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We present a computational framework for model inversion based on

multi-fidelity information fusion and Bayesian optimization. The proposed

methodology targets the accurate construction of response surfaces in par-

ameter space, and the efficient pursuit to identify global optima while

keeping the number of expensive function evaluations at a minimum. We

train families of correlated surrogates on available data using Gaussian

processes and auto-regressive stochastic schemes, and exploit the resulting

predictive posterior distributions within a Bayesian optimization setting.

This enables a smart adaptive sampling procedure that uses the predictive

posterior variance to balance the exploration versus exploitation trade-off,

and is a key enabler for practical computations under limited budgets.

The effectiveness of the proposed framework is tested on three parameter

estimation problems. The first two involve the calibration of outflow bound-

ary conditions of blood flow simulations in arterial bifurcations using

multi-fidelity realizations of one- and three-dimensional models, whereas

the last one aims to identify the forcing term that generated a particular

solution to an elliptic partial differential equation.
1. Introduction
Inverse problems are ubiquitous in science. Being inherently ill-posed, they

require solution paths that often challenge the limits of our understanding, as

reflected by our modelling and computing capabilities. Unlike forward problems,

in inverse problems we have to numerically solve the principal equations (i.e. the

forward problem) multiple times, often hundreds of times. The complexity in

repeatedly solving the forward problem is further amplified in the presence of

nonlinearity, high-dimensional parameter spaces and massive datasets; all

common features in realistic physical and biological systems. The natural setting

for model inversion finds itself within the principles of Bayesian statistics, which

provides a formal ground for parameter estimation, i.e. the process of passing

from prior belief to a posterior predictive distribution in view of data. Here, we

leverage recent advances in machine learning algorithms for high-dimensional

input spaces and big data [1] to design a framework for parameter estima-

tion in blood flow models of the human circulation. The proposed paradigm

aims at seamlessly using all available information sources, e.g. experimental

measurements, computer simulations, empirical laws, etc., through a general

multi-fidelity information fusion methodology in which surrogate models are

trained on available data, enabling one to explore the interplay between all

such sources in a systematic manner.

In general, we model the response of a system as a function y ¼ gðxÞ of d
input parameters x [ Rd. The goal of model inversion is to identify the para-

metric configuration in x that matches a target response y�. This translates

into solving the following optimization problem:

min
x[Rd
kgðxÞ � y�k, ð1:1Þ
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in some suitable norm. In practice, x is often a high-dimensional

vector and g is a complex, nonlinear and expensive to compute

map that represents the system’s evolving dynamics. These

factors render the solution of the optimization problem very

challenging and motivate the use of surrogate models as a

remedy for obtaining inexpensive samples of g at unobserved

locations. To this end, a surrogate model acts as an intermedi-

ate agent that is trained on available realizations of g, and then

is able to perform accurate predictions for the response at a new

set of inputs. Ever since the seminal work of Sacks et al. [2], the

use of surrogates in the design and analysis of computer exper-

iments has undergone great growth, establishing a data-driven

mindset for design, optimization and, recently, uncertainty

quantification problems [1,3]. Of particular importance to our

work is the approach of Kennedy & O’Hagan [4], who intro-

duced the use of stochastic auto-regressive maps for building

surrogates from a multitude of information sources of variable

fidelity. We reckon that this framework enables the meaningful

integration of seemingly disparate methodologies and pro-

vides a universal platform in which experiments, simulations

and expert opinion can coexist in unison. The main challen-

ges here arise from scaling this surrogate-based approach

to constructing response surfaces in high-dimensional input

spaces and performing tractable machine learning on massive

datasets. Here, we highlight the recent work in [1] that aims

to address these challenges and enable the construction of

multi-fidelity surrogates for realistic high-dimensional cases.

In silico modelling of blood flow in the human vasculature

has received great attention over the last 20 years, resulting in

the development of computational tools that helped elucidate

key biophysical aspects but also aim to provide a customized,

patient-specific tool for prediction, intervention and treatment.

Despite great growth in computing power and algorithmic

sophistication, the applicability of such models is limited to

truncated arterial domains, as the complexity introduced

from considering circulation in the entire arterial network

remains intractable [5]. Addressing this complexity often

leads to the introduction of a series of assumptions, parameters

and simplified models. Consequently, the physiological rel-

evance of our computations directly relies on the calibration of

such parameters and models, which, due to the inherent diffi-

culty of them being determined in the clinical setting, remains

very empirical, as the resulting haemodynamic problem

could admit an infinite number of solutions [6]. To this end,

recent efforts for developing model inversion techniques in hae-

modynamics have been proposed in [7–11]. A common theme

among these efforts is the utilization of reduced order models

that can be sampled extensively and with low computational

cost, returning a response f � g that enables a computationally

tractable solution to the optimization problem of equation

(1.1). Among possible reduced order model candidates, the

most widely used are nonlinear one-dimensional (1D) fluid–

structure interaction (FSI) models, linearized 1D-FSI models

and zero-dimensional (0D) lumped parameter models [5].

The goal of this work is to incorporate elements of statistical

learning towards building a surrogate-based framework for

solving inverse problems in haemodynamics, and beyond.

Motivated by recent progress in scalable supervised learn-

ing algorithms [1], we propose an information fusion

framework that can explore cross-correlations between variable

fidelity blood flow models (e.g. measurements versus three-

dimensional (3D)-FSI, versus 1D-FSI, versus 0D models, etc.),

allowing for the efficient construction of high-dimensional
response surfaces that guide the pursuit for a solution to the

optimization problem of equation (1.1), while keeping

the number of expensive function evaluations at a minimum.

Moreover, we aim to demonstrate that this framework is

robust with respect to model misspecification, resulting for

example from inaccurate low-fidelity models or noisy mea-

surements. Although our main focus here is on parameter

estimation for physiologically correct blood flow simulations,

the implications of the proposed methodology are far reaching,

and practically applicable to a wide class of inverse problems.

In what follows we provide an outline of this paper. In §2.1,

we present an overview of Gaussian process (GP) regression

that is the basic building block of the proposed multi-fidelity

information fusion algorithms. In §2.2, we elaborate on the

implementation of efficient multi-source inference schemes

using the recursive inference ideas of Le Gratiet & Garnier

[12]. In §2.3, we outline how the parameters defining each sur-

rogate model can be calibrated to the data using maximum-

likelihood estimation (MLE). In §2.4, we introduce the efficient

global optimization (EGO) algorithm, and highlight how max-

imizing the expected improvement of the surrogate predictor

can lead to efficient sampling strategies for global optimization.

The framework is put to the test in §3, where we present results

for benchmark problems involving the calibration of outflow

boundary conditions in blood flow simulations, as well as

parameter estimation in elliptic partial differential equations.
2. Material and methods
The basic building block of the proposed framework is GP

regression [13] and auto-regressive stochastic schemes [4]. This

toolset enables the construction of a flexible platform for multi-

fidelity information fusion that can explore cross-correlations

between a collection of surrogate models, and perform predictive

inference for quantities of interest that is robust with respect to

model misspecification. The main advantage of GPs versus other

surrogate models, such as neural networks, radial basis functions

or polynomial chaos, lies in its Bayesian non-parametric nature.

In particular, it results in a flexible prior over functions, and,

more importantly, in a fully probabilistic workflow that returns

robust posterior variance estimates that are key to Bayesian optim-

ization. Although there have been attempts in the literature to apply

Bayesian optimization using Bayesian neural networks (mainly

motivated by alleviating the unfavourable cubic scaling of GPs

with data, see [14]), GPs provide several favourable properties,

such as analytical tractability, robust variance estimates and the

natural extension to the multi-fidelity setting, that currently give

it the edge over competing approaches to Bayesian optimization.

In what follows we provide an overview of the mathematical frame-

work that is used throughout this work. For a more detailed

exposition to the subject, the reader is referred to [1,3,4,12,13].

2.1. Gaussian process regression
The main idea here is to model N scattered observations y of a

quantity of interest as a realization of a GP, f ðxÞ � GPðmðxÞ,
fKðx, x0; uÞ þ s2

eIÞ, x [ Rd. The observations could be deterministic

or stochastic in nature and may also be corrupted by modelling

errors or measurement noise eðxÞ, which is thereby assumed to

be a zero-mean Gaussian random variable, i.e. e � N ð0, s2
e IÞ.

Therefore, we have the following observation model:

y ¼ f ðxÞ þ e: ð2:1Þ

The GP prior distribution on f is completely characterized by its

mean mðxÞ ¼ E½fðxÞ� and covariance Kðx, x0; uÞ þ s2
eI, where u is a
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vector of hyper-parameters. Typically, the choice of the

prior reflects our belief on the structure, regularity and other

intrinsic properties of the quantity of interest. Our primary

goal here is to compute the conditional posterior distribution of

pðf jy, x, uÞ and explore its predictive capacity at estimating y
for unobserved sets of x. This is achieved by calibrating the para-

metrization of the Gaussian prior, i.e. mðxÞ and Kðx, x0; uÞ þ s2
eI,

by maximizing the marginal likelihood of the model. Once

f ðxÞ has been trained on the observed data y (see §2.3), its

inferred mean m̂ , variance ŝ2, noise variance ŝ2
e and kernel

hyper-parameters û are known and can be used to evaluate the

predictions ŷ, as well as to quantify the prediction variance s2

(see [15] for a derivation), i.e.

ŷðx�Þ ¼ m̂ þ rTðRþ ŝ2
e IÞ�1ðy� 1m̂Þ ð2:2Þ

and

s2ðx�Þ ¼ ŝ2 1� rTðRþ ŝ2
e IÞ�1

rþ ½1� rTðRþ ŝ2
e IÞ�1r�

2

1TðRþ ŝ2
e IÞ�1

1

2
4

3
5, ð2:3Þ

where R ¼ ŝ2Kðx, x0; ûÞ is the N �N correlation matrix of fðxÞ,
r ¼ ŝ2kðx, x�; ûÞ is a 1�N vector containing the correlation

between the prediction and the N training points, and 1 is a

1�N vector of ones. Note that for ŝ2
e the predictor exactly

interpolates the training data y, returning zero variance at these

locations. This is a linear regression scheme that is also known

in the literature as Wiener–Kolmogorov filtering (time-series

modelling [16]), kriging (geostatistics [17]), and best linear

unbiased estimator (statistics [18]).
2.2. Multi-fidelity modelling via recursive Gaussian
processes

Here, we provide a brief overview of the recursive formulations

recently put forth by Le Gratiet & Garnier [12]—a more efficient

version of the well-known auto-regressive inference scheme pro-

posed by Kennedy & O’Hagan [4] in the context of predicting the

output from a complex computer code when fast approximations

are available. To this end, suppose that we have s levels of

variable fidelity information sources producing outputs ytðxtÞ,
at locations xt [ Dt # Rd, sorted by increasing order of

fidelity and modelled by GPs ftðxÞ, t ¼ 1, . . . , s. Then, the

auto-regressive scheme of Kennedy & O’Hagan [4] reads as

ftðxÞ ¼ rt�1ðxÞft�1ðxÞ þ dtðxÞ, t ¼ 2, . . . , s, ð2:4Þ

where dtðxÞ is a Gaussian field independent of fft�1, . . . , f1g and

distributed as dt � N (mdt
, s2

t Rt þ s2
et

I). Also, rðxÞ is a scaling

factor that quantifies the correlation between fftðxÞ, ft�1ðxÞg. In

the Bayesian setting, rðxÞ is treated as a random field with an

assigned prior distribution that is later calibrated to the data.

Here, to simplify the presentation we assume that r is a determi-

nistic scalar, independent of x, and learned from the data

through MLE (see §2.3). In general, one can obtain a more expres-

sive scheme by introducing a spatial dependence on r by using a

representation in terms of a basis, i.e. rðxÞ ¼
PM

i¼1 wifiðxÞ, where

the M unknown modal amplitudes w are augmented to the list of

parameters that need to be estimated through MLE. For cases

that exhibit a smooth distribution of the cross-correlation scaling,

only a small number of modal components should suffice

for capturing the spatial variability in rðxÞ, thus keeping the

computational cost of optimization to tractable levels.

The key idea put forth by Le Gratiet & Garnier [12] is to replace

the Gaussian field ft�1ðxÞ in equation (2.4) with a Gaussian

field ~f t�1ðxÞ that is conditioned on all known models

fft�1, ft�2, . . . , f1g up to level ðt� 1Þ, while assuming that the corre-

sponding experimental design sets Di, i ¼ 1, . . . , t� 1 have a

nested structure, i.e. D1 # D2 # � � � # Dt�1. This essentially

allows one to decouple the s-level auto-regressive co-kriging
problem to s independent GP estimation problems that can be effi-

ciently computed and are guaranteed to return a predictive mean

and variance that are identical to the coupled Kennedy and

O’Hagan scheme [4]. To underline the advantages of this

approach, note that the scheme of Kennedy and O’Hagan requires

inversion of covariance matrices of size
Ps

t¼1 Nt �
Ps

t¼1 Nt, where

Nt is the number of observed training points at level t. In contrast,

the recursive co-kriging approach involves the inversion of s
covariance matrices of size Nt �Nt, t ¼ 1, . . . , s.

Once ftðxÞ has been trained on the observed data

fyt, yt�1, . . . , y1g (see §2.3), the optimal set of hyper-parameters

fm̂t, ŝ
2
t , ŝ2

et
, r̂t�1, ûtg is known and can be used to evaluate the

predictions ŷt, as well as to quantify the prediction variance s2
t

at all points in x�t (see [12] for a derivation),

ŷtðx�t Þ ¼ m̂t þ r̂t�1ŷt�1ðx�t Þ þ rT
t (Rt þ ŝ2

et
I)�1½ytðxtÞ � 1m̂t

� r̂t�1ŷt�1ðxtÞ� ð2:5Þ

and

s2
t ðx�t Þ ¼ r̂2

t�1s2
t�1ðx�t Þ

þ ŝ2
t 1� rT

t (Rt þ ŝ2
et

I)
�1

rt þ
½1� rT

t ðRt þ ŝ2
et

IÞ�1rt�
2

1T
t ðRt þ ŝ2

et
IÞ�1

1t

2
4

3
5,

ð2:6Þ

where Rt ¼ ŝ2
t Ktðxt, x0t; ûtÞ is the Nt �Nt correlation matrix of

ftðxÞ, rt ¼ ŝ2
t ktðxt, x�t ; ûtÞ is a 1�Nt vector containing the corre-

lation between the prediction and the Nt training points, and 1t

is a 1�Nt vector of ones. Note that for t ¼ 1 the above scheme

reduces to standard GP regression as presented in equations

(2.2) and (2.3). Also, Ktðxt, x0t; utÞ þ s2
et

I is the auto-correlation

kernel that quantifies spatial correlations at level t.
2.3. Maximum-likelihood estimation
Estimating the hyper-parameters requires learning the opti-

mal set of fmt, s
2
t , s2

et
, rt�1, utg from all known observations

fyt, yt�1, . . . , y1g at each inference level t. In what follows we

will confine the presentation to MLE procedures for the sake of

clarity. However, in the general Bayesian setting all hyper-

parameters are assigned with prior distributions, and inference

is performed via more costly marginalization techniques, typi-

cally using Markov chain Monte Carlo (MCMC) integration

[13,19,20]. Indeed, a fully Bayesian approach to hyper-parameter

estimation has been documented to be more robust (hence

advantageous) in the context of Bayesian optimization [21].

Although great progress has been made in training GPs using

sampling-based techniques, in this work we employed MLE

mainly due to its straightforward formulation and reduced com-

putational complexity versus MCMC approaches, as well as to

simplify the introduction of the proposed concepts to a wider

audience that can readily implement the methods.

Parameter estimation via MLE at each inference level t is

achieved by minimizing the negative log-likelihood of the

model evidence,

min
{mt ;s

2
t ,s2

et
,rt�1,ut}

n
2

logðs2
t Þ þ

1

2
logjRtðutÞ þ s2

et
Ij

þ 1

2s2
t
½ytðxtÞ � 1tmt � rt�1ŷt�1ðxtÞ�T½RtðutÞ þ s2

et
I��1

� ½ytðxtÞ � 1tmt � rt�1ŷt�1ðxtÞ�, ð2:7Þ

where we have highlighted the dependence of the correlation

matrix Rt on the hyper-parameters ut. Setting the derivatives of

this expression to zero with respect to mt, rt�1 and s2
t , we can

express the optimal values of m̂t, r̂t�1 and ŝ2
t as functions of

the correlation matrix ðRt þ s2
et

IÞ,

ðm̂t, r̂t�1Þ ¼ [hT
t (Rt þ s2

et
I)
�1

ht]
�1hT

t ðRt þ s2
et

IÞ�1ytðxtÞ ð2:8Þ
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and

ŝ2
t ¼

1

c

n
½ytðxtÞ � 1tm̂ t � r̂ t�1ŷt�1ðxtÞ�T[Rt þ s2

et
I]
�1

�½ytðxtÞ � 1tm̂ t � r̂ t�1ŷt�1ðxtÞ�
o

,

ð2:9Þ

where ht ¼ ½1tŷt�1ðxtÞ� and c ¼ Nt � 1, t ¼ 1
Nt � 2, t . 1

�
: Finally, the

optimal fŝ2
et

, ûtg can be estimated by minimizing the concentrated

restricted log-likelihood

min
fs2

et
,utg

log jRtðutÞ þ s2
et

Ij þ c logðŝ2
t Þ: ð2:10Þ

The computational cost of calibrating model hyper-parameters

through MLE is dominated by the inversion of correlation matrices

ðRt þ s2
et

IÞ�1 at each iteration of the minimization procedure in

equation (2.10). The inversion is typically performed using the

Cholesky decomposition that scales as OðN3
t Þ, leading to a

severe bottleneck in the presence of moderately big datasets. Alter-

natively, one may employ iterative methods for solving the linear

system and reduce the cubic cost (especially if a good pre-

conditioner can be found), but in this case another method for

computing the determinant in equation (2.10) should be

employed. In general, alleviating the cubing scaling is a pivotal

point in the success and practical applicability of GPs, and several

studies in the literature have been devoted to this [1,22–25]. This

limitation is further pronounced in high-dimensional problems

where abundance of data is often required for performing meaning-

ful inference. Moreover, cases where the noise variance s2
et

is

negligible and/or the observed data points are tightly clustered

in space may introduce ill-conditioning that could jeopardize the

feasibility of the inversion as well as pollute the numerical solution

with errors. Also, if an anisotropic correlation kernel Ktðxt, x0t; utÞ is

assumed, then the vector of correlation lengths ut is d-dimensional,

leading to an increasingly complex optimization problem (see

equation (2.10)) as the dimensionality of the input variables xt

increases. These shortcomings render the learning process intract-

able for high dimensions and large datasets, and suggest seeking

alternative routes to parameter estimation. A possible solution

path was recently proposed in [1], where the authors have

employed a data-driven additive decomposition of the covariance

kernel in conjunction with frequency-domain inference algorithms

that bypass the need to invert large covariance matrices.

2.4. Bayesian optimization
Our primary goal here is to use the surrogate models generated by the

recursive multi-fidelity formulation towards identifying the global

optimum of the optimization problem defined in equation (1.1) by

replacing the unknown and expensive to evaluate function g with

its corresponding surrogate predictor ft. The probabilistic structure

of the surrogate predictors enables an efficient solution path to this

optimization problem by guiding a sampling strategy that balances

the trade-off between exploration and exploitation, i.e. the global

search to reduce uncertainty versus the local search in regions

where the global optimum is likely to reside. One of the most

widely used sampling strategies in Bayesian optimization that

adopts this mindset is the EGO algorithm proposed by Jones

et al. [26]. Given a predictive GP posterior, the EGO algorithm selects

points in the input space that maximize the expected improvement of

the predictor. To this end, let f ðtÞmin ¼ minfyð1Þt , yð2Þt , . . . , yðNtÞ
t g be the

global minimum of the observed response at the tth inference level.

Consequently, the improvement of the Gaussian predictor ftðxÞ
upon fmin is defined as ItðxÞ ¼ maxff ðtÞmin � ftðxÞ, 0g. Then, the infill

criterion suggested by the EGO algorithm implies sampling at

locations in the input space that maximize the expected improvement

E½ItðxÞ� ¼ ½f ðtÞmin � ŷtðxÞ�F
f ðtÞmin � ŷtðxÞ

stðxÞ

 !
þ sf

f ðtÞmin � ŷtðxÞ
stðxÞ

 !
,

ð2:11Þ
where Fð�Þ and fð�Þ are the standard normal cumulative distri-

bution and density function, respectively, and st is the square

root of the predictor variance at level t (see equation (2.6)). Conse-

quently, the value of E½ItðxÞ� is large if either the value predicted

by ŷtðxÞ is smaller than f ðtÞmin or there is a large amount of uncer-

tainty in the predictor ŷtðxÞ, hence s2
t ðxÞ is large. Here we must

underline that, although the expected improvement acquisition

function is widely used in the literature, it may have some impor-

tant pitfalls, mainly due to its vulnerability to noise in the

observations, especially in the heteroscedastic case. The design

of robust and efficient data acquisition techniques is an active

area of research and several interesting studies exist in the litera-

ture. The work of Picheny et al. [27] addresses some of these

issues, including parallel batch sampling and robustness to

noise using a quantile-based expected improvement criterion. A

different class of robust methods has branched out of the entropy

search algorithm put forth in [28]. These approaches are good can-

didates in cases where the simple expected improvement

acquisition fails, and can be implemented with minor overhead

to the existing computational cost.

Once a recursive cycle has been completed and the final predictor

ŷs and variance s2
s ðxÞ at level s are known, the expected improvement

can be readily computed by equation (2.11). Then, the EGO algor-

ithm suggests to re-train the surrogates by augmenting the design

sets Dt with a set of points that correspond to locations where the

expected improvement is maximized. This procedure iterates until

a stopping criterion is met. Owing to the potentially high compu-

tational cost of generating training data from sampling g in

equation (1.1), it is common to use the maximum number of function

evaluations as the stopping criterion or the convergence rate of

the objective function. Another termination criterion stems from

setting a target value for the expected improvement, allowing the

next cycle to be carried out only if the expected improvement is

above the imposed threshold. Although the theoretical analysis of

such probabilistic algorithms is challenging, theoretical guarantees

of convergence to the global optimum have been studied in the

works of [29,30].
2.5. Workflow and computational cost
The EGO algorithm can be summarized in the following

implementation steps:

Step 1: Given samples of the true response yt ¼ gtðxtÞ, t ¼ 1, . . . , s
at all fidelity levels we employ the recursive scheme outlined in

§2.2 to construct a family of predictive surrogates ŷtðxÞ. This step

scales cubically with the number of training points using MLE.

The number of required training points is generally problem

dependent as it is related to the complexity of the underlying

response surface we try to approximate. A rule of thumb is to

start with 6d points at the lowest fidelity level, where d is the

dimension of the input space, and halve this number for each

subsequent higher fidelity level. This initialization is usually

performed using Latin hypercube sampling and has been

proven robust in our experiment so far. A reason for this is

that in every iteration of the Bayesian optimization loop the

acquisition function will choose a new informative sampling

location. Therefore, even if the initial sampling plan is

inadequate, new informative points will be added in the first

couple of iterations and the issue will be resolved.

Step 2: For each surrogate, we compute the set of input configur-

ations that maximize the expected improvement, i.e. we solve

the optimization problem

max
x[Rd

E½ItðxÞ�: ð2:12Þ

This step involves probing the trained surrogate to perform

predictions at new locations, each of which can be obtained

in parallel and with linear cost.

http://rsif.royalsocietypublishing.org/
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Step 3: We evaluate the response yt ¼ gtðxtÞ, t ¼ 1, . . . , s at the new

points suggested by maximizing the expected improvement at

each fidelity level. Therefore, this step scales according to the

computation cost of computing the given models gtðxtÞ.
Step 4: We train again the multi-fidelity surrogates using the aug-

mented design sets and corresponding data to obtain new

predictive schemes that resolve in more detail regions of the

response surface where the minimum is more likely to

occur. Similarly, training the surrogates scales cubically with

the data, while predictions of the trained surrogate are

obtained in linear cost.

Step 5: Perform step 2 and check if the desired termination criterion

is met. This could entail checking whether a maximum number

of function evaluations is reached, whether the minimum of the

objective function has converged, or whether the maximum

expected improvement is less than a threshold value. If the

chosen criterion is not satisfied, we repeat steps 3–5.

2.6. Haemodynamics
There exists a wide variety of modelling approaches to study the

multi-physics phenomena that characterize blood flow in the

human circulation. At the continuum scale, our understanding is

mainly based on clinical imaging and measurements, in vitro
experiments, and numerical simulations. Each of these approaches

complements one another as they are able to reveal different

aspects of the phenomena under study at different levels of accu-

racy. Without loss of generality, in what follows we focus our

attention on 1D and 3D formulations of blood flow in compliant

and rigid arteries, respectively. In particular, we consider three

different layers of fidelity as represented by (i) 3D Navier–Stokes

models in rigid domains, (ii) nonlinear 1D FSI models, and

(iii) linearized 1D-FSI models.

2.6.1. Three-dimensional models in rigid arterial domains
We consider 3D unsteady incompressible flow in a rigid domain

V, described by the Navier–Stokes equations subject to the

incompressibility constraint

@v

@t
þ v � ðrvÞ ¼ �rpþ nr2vþ f

and r � v ¼ 0,

9>=
>; ð2:13Þ

where v is the velocity vector, p is the pressure, t is time, n is

the kinematic viscosity of the fluid and f are the external body

forces. The system is discretized in space using the spectral/hp
element method (SEM) [31], according to which the compu-

tational domain V is decomposed into a set of polymorphic

non-overlapping elements Vei , V, i ¼ 1, . . . , Nel. Within each

element, the solution is approximated as a linear combination

of hierarchical, mixed-order, semi-orthogonal Jacobi polynomial

expansions. This hierarchical structure consists of separated

vertex (linear term) FkðxÞ, edge CkðxÞ, face QkðxÞ and interior

(or bubble) modes LkðxÞ. According to this decomposition, the

polynomial representation of a field vðt, xÞ at any point xj is

given by the linear combination of the basis functions multiplied

by the corresponding modal amplitudes:

vðt, xjÞ ¼
XNv

k¼1

v̂V
k ðtÞFkðxjÞ þ

XNe

k¼1

v̂E
k ðtÞCkðxjÞ þ

XNf

k¼1

v̂F
k ðtÞQkðxjÞ

þ
XNi

k¼1

v̂I
kðtÞLkðxjÞ:

The numerical solution to the above system is based on

decoupling the velocity and pressure by applying a high-order

time-splitting scheme [32]. We solve for an intermediate velocity

field v� in physical space (equation (2.14)) before a Galerkin pro-

jection is applied to obtain the weak formulation for the pressure
and velocity variables (equations (2.15) and (2.16)), which are

computed by solving a Poisson and a Helmholtz problem,

respectively. At time step n and sub-iteration step k, we solve

equations (2.15) and (2.16) for pn
k and vn

k , respectively, using pre-

vious time-step solutions vn�q, q ¼ 1, . . . , Je, where Je denotes the

order of the stiffly stable time integration scheme used,

v� ¼
XJe�1

q¼0

akvn�q � DtðNn
k�1 þ fÞ, ð2:14Þ

Lp̂n
k ¼ �

1

Dt
ðr � v�, fÞ þ @pn

k

@n
, f

� �
� LDp̂D ð2:15Þ

and Hv̂n
k ¼

1

g0

ðv� � Dtrpn
k , fÞ þ Dtn

g0

@vn
k

@n
, f

� �
�HDv̂nþ1,D,

ð2:16Þ

where we define

Nn
k�1 ¼ vn

k�1 � rvn
k�1: ð2:17Þ

Also, g0, ak are the coefficients of a backward differentiation

formula, bk are the coefficients of the stiffly stable time inte-

gration scheme, H ¼M� Dtn=g0, and M and L are the mass

and stiffness matrices, respectively. Moreover, v̂ and p̂ are the

unknown modal amplitudes of the velocity and pressure vari-

ables, respectively, while variables with a D superscript are

considered to be known. In particular, the last term in equations

(2.15) and (2.16) is due to lifting a known solution for imposing

Dirichlet boundary conditions, and the corresponding operators

HD and LD need to be constructed only for these boundaries [31].

The system is closed with a Neumann @v=@n ¼ 0 boundary con-

dition for the velocity at the outlets, and a consistent Neumann

pressure boundary condition at the boundaries with a prescribed

Dirichlet condition for the velocity field [32]:

@pn
k

@n
¼ �

g0vn
k �

PJe�1
q¼0 akvn�q

Dt
þ
XJe�1

k¼0

½bkðNn
k�1 þVn

k�1Þ�
n�k

" #
� n,

ð2:18Þ

where Vn
k�1 is defined as

Vn
k�1 ¼ nr� ðr � vn

k�1Þ: ð2:19Þ

At the first sub-iteration step k ¼ 1, the solution from previous

sub-iterations is not available and Nn
0 , Vn

0 are extrapolated in

time as follows:

Nn
0 ¼

XJe

q¼1

bq½v � rv�n�q ð2:20Þ

and

Vn
0 ¼ n

XJe

q¼1

bq½r � ðr � vÞ�n�q: ð2:21Þ

After computing v̂n
k and p̂n

k , we can accelerate the convergence of

the iterative procedure by applying the Aitken under-relaxation

scheme to the computed velocity field:

ṽn
k ¼ lkṽn

k�1 þ ð1� lkÞvn
k , ð2:22Þ

where lk [ ½0, 1� is computed using the classical Aitken rule:

lk ¼ lk�1 þ ðlk�1 � 1Þ ðQk�1 �QkÞ �Qk

kQk�1 �Qkk2
,

Qk ¼ ṽn
k�1 � vn

k : ð2:23Þ

Finally, convergence is checked by requiring kvn
k � vn

k�1k and

k pn
k � pn

k�1k to be less than a pre-specified tolerance.

For a complete analysis of this scheme, the reader is referred

to [32,33]. Results in the context of arterial blood flow simu-

lations can be found in [34], while parallel performance has

been documented in [35].
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2.6.2. Nonlinear one-dimensional models in compliant arterial
domains

We consider viscous incompressible 1D flow in a compliant tube.

The flow dynamics is governed by a nonlinear hyperbolic system

of partial differential equations that can be directly derived from

the Navier–Stokes equations under the assumptions of axial

symmetry, dominance of the axial velocity component, radial

displacements of the arterial wall and constant internal pressure

on each cross section [5]. Although such averaging introduces

approximations that neglect some of the underlying physics,

this reduced model has been widely used and validated in the

literature, returning reasonable predictions for pulse wave propa-

gation problems [36]. Here, we would like to highlight that such

simple models can become extremely useful when employed as

low-fidelity models within the proposed multi-fidelity frame-

work, because (despite their inaccuracies) they can capture the

right trends at very low computational cost (figure 1).

The conservation of mass and momentum can be formulated

in space–time ðA, UÞ variables as (see [37] for a detailed

derivation)

@A
@t
þ @ðAUÞ

@x
¼ 0

and
@U
@t
þU

@U
@x
¼ � 1

r

@p
@x
þ Kr

U
rA

,

9>>=
>>; ð2:24Þ

where x is the axial coordinate across the vessel’s length, t is time,

Aðx, tÞ is the cross-sectional area of the lumen, Uðx, tÞ is average

axial fluid velocity, Qðx, tÞ ¼ AU is the mass flux, pðx, tÞ is the

internal pressure averaged over the tube’s cross section and Kr

is a friction parameter that depends on the velocity profile

chosen [37]. Here, we use an axisymmetric fluid velocity

uðx, r, tÞ profile that satisfies the no-slip condition,

uðx, r, tÞ ¼ U
zþ 2

z
1� r

R

� �z� �
, ð2:25Þ

with Rðx, tÞ being the lumen radius, z a constant and r the radial

coordinate. Following [5], z ¼ 9 gives a good fit to experimental

blood flow data and z ¼ 2 returns the parabolic flow profile.

Moreover, U ¼ 1=R2
Ð R

0 2ru dr, and the friction parameter can

be expressed as Kr ¼ ð2m=UÞðA=RÞ½@u=@r�R ¼ �22mp [37], with

m being the blood viscosity that is a function of the lumen

radius and the blood haematocrit, based on the findings of

Pries et al. [38].

System (2.24) can be solved for ðA, UÞ after introducing a

constitutive law for the arterial wall that relates the cross-

sectional area A to pressure p. For simplicity, in this work, we

have adopted a purely elastic wall model, leading to a

pressure–area relation of the form [39]

p ¼ pext þ
bffiffiffiffi
A
p

ffiffiffiffi
A
p
�

ffiffiffiffiffiffi
A0

p� �
, b ¼

ffiffiffiffi
p
p

Eh
ð1� n2ÞA0

, ð2:26Þ

where pext is the external pressure on the arterial wall, E is the

Young modulus of the wall, h is the wall thickness and v is the

Poisson ratio. More complex constitutive laws accounting for

viscoelastic creep and stress relaxation phenomena can be

derived based on the theory of quasi-linear viscoelasticity [40],
and the reader is referred to [39] for implementation details in

the context of 1D blood flow solvers.

For the numerical solution of system (2.24), we have adopted

the discontinuous Galerkin scheme first put forth by Sherwin

et al. [37]. Spatial discretization consists of dividing each arterial

domain V into Nel elemental non-overlapping regions. A con-

tinuous solution within each element is retrieved as a linear

combination of orthogonal Legendre polynomials, while disconti-

nuities may appear across elemental interfaces. Global continuity

is restored by flux upwinding across elemental interfaces, bifur-

cations and junctions, with conservation of mass, continuity of

Riemann invariants and continuity of the total pressure being

ensured by the solution of a Riemann problem [37]. Finally, time

integration is performed explicitly using a second-order accurate

Adams–Bashforth scheme [37].

2.6.3. Linear one-dimensional models in compliant arterial
domains

The analysis can be further simplified if one adopts a linear for-

mulation [37,41]. This can be achieved by expressing the system

of equations in equation (2.24) in terms of the ðA, p, QÞ variables,

with Q ¼ AU, and linearizing them about the reference state

ðA0, 0, 0Þ, with b and A0 held constant along x. This yields

C1D
@~p
@t
þ @

~q
@x
¼ 0, ð2:27Þ

L1D
@~q
@t
þ @

~p
@x
¼ �R1D~q ð2:28Þ

and ~p ¼
~a

C1D
, ð2:29Þ

where ~a, ~p and ~q are the perturbation variables for area, pressure

and volume flux, respectively, i.e. ðA, p, QÞ ¼ ðAþ ~a, ~p, ~qÞ, and

R1D ¼
2ðzþ 2Þpm

A2
0

, L1D ¼
r

A0
and C1D ¼

A0

rc2
0

ð2:30Þ

are the viscous resistance to flow, blood inertia and wall compli-

ance, respectively, per unit length of vessel [41]. For a purely

elastic arterial wall behaviour, it follows that

@~p
@~a
¼ @p
@A

				
A¼A0

¼ 1

C1D
: ð2:31Þ

Then, the corresponding linear forward and backward Riemann

invariant can analytically be expressed as

W1,2 ¼ ~q +
~p

Z0
, Z0 ¼

rc0

A0
, ð2:32Þ

where Z0 is the characteristic impedance of the vessel.
3. Results
Here, we aim to demonstrate the effectiveness of the proposed

framework through three benchmark problems. In the first

two cases, consider the important aspect of calibrating outflow

boundary conditions of blood flow simulations in truncated

arterial domains. In the first demonstration, we employ

simple nonlinear and linearized 1D-FSI models in a symmetric

arterial bifurcation, aiming to provide a pedagogical example

that highlights the main aspects of this work. In the second

case, we target a more realistic scenario in which we seek

to calibrate a 3D Navier–Stokes solver by leveraging cheap

evaluations of 1D models in an asymmetric Y-shaped

bifurcation topology. Finally, we conclude with a higher

dimensional problem that involves inferring the forcing

term that gave rise to a given solution of an elliptic partial

differential equation.
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3.1. Calibration of a nonlinear one-dimensional solver
We consider a benchmark problem for calibrating the outflow

parameters in a Y-shaped symmetric bifurcation with one

inlet and two outlets. The geometry resembles the character-

istic size and properties of an idealized carotid bifurcation,

yet is kept symmetric to enhance clarity in our presentation.

Figure 2 presents a schematic of the problem set-up. In par-

ticular, the effect of the neglected downstream vasculature

is taken into account through three-element Windkessel

models, while the inflow is driven by a physiologically

correct flow-rate wave.

Our goal is to calibrate the outflow resistance parameters

to obtain a physiologically correct pressure wave at the inlet.

To enable a meaningful visualization of the solution process,

we confine ourselves to a two-dimensional input space

defined by variability in the total resistances imposed at the

two outlets, RðiÞT , i ¼ 1, 2. The total resistance is defined

as RðiÞT ¼ RðiÞ1 þ RðiÞ2 , where RðiÞ1 corresponds to the character-

istic impedance of each terminal vessel (see equation (2.32)).

Moreover, the capacitance parameters are empirically set fol-

lowing the findings of Grinberg & Karniadakis [42]

as CðiÞ ¼ 0:18=RðiÞT , i ¼ 1, 2. To this end, our objective is to

identify a pair of RðiÞT that matches a physiologically correct

systolic pressure of p�s ¼ 126 mmHg at the inlet. Assuming

no prior knowledge on possible sensible combinations

in the input x ¼ ½Rð1ÞT , Rð2ÞT �
T, we assume a large input

space that spans four orders of magnitude: X ¼ ½106, 1010�2

measured in (Pa s m– 3), and consider the following

optimization problem:

x� ¼ arg min
x[X

ðp�s � psðxÞÞ2

ðp�s Þ
2

: ð3:1Þ

First, we employ a nonlinear 1D-FSI model in order to con-

struct a detailed representation of the response surface of the

relative error in systolic pressure, i.e. gðxÞ ¼ ðp�s � psðxÞÞ2=ðp�s Þ
2,

that will be later used as a reference solution to assess the
accuracy and convergence of the proposed multi-fidelity

model inversion techniques. Here, the choice of studying hae-

modynamics using 1D models is motivated by their ability to

accurately reflect the interplay between the parametrization

of the outflow and the systolic pressure at the inlet, yet at a

very low computational cost [37,43]. To this end, figure 3

shows the resulting response surface obtained by probing an

accurate nonlinear 1D-FSI solver on 10 000 uniformly spaced

samples of the input variables. Since we have considered a

symmetric geometry, the resulting response surface exhibits

symmetry with respect to the diagonal plane, and can be vis-

ibly subdivided using the path of its local extrema into four

different subregions. The first part is confined in a flat square

region near the origin, suggesting that the solution is relatively

http://rsif.royalsocietypublishing.org/
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insensitive to the choice of inputs, as any combination in the

inputs within this region results in a reasonably small error

in the systolic pressure. The second and third parts correspond

to the symmetric rectangular regions defined by further

increasing one of the two resistance parameters. There, the

response starts to exhibit sensitivity to the increasing input par-

ameter, leading to a noticeable error in the systolic pressure.

Lastly, in the fourth region, the solution exhibits strong sensi-

tivity on the inputs, leading to an explosive growth of the

systolic pressure deviation as the resistance parameters take

larger values. Interestingly, a closer look at the path of local

extrema reveals a subtle undershoot in the response surface

along the interface of the aforementioned subregions.

Although any input combination within the first subregion

results in a very small systolic pressure error, the global

solution x� of the minimization problem in equation (3.1)

resides right at the interface of the four subregions (figure 3).

Note that this topology of the global response is likely to

pose serious challenges to any gradient-based optimization

strategy, leading to a potentially very large number of function

evaluations until convergence, especially in the absence of a

very accurate initial guess.

Now, we turn our attention to solving the optimiza-

tion problem introduced by equation (3.1) using the

proposed surrogate-based framework. To this end, in order

to build multi-fidelity surrogates for the systolic pressure

y ¼ psðxÞ, we have considered probing two models: high-

fidelity solutions are obtained through the aforementioned

nonlinear 1D-FSI solver, while the lower fidelity response is

measured through a linearized 1D-FSI model. Here, we

emphasize that the linearized model has been purposely

derived around a biased reference state, returning erroneous

predictions that deviate from the correct solution up to 30%.

This is to demonstrate that the proposed methodology is

robust with respect to misspecification in the lower fidelity

observations. It is important to stress here that, despite its

inaccurate predictions, the low-fidelity model can still be

highly informative as long as it is statistically correlated to

the high-fidelity model.
Initially, we perform 20 linearized low-fidelity simulations,

supplemented by five high-fidelity realizations, all randomly

sampled within the bounds that define the space of inputs.

Then, based on the computed response ytðxtÞ, we train a two-

level surrogate using the recursive scheme presented in §2.2

with a stationary Matérn 5/2 kernel function [13]. The

Matérn family of kernels provides a flexible parametrization

that has been commonly employed in the literature mainly

due to its simplicity and the ability to model a wide spectrum

of responses ranging from rough Ornstein–Uhlenbeck paths

to infinitely differentiable functions [13]. However, one of

its limitations stems from its stationary behaviour (i.e. the

Matérn auto-correlation between two spatial locations is trans-

lation invariant). Accounting for non-stationary effects has

been found to be particularly important in the context of

Bayesian optimization, and here we address this by employing

the warping transformation put forth by Snoek et al. [44], lead-

ing to kernels of the form kðhðxÞ, hðx0Þ; uÞ, where h denotes a

nonlinear warping function. From our experience, this step is

more crucial than the initial choice of kernel and appears to

be quite robust for either the Matérn family or any other pop-

ular alternative, such as the radial basis function, spherical

and polynomial kernels [13].

The resulting response surface of the error in the systolic

pressure at the inlet is presented in comparison with the refer-

ence solution in figure 4. Once the surrogate predictor and

variance are available, we can compute the spatial distribution

of the corresponding expected improvement using equation

(2.11). This highlights regions of high expected improvement,

as illustrated in figure 4, thus suggesting the optimal sampling

locations for the next iteration of the EGO algorithm (see §2.4).

Note that the maximum expected improvement in this zeroth

iteration is already attained very close to the global minimum

of the reference solution (figure 3).

The next step involves performing an additional set of

low- and high-fidelity simulations at the suggested locations

of high expected improvement (see §2.4). Specifically, in

each iteration, we augment the training data with 20 low-

fidelity and five high-fidelity observations placed in the

http://rsif.royalsocietypublishing.org/


10
(a) (b)

2.5

2.0

1.5

1.0

0.5

expected improvement

exact response (105 samples)
multi-fidelity
low-fidelity data (100 points)
high-fidelity data (25 points)

1.0

0.5

0
10

R
T

(1)× 10 9

8
6

4
2 2

4
6

8
10

9

8

7

6

5

4

3

2

1

2 4 6 8 10
R T

(2) × 109

RT
(1)  × 109

R
T(2

)  
×

10
9

(p
s*  

– 
p s (

x)
)2

(p
s* )

2

×10–3

Figure 5. Blood flow in a symmetric Y-shaped bifurcation. Fourth iteration of the EGO algorithm. (a) Exact solution versus the multi-fidelity predictor for the inlet
systolic pressure error, trained on 100 low-fidelity and 25 high-fidelity observations. (b) Map of the corresponding expected improvement. (Online version in colour.)

Table 1. Blood flow in a symmetric Y-shaped bifurcation. Optimal terminal
resistances and corresponding relative L2-error in the inlet pressure wave
over one cardiac cycle, for each iteration of the EGO algorithm. The
comparison is done with respect to the inlet pressure wave popt

corresponding to the optimal configuration of resistances predicted by the
reference solution obtained using 10 000 high-fidelity samples.

iteration
no. RT

(1)�109 RT
ð2Þ�109

jjp� poptjj2
jjpoptjj2

1 0.001 5.9612 0.1949

2 4.6479 2.6275 0.0945

3 2.0214 2.9275 0.0012

4 3.7183 3.6275 2.13�1024
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neighbourhood of local maximizers of the expected improve-

ment. Then, the recursive multi-fidelity predictor is re-trained

to absorb this new information, and this procedure is

repeated until a termination criterion is met. Here, we have

chosen to exit the iteration loop once the minimum of the pre-

dicted response surface (i.e. the relative error between the

computed inlet systolic pressure and a target value) is less

than ðp�s � psðxÞÞ2=ðp�s Þ
2

, 10�3.

Figure 5 presents the resulting response surface of the error

in the inlet systolic pressure after four iterations of the EGO

algorithm. The predictor is trained on 100 low-fidelity and 25

high-fidelity realizations that clearly target resolving the

region of the response surface where the global minimum is

likely to occur. In figure 5, we also depict the spatial distri-

bution of the expected improvement after the new data have

been absorbed. By comparing figures 4 and 5, we observe

that within four iterations of the EGO algorithm the expected

improvement has been reduced by a factor greater than 5, effec-

tively narrowing down the search for the global minimum in a

small region of the response surface. In fact, four iterations of

the EGO algorithm were sufficient to meet the termination cri-

terion, and, therefore, identify the set of outflow resistance

parameters that returns an inlet systolic pressure matching

the target value of p�s ¼ 126 mmHg. Here, we underline

the robustness and efficiency of the proposed scheme, as

convergence was achieved using only 25 samples of the

high-fidelity nonlinear 1D-FSI model, supplemented by 100

inaccurate low-fidelity samples of the linearized 1D-FSI

solver. In the absence of low-fidelity observations, the

same level of accuracy was achieved with nine EGO iterations

and 50 high-fidelity simulations—a twofold increase in

computational cost.

In table 1, we summarize the optimal predicted configur-

ation for the total terminal resistances, along with the relative

L2-error in the corresponding inlet pressure waveform com-

pared with the optimal reference configuration (see x� in

figure 3), over one cardiac cycle, and for every iteration of

the EGO algorithm. The convergence of the inlet pressure

waveform to the reference solution is demonstrated in

figure 6. As the EGO iterations pursue a match with the

target inlet systolic pressure p�s , the pressure waveform gradu-

ally converges to the reference solution after each iteration of

the optimizer.
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3.2. Calibration of a three-dimensional Navier – Stokes
solver

This benchmark is designed to highlight an important aspect

of the proposed framework, namely the significant efficiency

gains one can obtain by employing low-fidelity models that

exhibit correlation to the target high-fidelity model. In par-

ticular, we will examine two scenarios; the first involving

low- and intermediate-fidelity models that are only weakly

correlated to the high-fidelity model, while in the second

case we perform an educated adjustment to obtain an

intermediate-fidelity model that exhibits strong correla-

tion with the high-fidelity solver. In both cases, we adopt a

similar problem set-up to the one above, namely the cali-

bration of outflow resistance parameters of a high-fidelity

3D Navier–Stokes blood flow solver in an asymmetric

Y-shaped bifurcation targeting a systolic inlet pressure of

ps� ¼ 47:5 mmHg (figure 7). Here, this is done by employing

a 3D spectral/hp element solver (high fidelity), a nonlinear

1D-FSI solver (intermediate fidelity) and a linearized 1D-FSI

solver (low fidelity). The rigid 3D computational domain is

discretized by 45 441 tetrahedral spectral elements of poly-

nomial order 4, and the simulation of one cardiac cycle

takes approximately 6 h on 16 cores of an Intel Xeon

X56502.67 GHz. The nonlinear and linearized 1D-FSI solvers

represent each arterial segment using one discontinuous

Galerkin element of polynomial order 4, and the resolution

of one cardiac cycle takes 1 min, and 15 s, respectively, on a

single core of an Intel Xeon X56502.67 GHz. It is therefore evi-

dent that significant computational gains can be achieved if

we can calibrate the high-fidelity solver mainly relying on

sampling the low- and intermediate-fidelity models.
3.2.1. Weakly correlated models
The aforementioned set-up leads to a discrepancy in the corre-

sponding arterial wall models where a rigid wall is assumed in

the 3D case in contrast to the linear elastic wall response in the

1D-FSI cases. Although all models provide a good agreement in

predicting the flow-rate wave and pressure drop between the

inlet and the outlets, this modelling discrepancy is primarily

manifested in the predicted point-wise pressure distribution.

As depicted in figure 8, the inlet pressure prediction of the 3D

rigid model is up to 62% higher than the 1D-FSI models, a

fact attributed to the inherently different nature of wave propa-

gation between the two cases. This inconsistency is directly

reflected in the inferred scaling factor rt appearing in the recur-

sive scheme of §2.2 that quantifies how correlated our quantity

of interest is (systolic inlet pressure) between the different levels

of fidelity. In particular, starting from an initial nested Latin

hypercube experimental design in X ¼ ½106, 1010�2 containing

20 low-fidelity, 10 intermediate-fidelity and two high-fidelity

samples, we obtain a correlation coefficient of 0.91 between

the low- and intermediate-fidelity levels, and a correlation of

0.12 between the intermediate- and high-fidelity solvers.

These values confirm the strong correlation between levels 1

and 2 in our recursive inference scheme (linearized and non-

linear 1D-FSI models), while also revealing the very weak

correlation between levels 2 and 3 (nonlinear 1D-FSI and the

rigid 3D model). Essentially, this suggests that in this case

one cannot expect the low- and intermediate-fidelity models

to be highly informative in the construction of the high-fidelity

response surface for ps ¼ f ðRð1ÞT , Rð2ÞT Þ.
With our goal being the identification of the optimal con-

figuration of x ¼ ½Rð1ÞT , Rð2ÞT �
T such that the relative error
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between the predicted and target inlet systolic pressure is mini-

mized, we may enter the EGO loop with the aforementioned

initial nested design plan and iterate until convergence is

achieved. Setting a stopping criterion of 10�3 on the expected

improvement of the multi-fidelity predictor resulted in six

EGO iterations, where in each iteration we added 10 low-

fidelity, five intermediate-fidelity and one high-fidelity

observation at the locations suggested by the highest local

maxima of the expected improvement at each fidelity level.

Therefore, a total of 80 low-fidelity, 60 intermediate-fidelity

and eight high-fidelity simulations were performed in order

to achieve a relative error less than 10�3. The resulting response

surface and corresponding expected improvement after the 6th

iteration are presented in figure 9. Here, we must note that,

despite the low cross-correlation between the high and lower

fidelity levels, the multi-fidelity approach was still able to

pay some dividends as, in order to achieve the same result

by only sampling the high-fidelity solver, the EGO required

10 iterations.

3.2.2. Strongly correlated models
In order to demonstrate the full merits of adopting a multi-

fidelity approach, we can enhance the correlation between

the rigid 3D model and the nonlinear 1D-FSI model by artifi-

cially stiffening the arterial wall response of the 1D model.

This is done by appropriately scaling the spring constant b

in the 1D pressure–area relation (see equation (2.26)):

b ¼ bscal

ffiffiffiffi
p
p

Eh
ð1� n2ÞA0

, bscal . 1: ð3:2Þ

Practically, we can find an appropriate scaling factor b�scal

such that the 1D solver accurately reproduces the results pre-

dicted by the full 3D model. However, if the chosen value

for bscal is not close to the ‘best-fit’ value b�scal, the 1D

solver under-predicts the pressure wave for bscal � b�scal

and over-predicts it for bscal 	 b�scal. The identification of

the appropriate scaling factor is case dependent. However,
we can explicitly derive a formula for b�scal based on the phys-

iological properties of the network. To this end, consider

a single vessel in an arterial network and let Rt be the

total peripheral resistance downstream, and R1 the vessel’s

characteristic impedance:

R1¼:
c0r

A0
, c0 ¼

ffiffiffiffiffiffiffi
1

2

b

r

s
A1=4

0 : ð3:3Þ

Then, we must have that Rt � R1 
 0, and, therefore,

we can scale b and stiffen the 1D model, respecting the

upper bound:

R1 � Rt ) bscal �
2R2

t A3=2
0

br
: ð3:4Þ

The total resistance Rt for each segment can be computed

by the properties of the network downstream and the

Windkessel resistance parameters imposed at the outlets.

This effectively enables the nonlinear 1D-FSI solver to repro-

duce the pressure wave propagation predicted by the full 3D

simulation (figure 8).

In order to estimate the optimal parametrization of the

outflow boundary conditions, we enter the EGO loop using

an initial nested Latin hypercube sampling plan containing

70 low-fidelity, 15 intermediate-fidelity and two high-fidelity

observations. This initialization confirms a relatively weak

correlation of 0.3 between the elastic low-fidelity and the stif-

fened intermediate-fidelity 1D-FSI solvers, but confirms a

strong correlation of 0.95 between the stiffened 1D-FSI

solver and the high-fidelity 3D Navier–Stokes model. As a

consequence, the EGO algorithm converges to the desired

accuracy level after only one iteration, as the 20 samples of

the intermediate-fidelity solver have been very informative

in the construction of the high-fidelity predictive distribution.

In figure 10, we demonstrate the resulting response surface

for the relative error in systolic inlet pressure after one iter-

ation of the EGO loop, along with the resulting map of the

expected improvement criterion. Leveraging the accurate pre-

dictions of the stiffened nonlinear 1D-FSI solver we were able

to achieve a 4� speed-up in calibrating the outflow parame-

trization compared with the case where the calibration was

carried out by only evaluating the high-fidelity 3D solver.
3.3. Helmholtz equation in 10 dimensions
Consider a Helmholtz boundary value problem in x [ [0,1]

uxx � l2u ¼
XK

k¼1

wk sinð2 kpxÞ ð3:5Þ

and

uð0Þ ¼ 0, uð1Þ ¼ 0, ð3:6Þ

with K ¼ 10 forcing term weights wk [ ½0, 1�. Now, assume

that we are given a reference solution u�ðxÞ that corresponds

to weights generated by a spectrum sðkÞ ¼ a expðbkgÞ with a

random draw of parameters a ¼ 0:5, b ¼ 0:5 and g ¼ 0:5

(figure 11). Our goal now is to identify the exact values of

wk that generated the solution u�ðxÞ, assuming no knowledge

of the underlying spectrum. This translates to solving the

following optimization problem:

min
wk[R10

kuðx; wkÞ � u�ðxÞk2: ð3:7Þ
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Here we consider three levels of fidelity corresponding to

different discretization methods for solving equation (3.5). At

the lowest fidelity level, we have chosen a fast centred finite
difference scheme on a uniform grid containing 15 points.

The medium-fidelity solver is a spectral collocation scheme

using trigonometric interpolation on a uniform grid of 30

http://rsif.royalsocietypublishing.org/


0.010

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

0.005

–0.010

–0.005

0

exact

multi-fidelity prediction

EGO iteration

x

u 
(x

; w
* k)

ÔÔu
 (

x;
 w

k)
–

u*
 (

x)
ÔÔ 2

0 0.2 0.4 0.6 0.8 1.0

20 40 60 80 100

(b)(a)

Figure 12. Inverse problem in 10 dimensions. (a) Comparison of the reference solution u�ðxÞ and the solution corresponding to the optimal weights w�k identified
by the EGO. (b) Value of the objective function in equation (3.7) at each EGO iteration. (Online version in colour.)

rsif.royalsocietypublishing.org
J.R.Soc.Interface

13:20151107

13

 on May 19, 2016http://rsif.royalsocietypublishing.org/Downloaded from 
collocation points. This results to a more accurate scheme but

is computationally more expensive as it involves the solution

of a linear system. Finally, the highest fidelity data are gener-

ated by solving equation (3.5) exactly using a Galerkin

projection on a basis consisting of 10 sine modes. Our goal

now is to construct a 10-dimensional multi-fidelity surrogate

for uðx; wkÞ mostly using realizations of the lower fidelity sol-

vers supplemented by a few high-fidelity data, and solve

equation (3.7) using Bayesian optimization.

Our workflow proceeds as follows. First, we create the

training sets for a three-level multi-fidelity surrogate by gen-

erating weights wk using random sampling, and compute the

corresponding solution to equation (3.5) using the three

different discretization methods outlined above. In particular,

we use a nested experimental design consisting of 6K points

at the lower fidelity level, 3K at the intermediate-fidelity level

and K points at the highest fidelity level. This collection of

input/output pairs provides the initialization of the EGO

algorithm that aims to identify the combination of weights

wk that minimizes the objective function of equation (3.7).

Then, at each EGO iteration new sampling points are

appended to the training set of each fidelity level according

to the expected improvement acquisition function.

Figure 12a shows the solution corresponding to the

optimal combination of weights wk identified by the multi-

fidelity EGO algorithm after 100 iterations versus the

reference target solution u�ðxÞ. As we can see in figure 12b,

the algorithm is able to reduce the objective function down

to 8:79� 10�3 only after 25 iterations and identify a sensible

configuration of weights using only a total of 35 evaluations

of the highest fidelity model.
4. Discussion
We have presented a probabilistic, data-driven framework for

inverse problems in haemodynamics. The framework is

based on multi-fidelity information fusion and Bayesian

optimization algorithms, allowing for the accurate construc-

tion of response surfaces through the meaningful integration

of variable sources of information. Leveraging the properties

of the proposed probabilistic inference schemes, we use the

EGO algorithm [26] to perform model inversion using only a

few samples of expensive high-fidelity model evaluations, sup-

plemented with a number of cheap and potentially inaccurate
low-fidelity observations. This approach enables a computa-

tionally tractable global optimization framework that is

able to efficiently ‘zoom in’ to the response surface in search

of the global minimum, while exhibiting robustness to

misspecification in the lower fidelity models.

All benchmark cases presented were deterministic inverse

problems. Our main motivation was to provide a clear and

intuitive presentation of the proposed framework, underlining

the conditions under which a multi-fidelity approach can result

in substantial computational gains. Such gains are expected to

be more profound as the dimensionality of the parameter space

is increased, as in such cases a very large number of samples

will be required to perform model inversion. An application

of this methodology to stochastic inverse problems requires

two changes in the proposed methodology. First, the quantities

to be estimated are no longer crisp numbers and our goal

would be to estimate a proper parametrization of their distri-

bution. For instance, if some properties are treated as

independent Gaussian random variables, then the estimation

problem would target the computation of their mean and var-

iance, while if they were treated as correlated one should also

account for their covariance. In general, a proper parametriza-

tion of uncertain parameters can be accommodated at the

expense of increasing the dimensionality of the optimization

problem. A second change incurred by stochasticity is related

to the objective function itself. While in the deterministic case

we consider minimizing a quadratic loss function, in the

stochastic case the minimization objective would involve mini-

mizing the distance to the mean and/or higher order moments,

or, more generally, a moment matching criterion such as the

Kullback–Leibler divergence [13] between the distribution of

observed outputs and a target distribution. Accounting for

variability in the model parameters is indeed a problem of

great interest and we plan to address this in future work.

Summarizing, the proposed framework provides a

principled workflow that allows one to limit evaluations of

expensive high-fidelity solvers to a minimum, and exten-

sively use cheap low-fidelity models to explore such vast

parameter spaces. Extending and applying this methodology

to realistic high-dimensional inverse problems requires the

challenges of constructing response surfaces in high dimen-

sions and potentially in the presence of massive datasets to

be addressed. These challenges define an area of active

research, and we refer the reader to the recent ideas put

forth in [1] for a tractable solution plan.
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