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Statistical inference is a mature research area, but distributed inference problems that
arise in the context of modern wireless sensor networks (WSNs) have new and unique
features that have revitalized research in this area in recent years. The goal of this paper
is to introduce the readers to these novel features and to summarize recent research
developments in this area. In particular, results on distributed detection, parameter
estimation and tracking in WSNs will be discussed, with a special emphasis on solutions
to these inference problems that take into account the communication network connecting
the sensors and the resource constraints at the sensors.
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1. Introduction

With significant advances in the areas of computer/communication networking,
wireless communications, micro-fabrication and integrated circuits technology,
the field of wireless sensor networks (WSNs) has grown rapidly and received
considerable attention in recent years [1,2]. Sensor nodes in WSNs are typically
small battery-powered devices that have limited sensing, computation and
communication capabilities. Nevertheless, owing to their high flexibility, enhanced
surveillance coverage, robustness, mobility and cost-effectiveness, WSNs have
great potential in many applications such as environmental monitoring, battlefield
surveillance or structural health management.

Applications of WSNs invariably involve some kind of statistical inference
about the environment, i.e. detection, parameter estimation or tracking.
Detection often serves as the initial goal of a sensing system. For example, in the
context of environmental monitoring, it is of interest to first detect the presence
of a contaminant, before determining the level of contamination. For systems
observing infrequent events such as surveillance systems, detection may be the
prevalent function of the network. Parameter estimation is another canonical
problem in sensor networks. As an example, consider the problem of estimating
the location and intensity of a heat source based on measurements taken by a
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set of thermal sensors that are remote to the source. Tracking can be considered
to be a dynamic version of the estimation problem where the state of nature is
time-varying. In tracking problems of practical interest, the physical locations
of one or more moving objects need to be tracked by observations taken at the
sensors. For example, the sensors could be used for work in process tracking in a
manufacturing environment.

Since the information available for detection, estimation and tracking in WSNs
is distributed across the sensors in the network, these decision-making problems
fall under the umbrella of distributed inference. The goal of this paper is to
provide the reader with an overview of the state of the art in distributed inference
in sensor networks.

2. Detection and parameter estimation

Distributed detection with fusion was an active research field during the 1980s and
early 1990s, starting with the seminal work described by Tenney & Sandell [3].
The application driver for this research was distributed radar with a central
command (fusion) centre. The goal was to design the radars and the fusion
centre to detect an event as accurately as possible, subject to an alphabet-
size constraint on the messages transmitted by each sensor node. A survey of
early work in this field is provided by Tsitsiklis [4], Viswanathan & Varshney [5],
Blum et al. [6] and Varshney [7]. There has been renewed interest in distributed
detection in the context of modern WSNs (see [8,9] for recent surveys). There
are two main features of the emerging approach to distributed detection (and
more general distributed inference problems). The first is the inclusion of more
general communication architectures for the network, in particular sensor-to-
sensor wireless communication. The second is the inclusion of strategies for sensor
resource management, in particular energy consumption.

Distributed detection and parameter estimation problems will be discussed in
this section, followed by a discussion of tracking in §3.

(a) Wireless sensor network topologies

The design of distributed detection and estimation algorithms depends on
the underlying sensor network topology. The star topology [7], as shown in
figure 1a, is the most common structure and has been studied quite extensively.
In this configuration, the different sensors make observations of the underlying
phenomenon and transmit functions of the observations, which could be local
decisions, directly to the fusion centre via wireless channels. Another popular
structure is the serial, or tandem, topology [10]. In the serial topology, all the
sensors are connected in series and receive direct observations of the phenomenon.
The decision of the first sensor is based only on its observation, and this decision
is transmitted to the second sensor, which uses the decision of the first sensor
in conjunction with its direct observation. The decision of the last sensor is
accepted as the final decision of the network. In addition to these extreme
configurations, one can envision configurations that are combinations of these
basic topologies, e.g. tree or hierarchical topologies [11,12], or even completely
distributed topologies where the sensors communicate with each other over a
wireless ad hoc network [13–15], as shown in figure 1b.
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Figure 1. (a) Star topology and (b) distributed topology.

(b) Distributed detection basics

For the star topology, two inherently different problems need to be considered
for the distributed detection problem: the design of the decision rule at the fusion
centre (often referred to as the fusion rule), and the design of the local sensor
decision rules. In order to optimize the detection performance, the decision rules
at the local sensors and at the fusion centre are designed under criteria such as
the Bayesian or Neyman–Pearson criterion (e.g. [7,16]). The decision rules at the
fusion centre and at local sensors are intertwined with each other and need to
be jointly determined to optimize the overall system performance. The design
of fusion rules is conceptually straightforward assuming a perfect knowledge of
system parameters. The optimum fusion rule amounts to a likelihood ratio test
(LRT) and has been characterized for both binary and multibit (soft) local sensor
outputs [7].

Obtaining local sensor decision rules is considerably more complicated. The
optimality of LRTs at the local sensors has been established under the conditional
independence assumption [4,5] that the sensor observations are independent, given
the underlying hypothesis. However, establishing the optimality of LRTs at local
sensors does not completely solve the problem, since the LRT thresholds at
the sensors and the fusion rule are coupled with each other and they affect
the system performance in an interdependent manner. Therefore, the local
sensor thresholds are usually obtained through a person-by-person optimization
(PBPO) approach, where each threshold of the sensor is optimized assuming fixed
decision rules at all other sensors and the fusion centre. This approach is only
guaranteed to produce a locally optimal solution and not necessarily a globally
optimal solution.

Even PBPO solutions become intractable when the size of the sensor network
becomes large, and simpler solutions are needed. It was shown by Tsitsiklis [17]
that, for the binary hypothesis testing problem, using identical local decision
rules for all the sensor nodes is asymptotically optimal in terms of the error
exponent. Chamberland & Veeravalli [18] showed that, by considering the
asymptotic regime, binary sensors are optimal if there exists a binary quantization
function whose Chernoff information exceeds half of the information contained
in an unquantized observation. This requirement is fulfilled by many practical
applications [19] such as the problem of detecting deterministic signals in a
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Gaussian noise and the problem of detecting fluctuating signals in a Gaussian
noise using a square-law detector. In these scenarios, the gain offered by having
more sensor nodes outperforms the benefits of getting detailed information from
each sensor.

(c) Robust and composite distributed detection

The design of optimal decision rules for decentralized detection problems
is based on the assumption that the probability distributions of the sensor
observations (under each hypothesis) are known. In many applications, however,
the distributions of the sensor observations are only specified as belonging to
classes which are referred to as uncertainty classes. The problem here is to design
decision rules that are robust with respect to uncertainties in the distributions.
A common approach for such a design is the minimax approach where the
goal is to minimize the worst-case performance over the uncertainty classes.
Extensions of the minimax robust detection problem to the decentralized setting
are discussed by Geraniotis & Chau [20] and Veeravalli et al. [21].

Another approach that does not require the knowledge of individual sensor
statistics is to use the total number of ‘1’s as a statistic since the information
about which sensor reports a ‘1’ is of little use to the fusion centre. For a
WSN with randomly deployed sensors, Niu & Varshney [22,23] investigate the
performance of such a counting rule, where the fusion centre employs the total
number of detections reported by local sensors for hypothesis testing.

When the signal intensity is assumed to be inversely proportional to a power
of the distance from the source, the sensor decisions become conditionally
independent as long as the source location is known exactly. Niu & Varshney [24]
proposed a generalized likelihood ratio test (GLRT)-based decision fusion method
that uses quantized data from local sensors to jointly detect and localize a target
in a wireless sensor field. The GLRT-based fusion rule significantly improves
detection performance compared with the counting rule. Moreover, in a scenario
where the sensors that are located within the radius of influence of the source
receive identical signals and the rest of the sensors do not sense the source, the
false discovery rate can be used to determine good local sensor decision rules [25].

(d) Channel aware distributed detection

The distributed detection problem in the presence of non-ideal communication
channels has also been studied quite extensively in recent literature. Under the
Bayesian criterion, the optimality of the LRT for local sensor decisions has
been established for a binary hypothesis testing problem in a sensor network
with non-ideal channels [26]. For a finite number of sensors, Cheng et al. [27]
provide the conditions under which the channel outputs no longer reduce the error
probability at the fusion centre. Channel aware decision fusion algorithms have
been investigated with different degrees of channel state information for single-
hop [28–30], multi-hop [31] and serial topologies [32] for distributed detection
in WSNs. Furthermore, channel-optimized local quantizer design methods are
provided by Liu & Chen [33]. To counter sensor or channel failures, robust binary
quantizer design has been proposed by Lin et al. [34]. Channel aware distributed
detection has also been studied in the context of cooperative relay networks [35].
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(e) Correlated observations

While the popular assumption that observations at the sensors are
conditionally independent is convenient for analysis, it does not necessarily hold
for arbitrary sensing systems. For instance, if the signal is random and sensor
nodes lie in close proximity of one another, their observations remain strongly
correlated, even after conditioning on the hypothesis. Distributed detection
problems with correlated observations can be considerably more challenging than
their conditionally independent counterparts [36]. A variety of approaches have
been proposed to address these challenges. Willett et al. [36] give a thorough
analysis of the binary quantization of a pair of dependent Gaussian random
variables. The findings in this paper indicate that, even in this simple setting, an
optimal detector may exhibit very complicated behaviour. In Kam et al. [37], the
structure of an optimal fusion rule has been examined for the more encompassing
scenario where multiple binary sensors observe conditionally dependent random
variables. In Blum & Kassam [38], the structure of an optimal detector when
faced with weak signals and dependent observations has been explored. Chen &
Ansari [39] have proposed an adaptive fusion algorithm for an environment where
the observations and local decisions are dependent from one sensor to another.
This adaptive approach requires the knowledge of only a few system parameters.
Additional studies have explored the effects of correlation on the performance of
distributed detection systems [40,41] and Blum [42] has provided a discussion of
locally optimum detectors for correlated observations based on ranks.

The theory of large deviations can be used to assess the performance of
wireless sensor systems exposed to correlated observations [43,44]. In particular,
the Gärtner–Ellis theorem and similar results from large-deviation theory have
been successfully employed to assess the asymptotic performance of large, one-
dimensional systems [45]. For differentiating between known signals in a Gaussian
noise, overall performance improves with sensor density, whereas, for the detection
of a Gaussian signal embedded in Gaussian noise, a finite sensor density is
optimal [44]. Results of large deviations have also been applied to the problem
of hypothesis testing against independence for a Gauss–Markov random field,
where the error exponent for the Neyman–Pearson hypothesis testing is analysed
for different values of the variance ratio and correlation [46].

Sundaresan et al. [47] and Iyengar et al. [48] employed copula theory for signal
detection problems involving correlated observations as well as for heterogeneous
sensors, observing a common scene. For the fusion of correlated decisions, copula
theory does not require prior information about the joint statistics of the sensor
observations or decisions, and allows the construction of the joint statistics based
on a copula selection procedure.

(f ) Sequential and quickest change detection

In the dynamic setting, each sensor receives a sequence of successive
observations and the detection system has the option to stop at any time
and make a final decision, or to continue taking observations. The simplest
problem in this setting is that of binary sequential detection. A distributed
version of binary sequential detection, where sensors make final decisions (linked
through a common cost function) at different stopping times, has been studied by
Teneketzis & Ho [49] and Veeravalli et al. [50]. Fusion of sequential decisions made
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at the sensors has been considered in Hussain [51]. A more general formulation
of the fusion problem was introduced by Hashemi & Rhodes [52], and a more
complete solution to this problem was given by Veeravalli and co-workers [21,53].
Recent work includes an asymptotic theory for sequential hypothesis testing in
sensor networks in the regime of small-error probabilities [54].

A different binary sequential decision-making problem that first arose in
quality control applications is the quickest change detection problem [55]. Here,
the distribution of the observations changes abruptly at some unknown time,
and the goal is to detect the change as soon as possible after its occurrence,
subject to constraints on the false alarm probability. A decentralized formulation
of the quickest change detection problem has been considered by Crow &
Schwartz [56] and Teneketzis & Varaiya [57], with the sensors implementing
individual change detection procedures. Practical schemes for fault detection with
multiple observers have been proposed by Wang & Schwartz [58]. A general
formulation of decentralized quickest change detection with a fusion centre
making the final decision about the change was introduced by Veeravalli [53,59],
and multi-channel extensions discussed by Tartakovsky & Veeravalli [60]. The
extension to the situation where the change takes place at different times at the
sensor, i.e. the change is a process across the sensors, is considered by Raghavan &
Veeravalli [61].

(g) Detection based on multi-objective optimization

Sensor network design involves simultaneous consideration of multiple
conflicting objectives, such as maximizing the lifetime of the network or
maximizing the detection capability, while minimizing the transmission costs.
For example, it may be best for a node to avoid sending data when the information
content of a transmission is small [62–65]. An added benefit of the censoring
approach is that, under a send/no-send constraint on each sensor and when the
fusion centre has its own observations, the sensor decision rules can be determined
independently without any loss of optimality [63].

Multi-objective optimization methods [66–72] consider possibly conflicting
objectives simultaneously and generate a set of solutions reflecting different trade-
offs between the objectives. Then sensor decision thresholds not only determine
the probability of error in the network, but also determine the total energy
consumption of the network. Rather than minimizing the probability of error of
the WSN subject to a resource constraint, in the approach presented by Masazade
et al. [73], the problem of obtaining the sensor decision thresholds is formulated as
a multi-objective optimization problem (MOP). Instead of having a single solution
that minimizes the probability of error of the network in a Bayesian framework,
by using the MOP approach, several sensor threshold solutions are determined
which deliver significant energy saving compared with the energy consumption
of the minimum probability of error solution without sacrificing much from the
best achievable probability of error.

(h) Distributed parameter estimation

While much of the initial work on distributed inference in sensor networks
was restricted to detection problems, more recently there has been considerable
interest in distributed parameter estimation. There have been a number of papers
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on distributed parameter estimation under the star topology depicted in figure 1a,
e.g. [74–76]. For one-bit quantization at the sensors, it has been shown that the
maximum likelihood estimate achieves the Cramér–Rao lower bound (CRLB)
asymptotically when the number of sensors is large [76]. When the observation
noise is small, adding a Gaussian dithering noise or some deterministic signals at
the local sensors may lower the CRLB [77]. It has also been shown that using one-
bit uniformly dithered samples instead of the unquantized, full-precision data only
suffers a logarithm rate loss, for single- and multiple-parameter estimation [78,79].

For the case where the joint distribution of the sensor observations and
the parameter is not completely available, several distribution-independent
distributed estimation schemes have been proposed under the assumption that
the sensor noises are bounded, zero mean and identically independent distributed
(i.i.d.) [80–82]. Although the resulting estimators have been shown to be unbiased
or asymptotically unbiased, the estimation variance is largely unknown but
bounded. Chen & Varshney [83] have considered the non-parametric distributed
parameter estimation problem using one-bit quantized data from peripheral
sensors. Assuming that the sensor observations are bounded, non-parametric
distributed estimators are obtained based on the knowledge of certain moments
of the sensor noises. These estimators are shown to be either unbiased or
asymptotically unbiased with bounded and known estimation variance. The
proposed estimators are shown to be consistent even when local sensor noises
are not independent but m-dependent. Performance in terms of the minimax
CRLB metric has been considered and discussed by Venkitasubramaniam et al.
[84] and Chen & Varshney [85].

Distributed parameter estimation problems for more general sensor network
topologies (as described in figure 1b) have also been studied. For example,
the ring-network structure has been considered [86–88] for in-network
information processing, where the sensors are organized in a cycle and process
the information by passing the estimates along the cycle. Consensus-based
approaches for distributed estimation have been discussed [14,89–92]. In addition,
specific approaches to distributed estimation of diffusive sources have been
studied [15,93,94].

3. Tracking

The design of object (target) tracking algorithms using a small number of
sophisticated sensors (e.g. radars) is a well-studied problem (e.g. [95–98]). Many
of the basic problems, such as trajectory modelling, nonlinear filtering and data
association, carry over to the problem of tracking in WSNs with a large number
of sensors. The use of sensor networks for tracking, however, presents a number
of new challenges. These challenges include distributed algorithms and control,
energy efficiency and understanding the fundamental performance limits of sensor
networks for tracking applications, especially as the size of the network becomes
large. We will pay special attention to these new challenges in this section.

(a) Nonlinear filtering and particle filtering

A standard and reasonable assumption that is made in most tracking problems
is that the state (location of the object) evolves as a Markov process, with the
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Figure 2. Tracking objects using a sensor network. (Online version in colour.)

observations being functions of the state corrupted by noise (figure 2). In the
Bayesian sequential framework the statistical model for the system evolution with
time is assumed to be known a priori. A basic step in tracking the object is the
recursive evaluation of the a posteriori probability distribution of the state given
the past observations, also know as the belief state. The recursive update of the
belief state can be broken into two stages: prediction based on the Markov prior,
and update using the new observations and Bayes rule.

In the simplest case, we have a linear state space model with Gaussian
innovations and observation noise, for which the linear Kalman filter provides
the update for the belief state [16]. Variations of the Kalman filter, such as the
extended Kalman filter and unscented Kalman filter, can be used to provide the
belief update in some cases where the linear, Gaussian model is relaxed [99].

More generally, the belief state update involves a complicated nonlinear
filtering operation, which can be computationally intractable. Tractable solutions
can be obtained via the non-parametric Monte Carlo sampling-based method
of particle filtering [98,100]. The idea behind particle filtering is to represent
(approximate) the belief state in terms of a discrete distribution on the
set of samples of the state. The sample points and weights (point masses)
associated with the samples are updated using the Markov state evolution and
observation models. There are a variety of ways of performing the particle update;
see Arulampalam et al. [100] and Doucet & Johansen [101] for recent summaries.

In a sensor network, there are two options for performing the belief update:
it can be done centrally at a fusion centre or in a distributed manner across
the sensors. Centralized processing, while being straightforward, may require a
considerable overhead for communication between the sensors and the fusion
centre. In the distributed case, the sensors maintain belief states on their own
and exchange messages among themselves to update their beliefs. A distributed
version of the Kalman filter is described by Olfati-Saber [102], and distributed
versions of particle filters have been studied by Coates [103] and Gu and
co-workers [104,105]. Distributed tracking using particle filters that explicitly take
into account the channel connecting the sensors and the fusion centre is described
by Ozdemir et al. [106].
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(b) Multi-object tracking and data association

Tracking multiple objects is not a simple extension of tracking a single object
owing to the data association problem. This problem arises whenever the identity
of the objects cannot be determined from the observations. Thus, even if all object
locations are known exactly, it may not be known which location corresponds to
which object. This uncertainty leads to an explosion in the set of possibilities
that must be considered in determining the belief states for the objects (tracks)
given the observations [107–109].

There are two main approaches to dealing with the data association problem,
while maintaining a reasonable level of computational complexity. The first is
an approach proposed by Fortmann et al. [110] called joint probabilistic data
association (JPDA) in which the belief state of each track is updated using a
weighted combination of all the observations. The weights are chosen based on
estimates of the probabilities that a given observation is associated with a given
track, while ensuring that mutual exclusion of the tracks is maintained at all
times.

The second approach to dealing with the data association problem called
multiple hypothesis tracking (MHT) was proposed by Reid [111]. The idea is
to keep multiple possible associations (or hypotheses) of observations to existing
tracks, new tracks and possible false alarms. The actual data association decisions
are hence effectively delayed until enough data are available to resolve the true
hypothesis with high confidence. An advantage of the MHT approach over the
JPDA approach is that the number of tracks need not be known beforehand.
However, an obvious disadvantage of the MHT approach is that the storage
and processing requirement might be considerably higher than that for the
JPDA approach.

There are a number of variants of the JPDA and MHT approaches described
in the survey paper by Liu et al. [107], where considerations such as resource
constraints at the sensors are also discussed. Specific approaches to multi-object
tracking using distributed nonlinear filtering and data association techniques are
also described by Oh et al. [112].

(c) Sensor management, scheduling and sleep control

An important aspect of tracking using sensor networks is the efficient
management of the sensor resources, where at each time step the modes of
the sensor are controlled based on the information available up to that time.
Typically, the sensor control simply decides which sensors should be on at a
given time instant, with the goal of optimizing the trade-off between energy
consumption and tracking performance. The control problem can be cast within
the framework of partially observable Markov decision processes (POMDPs), and
it is easily shown that the belief states of the objects serve as sufficient statistics
for the control, as shown in figure 3.

Such a control problem was studied by Castanon [113] in the context of
classification of a large number of unknown objects, where an approximate
dynamic programming approach for dynamic scheduling of multi-mode sensor
resources was developed. The goal [113] was to achieve an accurate classification
of each object at the end of a fixed finite horizon by assigning different sensor
modes to different objects subject to periodic or total resource usage constraints.
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Figure 3. Sensor management for tracking. (Online version in colour.)

Mode allocation strategies are computed based on Lagrangian relaxation for
an approximate optimization problem wherein sample-path resource constraints
are replaced by expected value constraints. In the context of sensor scheduling
for target tracking, information-based approaches [114,115] have been developed
for optimizing tracking performance subject to an explicit constraint on
communication costs in a decentralized setting. The Lagrangian relaxation
approach is also adopted [114] to solve a constrained dynamic programme
over a rolling horizon. There, the combinatorial complexity of the decision
space is avoided by first selecting one leader node, followed by greedy sensor
subset selection. Other related work on sensor scheduling includes leader-based
distributed tracking schemes [116,117], where at any time instant one sensor, the
leader sensor, is active, and the leader changes dynamically as a function of the
object state, while the rest of the network is idle. Comparisons between scheduling
and random sensor activation are made by Pattem et al. [118], who show that
orders of magnitude savings in energy are possible with scheduling. There has
also been some recent work on coordinated guidance of autonomous unmanned
aerial vehicles for multi-target tracking using POMDPs [119].

More recently, a fundamental study [120] of the problem of optimizing
the trade-off between energy consumption and tracking performance has been
undertaken. A variety of sensing and object movement models were studied [120],
and in many cases computable lower bounds on the optimal trade-off are
given that can be used as benchmarks in comparing implementable suboptimal
procedures. The suboptimal procedures proposed [120] are shown to approach
the lower bound in the low tracking error regime of interest in applications.

(i) Reduced complexity metrics for tracking

The complexity of the dynamic programming optimization, even for myopic
policies, can be difficult owing to intractability of the metrics used in the
optimization. Therefore, approaches based on reduced complexity metrics have
been adopted, and these approaches largely fall into two categories. The first is
based on information-theoretic measures, such as entropy, relative entropy and
Rényi divergence, and the second is based on the posterior CRLB (PCRLB). In
the context of Bayesian estimation, a good measure of the quality of a sensing
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action is the reduction in entropy of the posterior distribution that is expected
to be induced by the measurement. Therefore, it may be beneficial to choose
the sensing action that maximizes the expected gain in information based on a
variety of information-theoretic measures [114,115,121–125].

A possible shortcoming of the information-theoretic approaches is that
computational complexity may still be large, especially when the number N
of sensors to be selected is large. In particular, it has been shown [126] that
the complexity of mutual information-based approaches is exponential in N ,
whereas the complexity of PCRLB or conditional PCRLB-based approaches
is linear in N . A recursive approach to calculate the sequential PCRLB for
a general multi-dimensional discrete-time nonlinear filtering problem has been
derived [127]. Many researchers have proposed PCRLB-based approaches to solve
sensor management problems [128–131]. In these approaches the unconditional
PCRLB is employed, where the Fisher information matrix is derived by taking
the expectation with respect to the joint distribution of the measurements and
the target states up to the current time, making it an off-line bound. The
unconditional PCRLB is determined by using only the system dynamic model,
system measurement model and the prior knowledge regarding the target state at
the initial time, and is thus independent of any specific realization of the target
track. As a result, the unconditional PCRLB does not reflect the target tracking
performance for a particular track realization faithfully. Some ad hoc attempts
have been made to fix the above problem but these solutions are not theoretically
justified. To take advantage of the available measurement information, an exact
conditional PCRLB that is dependent on the past data and hence is implicitly
dependent on the target track up to the current time has been derived [132].
A recursive approach to calculate the conditional PCRLB for nonlinear/non-
Gaussian Bayesian estimation problems, and also a numerical approximation for
its computation through particle filters, has been presented [132]. This conditional
PCRLB is computationally efficient and suitable for sensor management.

(ii) Sensor sleep control for tracking

An inherent assumption in the sensor scheduling work described above is that
the sensors can be switched between the on and off states by external means.
Either the method used for this wake-up is left unspecified or it is assumed that
there is some low-power wake-up radio at each sensor dedicated to this function.
A more practical assumption in many sensor networks is that a sensor that is
asleep cannot be communicated with or woken up, and hence the sleep duration
needs to be determined at the time the sensor goes to sleep. A straightforward
approach is to have each sensor enter and exit the sleep mode using a fixed or a
random duty cycle. A more intelligent, albeit more complicated, approach is to
use information about the objects’ trajectories that is available to the sensor
from the network to determine the sleeping strategy. Such an approach was
introduced by Fuemmeler & Veeravalli [133], who studied a single object tracking
problem under a simple sensing and object movement model. A computable
lower bound on the optimal trade-off between energy consumption and tracking
performance is presented, and strategies that come close to this bound are
presented. Furthermore, it is shown by Fuemmeler & Veeravalli [133] that
the nearly optimal strategies result in considerable savings in energy over
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duty cycle policies. Generalizations to multi-object tracking are presented by
Fuemmeler & Veeravalli [134], and sleeping policies for under general models for
object movement, object sensing and tracking cost are presented by Fuemmeler
et al. [135].

4. Conclusions

In conclusion, distributed inference in WSNs is a rich and vibrant area of research.
There has been much progress in this area over the last couple of decades,
particularly in terms of understanding how to effectively deal with resource
constraints such as energy and communication bandwidth and range. However,
a number of interesting questions remain. Our understanding of distributed
inference problems when the observation statistics are unknown is still far
from complete; new learning-based approaches that work when the statistics
are unknown or partially known need to be developed. Progress on distributed
inference with conditionally dependent observations has been limited and new
techniques for both the design and analysis of effective algorithms are required.
Also, a topic that has not received much attention is the design of communication
architectures that are best suited for the inference problem being addressed.
Another challenging open problem in distributed inference is when heterogeneous
sensors, e. g. of different modalities, are observing the same phenomenon. Finally,
when humans are part of the inference process along with physical sensors, many
new problems arise owing to the nature of their information (soft versus hard
information) and human limitations on information acquisition and processing
such as their categorization of priors [136]. Such distributed inference problems
become important with the ever-increasing role that social networking is playing
in our lives.
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