

[54] Michael R. Garey and David S. Johnson, Computers and Intractability: A Guide to
the Theory of NP-Completeness, W. H. Freeman, New York, 1979.

[55] C. Monma and S. Suri, “Transitions in geometric minimum spanning trees,” Discrete
and Computational Geometry, vol. 8, no. 3, pp. 265–293, 1992.

[56] C. H. Papadimitriou and U. V. Vazirani, “On two geometric problems related to the
traveling salesman problem,” Journal of Algorithms, vol. 5, pp. 231–246, 1984.

[57] S. Fekete, S. Khuller, M. Klemmstein, B. Raghavachari, and N. Young, “A network-
flow technique for finding low-weight bounded-degree spanning trees,” Journal of
Algorithms, vol. 24, pp. 310–324, 1997.

[58] M. Savelsbergh and T. Volgenant, “Edge exchanges in the degree-constrained minimum
spanning tree problem,” Computers and Operations Research, vol. 12, no. 4, pp. 341–
348, 1985.

[59] Bryant A. Julstrom and Günther R. Raidl, “Weight-biased edge-crossover in evolu-
tionary algorithms for two graph problems,” In Lamont et al. [63], pp. 321–326.

[60] Peter J. Angeline, Zbyszek Michalewicz, Marc Schoenauer, Xin Yao, Ali Zalzala, and
William Porto, Eds., Proceedings of the 1999 IEEE Congress on Evolutionary Com-
putation. IEEE Press, 1999.

[61] Egbert J.W. Boers, Stefano Cagnoni, Jens Gottlieb, Emma Hart, Pier Luca Lanzi,
Günther R. Raidl, Robert E. Smith, and Harald Tijink, Eds., Applications of Evolu-
tionary Computation, vol. 2037 of LNCS. Springer, 2001.

[62] Chris Armstrong, Ed., Late Breaking Papers at the 2000 Genetic and Evolutionary
Computation Conference, Las Vegas, NV, 2000.

[63] Gary Lamont, Janice Carroll, Hisham Haddad, Don Morton, George Papadopoulos,
Richard Sincovec, and Angelo Yfantis, Eds., Proceedings of the 16th ACM Symposium
on Applied Computing. ACM Press, 2001.

81

Proof that ppath < punif for PrimRST

We show by induction that

ppath =
2n−1

(n− 1)!n!
< punif =

1
nn−2

for n ≥ 4 . (1)

This inequality is trivially true for n = 4.

We assume it holds for any n ≥ 4 and derive its validity for n + 1:

2n

n! (n + 1)!
<

1
(n + 1)n−1

⇐⇒ 2
n(n + 1)︸ ︷︷ ︸

A

· 2n−1

(n− 1)!n!
<

1
nn−2

︸ ︷︷ ︸
assumption

· nn−2

(n + 1)n−1

︸ ︷︷ ︸
B

(2)

Since
A

B
=

2(n + 1)n−2

nn−1
=

2n

(n + 1)2

(
1 +

1
n

)n

and the infinite sequence {(1 + 1/n)n} is monotonically increasing with n and converges to
Euler’s number e, it follows that

A

B
<

2e · n
(n + 1)2

< 1 (for n ≥ 4)

and inequalities (2) and (1) are true. 2

82

