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Abstract: With the development of Earth observation programs, more and more multi-temporal
synthetic aperture radar (SAR) data are available from remote sensing platforms. Therefore, it is
demanding to develop unsupervised methods for SAR image change detection. Recently, deep
learning-based methods have displayed promising performance for remote sensing image analysis.
However, these methods can only provide excellent performance when the number of training
samples is sufficiently large. In this paper, a novel simple method for SAR image change detection
is proposed. The proposed method uses two singular value decomposition (SVD) analyses to learn
the non-linear relations between multi-temporal images. By this means, the proposed method
can generate more representative feature expressions with fewer samples. Therefore, it provides a
simple yet effective way to be designed and trained easily. Firstly, deep semi-nonnegative matrix
factorization (Deep Semi-NMF) is utilized to select pixels that have a high probability of being
changed or unchanged as samples. Next, image patches centered at these sample pixels are generated
from the input multi-temporal SAR images. Then, we build SVD networks, which are comprised
of two SVD convolutional layers and one histogram feature generation layer. Finally, pixels in both
multi-temporal SAR images are classified by the SVD networks, and then the final change map can
be obtained. The experimental results of three SAR datasets have demonstrated the effectiveness and
robustness of the proposed method.

Keywords: change detection; synthetic aperture radar; nonnegative matrix factorization;
SVD networks; fuzzy c-means; Deep Semi-NMF

1. Introduction

Remote sensing image change detection is the process of identifying land cover changes by using
remotely-sensed images of the same geographical area at different times [1]. It is of high practical
value in a large number of applications in diverse disciplines, such as crop growth monitoring [2],
urban sprawl detection [3,4], hazard assessment [5], and snow cover monitoring [6]. Therefore, change
detection has become an attractive research topic in remote sensing communities recent years.

With the development of Earth observation programs, more and more multi-temporal synthetic
aperture radar (SAR) images are available [7]. Owning to the fact that SAR images can be obtained
independently of atmospheric and sunlight conditions, SAR images are more suitable than optical
or hyperspectral images to be employed in change detection. Hence, in recent decades, SAR images
have been successfully applied in environmental monitoring, urban studies, and forest monitoring.
However, change detection based on SAR images encounters more difficulties than that based on
optical or hyperspectral images due to the presence of speckle noise [8,9].
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In spite of the difficulties brought about by speckle noise, tremendous progress has been made in
recent years, and many SAR image change detection techniques have shown impressive performance.
These techniques can be categorized into two main research streams: supervised approaches and
unsupervised approaches [10]. Supervised approaches need to utilize reliable training samples to
train a classifier, which will be used to classify each pixel into a changed class or an unchanged
class. The samples are selected based on prior knowledge or manual labeling. On the other hand,
unsupervised approaches make direct comparisons between multi-temporal images to identify the
changes. Due to the fact that reliable samples are not always available, unsupervised approaches are
more preferable to supervised ones. Unsupervised approaches are widely used in remote sensing
communities in practice. Therefore, this paper focuses on unsupervised SAR image change detection.

Existing unsupervised SAR image change detection techniques are mainly based on difference
image (DI) analysis. Generally, these techniques are often comprised of two steps [8]: (1) DI generation
by using various kinds of operators, and (2) classification of the DI into changed and unchanged classes.
Since these techniques are based on DI analysis, the quality of DI is very important and affects the final
change detection results. The common technique used to generate a DI is the log-ratio operator [11,12],
since the log-ratio operator is widely acknowledged to be robust to calibration and radiometric errors.

In the DI classification step, the thresholding method and clustering method are generally used.
The thresholding method is the most intuitive way to analyze the DI. Bruzzone et al. [13] assumed that
the conditional density functions of the changed and unchanged classes can be modeled by Gaussian
distributions. The Expectation-Maximization (EM) iterative algorithm is used to find the optimal
threshold. Later, a similar framework was proposed in [14] by using the Kittler-Illingworth (K&I)
threshold selection criterion. Celik [15] proposed an automatic threshold technique based on Bayes
theory in the wavelet domain instead of the spatial domain. These thresholding methods have achieved
good performance when changed and unchanged classes have distinct modes in the histogram of
DI, respectively. However, they often encounter difficulties when changed and unchanged classes
are strongly overlapped or their statistical distribution cannot be modeled accurately [16]. Therefore,
clustering methods are proposed to take local region information into account. In [17], a reformulated
fuzzy local information c-means cluster algorithm (RFLICM) is proposed to classify the DI based on
local information. The algorithm does not need to estimate the distribution of changed and unchanged
classes, and it is robust to speckle noise due to the use of local information. Celik [18] proposed an
efficient method for change detection by using PCA and k-means clustering. In this method, the DI is
divided into overlapping image blocks. A feature vector space is created by projecting the block around
each pixel into eigenvector space, and then the k-means clustering algorithm is employed to cluster
the feature vector space into changed and unchanged classes. Li et al. [19] proposed a novel change
detection method based on two-level clustering. Two-level clustering is designed in Gabor feature
space by successively combining the first-level fuzzy c-means (FCM) clustering with the second-level
nearest neighbor rule. In the optical image change detection community, the contextual information is
an important factor in DI analysis. Lv and Zhong [20] proposed a multi-feature probabilistic ensemble
conditional random field model for DI analysis. In this method, morphological operators are used to
keep the main structure of the changed regions, and spatial contextual information is considered by
the pairwise potential designed in the conditional random field model.

Several recent publications have formulated unsupervised change detection problem as an
incremental learning problem. To be specific, the process of change detection simulates the learning
process of humans [21]. Humans learn to understand the world by prior knowledge provided by
predecessors, through which each forms his own interpretations of the world. Similarly, the change
detection task can be formulated as the following steps: First, an initial change map is generated by
thresholding or clustering algorithms. Second, samples are selected from the change map and fed into a
learning system as prior knowledge. Finally, the system gives its own interpretations of multi-temporal
SAR images and generates a final change map. Liu et al. [21] established a deep neural network using
stacked Restricted Boltzmann Machines (RBM) to analyze the DI. In [22], a joint classifier based on FCM
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was designed to select reliable samples, and then a two-layer RBM network was established for image
change detection. Liu et al. [23] proposed a deep network comprised of one convolutional layer and
several coupling layers. The network performs well in heterogeneous optical and SAR image change
detection. In the optical image change detection community, deep architectures have been successfully
exploited for feature representations in change detections. Zhang et al. [24] proposed a framework for
multi-spatial resolution image change detection, which incorporates deep architecture-based feature
learning. In the framework, stacked denoising autoencoders are integrated for learning high-level
features from raw image data. Zhong et al. [25] proposed a method based on pulse-coupled neural
networks (PCNN) and normalized moment of inertia (NMI) feature analysis. The method can provide
better performance for high spatial resolution optical images. In deep learning, the hierarchical
structure can learn different features at different layers, and these features can represent the change
information between multi-temporal images. Therefore, the available methods that depend on deep
learning can obtain excellent results. In a recent technical tutorial [26], Zhang et al. systematically
reviewed state-of-the-art deep learning techniques in remote sensing data analysis. They pointed out
that deep learning can automatically obtain high-level semantic features from raw data in a hierarchical
manner, while traditional shallow models can hardly uncover high-level data representations.

Deep learning methods may perform poorly when the number of training samples is relative
small. Generally, millions of training samples are necessary to obtain a model with powerful feature
representation capability. However, this is nearly impossible for the task of SAR image change
detection [27,28]. Though deep learning-based methods are promising, the problem of limited
samples must be solved. Zou and Shi [29] proposed SVD networks, which are designed based
on the recent popular convolutional neural networks to solve the problem of ship detection in optical
images. These networks can efficiently learn features from remote sensing images. Inspired by Zou’s
method [29], in this paper, we put forward a simple change detection scheme for SAR images based
on deep semi-nonnegative matrix factorization (Deep Semi-NMF) and SVD networks. Inspired by
the aforementioned methods, this paper formulates the change detection problem as an incremental
learning problem. Deep Semi-NMF is first utilized for feature extraction, and the hierarchical FCM
clustering algorithm is used to select sample pixels that have high probabilities of being changed or
unchanged. Then, image patches centered at these sample pixels are generated, and these patches are
used to train a model by SVD networks. Finally, pixels in the multi-temporal images are classified by
the model. The SVD network classification result and the pre-classification result are combined to form
the final change detection result.

The main contribution of this paper can be summarized as the following two aspects. First, we put
forward a pre-classification scheme based on Deep Semi-NMF and hierarchical FCM to obtain labeled
samples of high accuracy. Second, we propose a classification model based on SVD networks for
change detection. SVD networks can learn nonlinear relations from multi-temporal SAR images, and
are able to suppress the noisy unchanged regions. The proposed change detection method makes no
rigorous assumption and is unsupervised. Therefore, it can be easily adapted for data across different
SAR sensors.

This paper is organized into four sections. Section 2 elaborates on the framework of the proposed
change detection method. Section 3 analyzes the accuracy of change detection on several real SAR
datasets. Section 4 first analyzes the influence of related parameters on the performance of change
detection, and then discusses the performance of the proposed method with closely related methods.
Finally, Section 5 makes concluding remarks on the proposed method.

2. Change Detection Methodology

Let us consider two co-registered intensity SAR images I1 and I2 acquired over the same
geographical area at two different times. Both images are of M× N pixels. The purpose of change
detection is to produce a difference image that can represent the change information between the two
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times in the scene. The final output of the change detection analysis is to produce a binary image
associated with changed and unchanged pixels by dividing the difference image into two classes.

Figure 1 shows the pipeline of the proposed change detection method. The proposed method is
mainly comprised of three steps:

Step 1—Pre-classification based on Deep Semi-NMF and hierarchical FCM. The log-ratio operator is
first utilized to generate the log-ratio image. Then, Deep Semi-NMF is adopted for feature extraction.
The hierarchical FCM algorithm is utilized for feature classification and pixels in the log-ratio image
are partitioned into three groups: the changed class Ωc, the unchanged class Ωu, and the intermediate
class Ωi. Pixels from Ωc and Ωu are selected as training samples for SVD networks.

Step 2—Training a classifier by SVD networks. Image patches centered at interested pixels obtained in
Step 1 are generated from multi-temporal SAR images. Pixel-wise features are extracted directly from
these patches. Then, SVD networks comprised of two SVD convolutional layers and one histogram
feature generation layer are built. By using SVD networks, a classifier based on pixel-wise patch
features is trained.

Step 3—Classification of changed and unchanged pixels by using the pretrained classifier. Pixels belonging
to the intermediate class Ωi are classified into changed and unchanged class by using the classifier
obtained in Step 2. Then, the classification result and the pre-classification result generated in Step 1
are combined to form the final change map.
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Section 2 is organized as follows. Section 2.1 gives the detailed description of pre-classification
based on Deep Semi-NMF and hierarchical FCM clustering. Section 2.2 introduces the process of
classification by using SVD networks.

2.1. Pre-classification Based on Deep Semi-NMF and Hierarchical FCM Clustering

The first step of the proposed change detection method is pre-classification, which aims to select
reliable samples for SVD networks. This subsection details the pre-classification process based on
Deep Semi-NMF and hierarchical FCM. Section 2.1.1 reviews the Deep Semi-NMF briefly. Section 2.1.2
introduces the detailed strategy for pre-classification.

2.1.1. Deep Semi-NMF

Nonnegative Matrix Factorization (NMF) is useful to find representations of nonnegative data.
It can approximate a nonnegative matrix with the product of two low-dimensional nonnegative
matrices. NMF allows only additive combinations, and therefore the nonnegative constraints of
NMF lead to a parts-based representation [30]. The parts-based property makes NMF suitable for
a broad range of applications, such as hyperspectral image unmixing [31,32], face recognition [33],
and image classification [34]. In [27], Zhang et al. presented an elegant solution for high dimensional
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remote sensing data analysis. They pointed out that matrix factorization is an important tool to
extract significant features for remote sensing data analysis. Therefore, it is plausible to use matrix
factorization for SAR image feature explorations.

Given an m× n nonnegative data matrix V and a pre-specified positive integer r, NMF aims to
find two nonnegative matrices W ∈ Rm×r and H ∈ Rr×n, such that:

V ≈WH. (1)

It should be noted that r is a pre-specified positive integer. The value of r is relatively small, so
that (m + n)r < mn. Thus, H is considered as a new representation of the original data matrix V. W is
considered as the mapping between the new representation H and the original data matrix V.

In many real world applications, the data matrix V often has mixed signs. Considering this,
Ding et al. [35] proposed the Semi-NMF, which can impose non-negativity constraints only on the
second factor H, but allows mixed signs in both the data matrices V and W. The Semi-NMF has been
considered to be equivalent to k-means clustering, and it has been expected to perform better than
k-means clustering particularly when the input data is not distributed in a spherical manner.

It is considered that the mapping W contains complex hierarchical and structural hidden
representations. By further factorizing the mapping W, we can automatically learn the hidden
representations and obtain better higher-level feature representations of the original data matrix
V. Inspired by this, Trigeorgis et al. [36] proposed Deep Semi-NMF, which applies Semi-NMF to a
multi-layer structure in order to learn hidden representations of the original data matrix. Specifically,
the input data matrix is factorized into m + 1 factors as follows:

V± = W±1 W±2 · · ·W
±
m H+

m , (2)

Here, W±m means that a matrix is allowed to have mixes signs, and H+
m means that a matrix is

comprised of strictly nonnegative components. This can be viewed as learning a hierarchical structure
of features, with each layer learning a representation suitable for clustering according to the different
attributes of the input data. The input data can be represented by a hierarchy of m layers as follows:

H+
m−1 ≈W±m H+

m ,
...

H+
2 ≈W±3 · · ·W±m H+

m ,
H+

1 ≈W±2 · · ·W±m H+
m .

(3)

The implicit representations (H+
1 ,. . . , H+

m−1) are also restricted to be nonnegative. Therefore, each
layer of this hierarchy of representations also lends itself to be a clustering interpretation. By doing
this, the model can find low-dimensional representations of the input data matrix. In [36], the Deep
Semi-NMF model is able to outperform the single-layer Semi-NMF in a human face identification
task. In [37], Deep NMF is utilized in speech separation, and the experimental results show that Deep
NMF outperforms the single-layer NMF in terms of the source-to-distortion ratio (SDR). This research
proved that the low-dimensional representations generated by Deep Semi-NMF are better suited
for clustering.

2.1.2. Strategy for Pre-classification

Traditional methods can hardly discriminate change and unchanged pixels directly. Therefore, we
aim to use a deep learning-based method to improve the performance of pixel classification. The change
detection task is treated as an incremental learning problem in this paper. An initial change map is
generated through the pre-classification process. Pixels in the input images are classified into three
groups: the changed class Ωc, the unchanged class Ωu, and the intermediate class Ωi. Pixels belonging
to Ωc and Ωu have high probabilities of being changed and unchanged, respectively. These pixels are
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the training samples for SVD networks to generate a classifier. By using the classifier, pixels belonging
to Ωi can be further classified into changed and unchanged. Then, the SVD networks classification
result and the pre-classification result can be combined to form the final change map. The intermediate
Ωi class can be viewed as the bridge between the pre-classification stage and the SVD networks
classification stage.

In order to deal with the speckle noise in both SAR images, the well-known log-ratio
operator [1,14,23] is applied to generate the difference image (DI). Let ID be the DI, and it can be
com-puted pixel by pixel from I1 and I2 by:

ID = |log(I1)− log(I2)|. (4)

The log-ratio operator is usually expressed in absolute value form. It is worth noting that
the absolute value form is empirically verified to be robust to calibration errors. Based on these
considerations, we adopt the log-ratio operator in the proposed change detection method.

After obtaining the difference image, the next step is to extract features by using Deep Semi-NMF.
Neighborhood patches of the size h× h pixels around each pixel are extracted and these patches are
rearranged as column vectors. Then, the column vectors for all the pixels are combined to form a
h2 ×MN data matrix V. The process of data matrix V generation is illustrated in Figure 2.
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The factorization algorithm starts from W0 and H0, where usually W0 and H0 are randomly
initialized matrices. Here, to speed up the convergence rate of NMF, Nonnegative Double Singular
Value decomposition (NNDSVD) is used. Another important issue that can affect the performance
of pre-classification is the structure of Deep Semi-NMF. As empirically verified in [36], the two-layer
model is generally sufficient to achieve good performance, and a higher number of layers does not
seem to lead to significant improvements. Therefore, we implement Deep Semi-NMF with a first
hidden representation H1 with d2h2/3e features, and a second representation H2 with dh2/2e features.
d e is the mathematical ceiling operator that maps a real number to the smallest following integer.

H2 is a matrix with h2/2 rows and MN columns. The matrix denotes the low-dimensional
representation of all the pixels in the DI. Then we implement the FCM algorithm on the matrix to
partition the pixels in the DI into three groups: the changed class Ωc, the unchanged class Ωu, and the
intermediate class Ωi. Pixels belonging to Ωc have a high probability of being changed, and pixels
belonging to Ωu have a high probability of being unchanged. Therefore, these two kinds of pixels
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can be chosen as samples. We use the hierarchical FCM clustering algorithm [38] for classification.
We observed that if we directly classify pixels into three classes by FCM, the intermediate class often
occupies a large part, and then we can hardly obtain enough representative samples for SVD networks
training. Therefore, the FCM algorithm is organized in a cascade way to implement a coarse-to-fine
procedure to guarantee efficiency. Finally, we obtain the pre-classification change map with labels
{Ωc, Ωi, Ωu}. Pixels belonging to Ωc and Ωu are selected as training samples.

The number of samples is a critical issue for the classification task. In our implementations, 8% of
pixels from Ωc and Ωu are randomly selected as training samples. Moreover, we have empirically
observed that these training samples are in general sufficient to achieve good performance and that
more training samples do not necessarily lead to further improvement. In the next subsection, we will
describe how to classify the pixels belonging to Ωi.

2.2. Classification by Using SVD Networks

In order to accurately identify the changed regions between multi-temporal SAR images, the
analysis of the nonlinear relations from both input images is very important. In this paper, SVD
networks are utilized as the classifier. The merits of SVD networks lay in the fact that features are
not designed by human engineers but are learnt from the image raw data by hierarchical structures.
Thus, SVD networks are able to obtain better interpretations of the nonlinear relations from the image
raw data.

The structure of SVD networks is shown in Figure 3. In the SVD filter convolutional stage, we use
two convolutional layers. In the feature generation and classification stage, hash coding and linear
SVM classifier are utilized. In the next subsections, we will give a detailed introduction of the two
stages of SVD networks.
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2.2.1. Stage 1: SVD Filter Convolutional Stage

In the SVD filter convolutional stage, sample image patches around sample pixels
(belonging to Ωc and Ωu) are generated first. The sample image patches generation
process is shown in Figure 4. These patches contain local change information at the
same positions. In image I1, the sample patch at the central pixel I1(m, n) is defined as
PI1

mn = {I1(row, col)
∣∣∣m− l ≤ row ≤ m + l, n− l ≤ col ≤ n + l} , l = (k− 1)/2. The size of PI1

mn

is k × k. At the same time, the corresponding sample patch in image I2 at the central pixel
I1(m, n) is defined as PI2

mn = {I2(row, col)
∣∣∣m− l ≤ row ≤ m + l, n− l ≤ col ≤ n + l} . Both patches

are concatenated into a new image patch Pmn, and the size of Pmn is 2k× k. We randomly choose N
samples to obtain the sample images Pi, i = 1, 2, 3, · · · , N.
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After sample image patches generation, we obtain N sample images Pi, i = 1, 2, 3, · · · , N.
These image patches are fed into two SVD convolutional layers. The filter banks of the first and second
convolutional layers are denoted as:

WC1
m ∈ R2k×k, m = 1, 2, · · · , L1,

WC2
n ∈ R2k×k, n = 1, 2, · · · , L2,

(5)

where L1 and L2 represent the number of filters in the first and second convolutional layers, respectively.
The mth output map of the first convolutional layer can be denoted as:

F 1
im = Pi ×WC1

m ,m = 1, 2, · · · , L1, i = 1, 2, · · · , N (6)

Then, the output map of the second convolution layer can be represented as:

F 2
imn

= F 1
im ×WC2

n ,m = 1, 2, · · · , L1, n = 1, 2, · · · , L2, i = 1, 2, · · · , N (7)

We use L1 primary filters in the first convolutional layer, and then we obtain L1 feature maps.
In the second convolutional layer, each feature map is an individual input, and the output can be
regarded as L1 groups of features maps. Since we use L2 primary filters in the second convolutional
layer, we obtain L1 × L2 feature maps in total. SVD networks are utilized as the filters to obtain the
feature maps, and they are capable of exploiting the abstract semantics of the image data. Next,
we give a brief review of the SVD algorithm and then introduce how SVD is used in the two
convolutional layers.

SVD is a simple yet effective algorithm for extracting the dominant features by projecting the
original high dimensional space into low semantic dimensional space. Compared with other feature
reduction methods or feature learning methods, such as linear discriminant analysis and principal
component analysis, SVD makes use of the relationships between features to establish underlying
semantic means. An enriched feature space with a small number of features is established to represent
the original data. Therefore, SVD can not only reduce the dimensionality, but also improve the feature
classification performance. Deep learning methods may perform poorly when the number of training
samples is relatively small. However, it is nearly impossible for the task of SAR image change detection
to obtain tens of millions of training samples. We select SVD as the convolutional filter because it is
theoretically sound, robust, and structurally compact. It is empirically verified that it performs better
than principal component analysis and linear discriminant analysis.

As mentioned above, in the process of sample image patches generation, we obtain N sample
images Pi, i = 1, 2, 3, · · · , N. In the first convolutional layer, the pixels of each sample
image are reshaped into a vector pC1

i ∈ R2k2×1, and all the vectors are combined into a matrix



Remote Sens. 2017, 9, 435 9 of 20

PC1 = [pC1
1 , pC1

2 , · · · , pC1
N ] ∈ R2k2×N . Then, the SVD of the data matrix PC1 is a factorization

as follows:
PC1 = UC1∑C1VT

C1 (8)

where ∑C1 is a rectangular diagonal matrix with nonnegative real numbers on its diagonal.
The diagonal entries of ∑C1 are known as the singular values of PC1. UC1 ∈ R2k2×2k2

and VC1 ∈ RN×N

are two orthogonal matrices. The columns of UC1 are called the left-singular vectors of PC1, and the
columns of VC1 are called the right-singular vectors of PC1. In this paper, the left-singular vectors of
UC1 with the largest L1 singular values are selected as the primary filter banks of the C1 layer.

The filter banks WC1
i can be obtained by reforming ûC1

i back into the 2-D filters.
In the C2 layer, the input is N× L1 feature maps. The feature maps are reshaped into a vector pC2

i ,
i = 1, 2, 3, · · · , N × L1. All vectors are combined into a data matrix PC2 = [pC2

1 , pC2
2 , · · · , pC2

NL1
] ∈

R2k2×NL1 . Therefore, the data matrix PC2 is factorized as follows:

PC2 = UC2∑C2VT
C2 (9)

where ∑C2 is a rectangular diagonal matrix containing singular values of PC2. UC2 is an orthogonal
matrix containing left-singular vectors of PC2. VC2 is an orthogonal matrix containing right-singular
vectors of PC2. Similar to the first convolutional layer, the left-singular vectors of UC2 with the largest
L2 singular values are selected as the primary filter banks of the C2 layer. The filter banks WC2

i are
obtained by reforming ûC2

i back into the 2-D filters.

2.2.2. Stage 2: Feature Generation and Classification Stage

Through two convolutional layers, we obtain N × L1 group outputs, and each group contains L2

feature maps. Then, each feature map is binarized using a Heaviside step function whose value is one
for positive input and zero otherwise. Then, in each group of feature maps, around the same position
we have L2 binary bits. For the mth group of the L2 binary bits, they can be encoded into a decimal
number as follows:

Dm = ∑L2
n=1 2n−1H

(
F 2

imn

)
, m = 1, 2, · · · , L1, i = 1, 2, · · · , N (10)

Then, the output feature maps F 2
imn

are converted into L1 groups of integer-valued “images” Dm,
where the value of each pixel is in the range

[
0, 2L2 − 1

]
. Then, the histogram of Dm are calculated,

and form a feature vector Hist(Dm). Finally, all the feature vectors of the same group are further
concatenated together to form the final change map to form the final feature descriptor of the input
image Pi, i.e.,

FEAT(Pi) = [Hist(D1); Hist(D2); · · · ; Hist(DL1)]. (11)

Then, the feature descriptors of all the sample images are fed into the linear SVM to train a model.
By using the model, pixels belonging to Ωi are further separated into changed and unchanged classes.
Finally, we combine the SVD networks classification result and the pre-classification result together to
form the final change map. We have tried different numbers of layers in the SVD networks. From the
experimental results, we have found that two layers for feature extraction is sufficient to achieve good
performance. Therefore, in our implementations, we set the number of layers for feature extraction to
two. Moreover, the SVD filter number L1 and L2 also affects the classification performance slightly
when L1 and L2 are set larger than six. Inspired by Gabor filters and histogram of oriented gradients
(HOG), the common settings of filters often have eight orientations, therefore, L1 and L2 are set as
eight in our implementations.
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3. Experimental Results and Analysis

In this part, Section 3.1 briefly introduces the SAR datasets used in our experiments, and
then describes the criterions that should be considered in performance assessment. Finally, the
proposed method is compared with closely related methods on three SAR datasets. The methods
used for comparison purpose are principal component analysis and k-means clustering (PCAKM) [18],
improved FCM algorithm based on Markov random field (MRFFCM) [39], Gabor feature with
two-level clustering (GaborTLC) [19], and deep neural networks with MRFFCM preclassification
(D_MRFFCM) [22]. The results of PCAKM, MRFFCM, GaborTLC are implemented by using the
authors’ publicly available code.

3.1. Dataset Description and Experimental Settings

In order to evaluate the effectiveness of the proposed method, we apply the proposed method to
three real multi-temporal SAR datasets acquired by different sensors. Co-registration and geometric
corrections have been done on these datasets before applying the proposed method. As mentioned
in [1], the ground truth change map is very important for accuracy assessment of the change detection
performance. An inaccurate ground truth change map will lead to improper assessments. Therefore, in
this paper, the ground truth images were created by manual annotation, which combines on-the-spot
investigation and expert knowledge.

The first dataset is the Yellow River dataset. It presents a section of SAR images acquired by
Radarsat-2 at the region of the Yellow River Estuary in China. The original SAR image is shown in
Figure 5. We select one representative area of size 257 × 289 for change detection. The image acquired
in 2008 is shown in Figure 6a, while the image acquired in 2009 is shown in Figure 6b. The ground
truth change map is shown in Figure 6c, and it was generated by on-the-spot investigation and expert
knowledge. It should be noted that the two images are a single-look image and a four-look image.
Therefore, the influence of speckle noise in the dataset is much greater than the other datasets.
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The second dataset is the San Francisco dataset. It presents a section (256 × 256 pixels) of two
SAR images acquired by the ERS-2 SAR sensor over the city of San Francisco. The original images are
7749 × 7713 pixels, as shown in Figure 7. The images are provided by the European Space Agency.
The image captured in August 2003 is shown in Figure 8a, and the image captured in May 2004 is
shown in Figure 8b. The ground truth change map is shown in Figure 8c, and it was generated by
integrating prior information with photo interpretation.

Remote Sens. 2017, 9, 435  11 of 19 

 

are 7749	×	7713 pixels, as shown in Figure 7. The images are provided by the European Space 
Agency. The image captured in August 2003 is shown in Figure 8a, and the image captured in May 
2004 is shown in Figure 8b. The ground truth change map is shown in Figure 8c, and it was 
generated by integrating prior information with photo interpretation. 

 
Figure 7. SAR images acquired by ERS-2 over the city of San Francisco. 

(a) (b) (c) 

Figure 8. San Francisco dataset. (a) Image acquired in August 2003. (b) Image acquired in May 2004. 
(c) Ground truth change map created by integrating prior information with photo interpretation. 

The third dataset, as shown in Figure 9, is the Ottawa dataset. It represents a section (290	×	350 
pixels) of two SAR images over the city of Ottawa. The images are captured in May 1997 and 
August 1997, respectively, by the RADARSAT SAR sensor. The dataset was provided by Defense 
Research and Development Canada, Ottawa. The images present changed areas that were once 
afflicted by floods. The ground truth image, shown in Figure 9c, was created by on-the-spot 
investigation and expert knowledge. It is worth noting that the Yellow River dataset and the San 
Francisco dataset represent changed areas generated by newly irrigated farmlands, while the 
Ottawa dataset represents changed areas that were once afflicted by floods. 

Figure 7. SAR images acquired by ERS-2 over the city of San Francisco.



Remote Sens. 2017, 9, 435 12 of 20

Remote Sens. 2017, 9, 435  11 of 19 

 

are 7749	×	7713 pixels, as shown in Figure 7. The images are provided by the European Space 
Agency. The image captured in August 2003 is shown in Figure 8a, and the image captured in May 
2004 is shown in Figure 8b. The ground truth change map is shown in Figure 8c, and it was 
generated by integrating prior information with photo interpretation. 

 
Figure 7. SAR images acquired by ERS-2 over the city of San Francisco. 

(a) (b) (c) 

Figure 8. San Francisco dataset. (a) Image acquired in August 2003. (b) Image acquired in May 2004. 
(c) Ground truth change map created by integrating prior information with photo interpretation. 

The third dataset, as shown in Figure 9, is the Ottawa dataset. It represents a section (290	×	350 
pixels) of two SAR images over the city of Ottawa. The images are captured in May 1997 and 
August 1997, respectively, by the RADARSAT SAR sensor. The dataset was provided by Defense 
Research and Development Canada, Ottawa. The images present changed areas that were once 
afflicted by floods. The ground truth image, shown in Figure 9c, was created by on-the-spot 
investigation and expert knowledge. It is worth noting that the Yellow River dataset and the San 
Francisco dataset represent changed areas generated by newly irrigated farmlands, while the 
Ottawa dataset represents changed areas that were once afflicted by floods. 

Figure 8. San Francisco dataset. (a) Image acquired in August 2003. (b) Image acquired in May 2004.
(c) Ground truth change map created by integrating prior information with photo interpretation.

The third dataset, as shown in Figure 9, is the Ottawa dataset. It represents a section
(290 × 350 pixels) of two SAR images over the city of Ottawa. The images are captured in May 1997
and August 1997, respectively, by the RADARSAT SAR sensor. The dataset was provided by Defense
Research and Development Canada, Ottawa. The images present changed areas that were once afflicted
by floods. The ground truth image, shown in Figure 9c, was created by on-the-spot investigation
and expert knowledge. It is worth noting that the Yellow River dataset and the San Francisco dataset
represent changed areas generated by newly irrigated farmlands, while the Ottawa dataset represents
changed areas that were once afflicted by floods.
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The performance evaluation of SAR image change detection is a critical issue. Both visual and
quantitative analyses are made in our experiments. In the visual analysis, we compare the binary
change map generated by each method with the ground truth change map. For quantitative analysis,
we compute five criteria for each change map: false positives (FP), false negatives (FN), overall errors
(OE), percentage correct classification (PCC), and Kappa coefficient (KC). FP denotes the number
of pixels belonging to the unchanged class that are wrongly classified as part of the changed class,
whereas FN denotes the number of pixels belonging to the changed class that are wrongly classified
into the unchanged class. OE can be obtained by using OE = FP + FN. In the binary ground
truth change map, we count the actual number of pixels belonging to the changed class and the
unchanged class. The number of pixels belonging to the changed class is denoted by Nc, while the
number of pixels belonging to the unchanged class is denoted by Nu. Next, PCC is computed by
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PCC = (Nu + Nc− FP− FN)/(Nu + Nc)× 100%. KC gives the percentage of agreement (correct
classified pixels) corrected by the number of agreements that would be expected purely by chance.
To be specific, KC is defined as:

KC = (PCC− PRE)/(1− PRE), (12)

where

PRE =
(Nc + FP− FN)× Nc + (Nu + FN− FP)× Nu

(Nc + Nu)× (Nc + Nu)
. (13)

It should be noted that PCC relies only on the sum values of FP and FN, whereas KC relies on
the dependent values of FP and FN. As mentioned in [39], more detailed information is involved in
KC, and thus KC is a more persuasive coefficient than PCC. It is well worth noting that the receiver
operating characteristic (ROC) evaluation is usually a comprehensive metric in change detection [23].
It can evaluate the intrinsic quality of change detection independent of the threshold choice. However,
the proposed method is a classification-based method. Therefore, there is no threshold to be tuned
when generating the change detection map. It is hard to perform the ROC evaluation against the
comparison methods. The ROC evaluation is not provided in our experiments.

The proposed method is compared with closely related methods on three SAR datasets.
The methods used for comparison purpose are PCAKM, MRFFCM, and GaborTLC. The results
of PCAKM, MRFFCM and GaborTLC are implemented by using the authors’ publicly available code.
Then, these methods are implemented using the default parameters provided in the source codes.
In PCAKM, the block size is set to 5. In MRFFCM, the number of subintervals is set to 30, as mentioned
in [39]. In GaborTLC, U = 8, f =

√
2, and V = 5 are used. It should be noted that since we could not

find the author’s source code of D_MRFFCM, we implement D_MRFFCM by ourselves in MATLAB.

3.2. Experiemental Results on the Yellow River Dataset

As aforementioned, both visual and quantitative analyses are made in our experiments. With
respect to the visual analysis, the final change maps on the three datasets are exhibited in figure form.
For quantitative analysis, the final change maps are exhibited in tabular form.

Figure 10 presents the change maps generated by different methods on the Yellow River dataset.
The corresponding quantitative metrics on the change maps generated by different methods are shown
in Table 1. As shown in Figure 10a, PCAKM wrongly classifies many unchanged pixels into the
changed class, which results in a noisy change map. Therefore, the FP value of PCAKM is listed as
the maximum value in Table 1. The MRFFCM and GaborTLC methods work well in suppressing
the unchanged regions, but many changed regions are wrongly detected as unchanged ones. Hence,
the FN value of MRFFCM and GablorTLC are listed as high values in Table 1. By contrast, the
proposed method achieves the maximum KC value. It should be noted that the PCC value obtained
by D_MRFFCM is slightly higher than the proposed method. However, the proposed method can
draw a balance between FP and FN, and therefore the KC value of the proposed method is better than
D_MRFFCM. As mentioned above, KC is a more persuasive coefficient than PCC. Thus we can draw
the conclusion that the proposed method outperforms the other methods and indeed has the ability to
improve the change detection accuracy.
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Table 1. Change detection results of different methods on the Yellow River dataset.

Methods
False

Positives
(FP)

False
Negatives

(FN)

Overall
Errors
(OE)

Percentage Correct
Classification

(PCC)

Kappa
Coefficient

(KC)

PCAKM 2137 2663 4800 93.54 77.85
MRFFCM 640 2974 3614 95.13 82.38
GaborTLC 1159 2312 3471 95.33 83.68

D_MRFFCM 656 2676 3332 95.51 83.92
Proposed method 1748 1647 3395 95.43 84.62

3.3. Experimental Results on the San Francisco Dataset

Figure 11 shows the change maps generated by different methods on the San Francisco dataset.
The corresponding quantitative metrics on the change maps generated by different methods are shown
in Table 2. From the visual comparison among the change maps, we find that PCAKM, MRFFCM,
GaborTLC and D_MRFFCM generate many noise regions, and in these regions many unchanged pixels
are falsely classified into the changed class. Therefore, the FP values of these methods are relatively
high. Compared with other methods, the proposed method achieves much better change maps, and it
performs well at suppressing noisy unchanged pixels. The comparison shows that employing SVD
networks for feature representation is beneficial to suppress noisy unchanged pixels while amplifying
the key changed regions.



Remote Sens. 2017, 9, 435 15 of 20

Remote Sens. 2017, 9, 435  14 of 19 

 

3.3. Experimental Results on the San Francisco Dataset 

Figure 11 shows the change maps generated by different methods on the San Francisco dataset. 
The corresponding quantitative metrics on the change maps generated by different methods are 
shown in Table 2. From the visual comparison among the change maps, we find that PCAKM, 
MRFFCM, GaborTLC and D_MRFFCM generate many noise regions, and in these regions many 
unchanged pixels are falsely classified into the changed class. Therefore, the FP values of these 
methods are relatively high. Compared with other methods, the proposed method achieves much 
better change maps, and it performs well at suppressing noisy unchanged pixels. The comparison 
shows that employing SVD networks for feature representation is beneficial to suppress noisy 
unchanged pixels while amplifying the key changed regions. 

  
(a) (b) (c) 

 
(d) (e) 

Figure 11. Change detection results generated by different methods on the San Francisco dataset. (a) 
Result by PCAKM. (b) Result by MRFFCM. (c) Result by GaborTLC. (d) Result by D_MRFFCM. (e) 
Result by the proposed method. 

Table 2. Change detection results of different methods on the San Francisco dataset. 

Methods FP FN OE PCC (%) KC (%)
PCAKM 1618 25 1643 97.49 83.68 

MRFFCM 1511 191 1702 97.40 82.69 
GaborTLC 1376 60 1436 97.81 85.39 

D_MRFFCM 676 192 868 98.68 90.48 
Proposed method 157 573 730 98.89 91.25 

3.4. Experimental Results on the Ottawa Dataset 

Figure 12 shows the final change maps of different methods on the Ottawa dataset, while Table 
3 lists the values for quantitative analysis. Table 3 shows that for MRFFCM and D_MRFFCM, some 
unchanged pixels are falsely classified into the changed class, and thus MRFFCM and D_MRFFCM 
suffer from high FP values. In Figure 12a,c, we can observe that some changed pixels are missed in 
the change maps generated by PCAKM and GaborTLC. Therefore, the FN values of PCAKM and 
GaborTLC are relatively high. The proposed method achieves the best PCC and KC values, which 
demonstrates that the SVD networks effectively exploit the nonlinear relations from the original 
data. Both visual and quantitative comparisons demonstrate the effectiveness of the proposed 
method for change detection on the dataset. 

Figure 11. Change detection results generated by different methods on the San Francisco dataset.
(a) Result by PCAKM. (b) Result by MRFFCM. (c) Result by GaborTLC. (d) Result by D_MRFFCM.
(e) Result by the proposed method.

Table 2. Change detection results of different methods on the San Francisco dataset.

Methods FP FN OE PCC (%) KC (%)

PCAKM 1618 25 1643 97.49 83.68
MRFFCM 1511 191 1702 97.40 82.69
GaborTLC 1376 60 1436 97.81 85.39

D_MRFFCM 676 192 868 98.68 90.48
Proposed method 157 573 730 98.89 91.25

3.4. Experimental Results on the Ottawa Dataset

Figure 12 shows the final change maps of different methods on the Ottawa dataset, while Table 3
lists the values for quantitative analysis. Table 3 shows that for MRFFCM and D_MRFFCM, some
unchanged pixels are falsely classified into the changed class, and thus MRFFCM and D_MRFFCM
suffer from high FP values. In Figure 12a,c, we can observe that some changed pixels are missed in
the change maps generated by PCAKM and GaborTLC. Therefore, the FN values of PCAKM and
GaborTLC are relatively high. The proposed method achieves the best PCC and KC values, which
demonstrates that the SVD networks effectively exploit the nonlinear relations from the original data.
Both visual and quantitative comparisons demonstrate the effectiveness of the proposed method for
change detection on the dataset.
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by PCAKM. (b) Result by MRFFCM. (c) Result by GaborTLC. (d) Result by D_MRFFCM. (e) Result by
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Table 3. Change detection results of different methods on the Ottawa dataset.

Methods FP FN OE PCC (%) KC (%)

PCAKM 960 1515 2475 97.56 90.43
MRFFCM 1636 712 2348 97.69 91.27
GaborTLC 253 2531 2784 97.26 88.71

D_MRFFCM 994 704 1699 98.33 93.58
Proposed method 550 1074 1624 98.40 93.73

4. Discussion

4.1. Parameter Selection and Sensitivity Analysis

The ideal parameter for change detection should be selected before verifying the effectiveness of
the proposed method. In SVD networks, the size of the sample image patch is an important parameter,
since the local information is sensitive to neighborhood noise. Therefore, the first experiment is a
test of parameter k, which denotes the size of the sample image patch from each input SAR image.
We evaluate the performance of change detection by taking k = 3, 5, 7, 9, 11, and 13, respectively.
The PCC value is exploited as the validation criterion on different datasets. Figure 13 shows the
sensitivity analysis results of the sample image patch size k. The curves in different colors denote the
results on different datasets.
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The PCC values of the proposed method on the three datasets begin to decrease when k ≥ 7,
and this denotes that the sample image patches are not representative of the specified position. When
k = 5, the proposed method achieves the best performance on three datasets. Therefore, in our
implementations, k is set to 5 for the sample image patches in the SVD networks.

Solving the high dimensional feature classification problem is crucial in this paper. We have two
choices: LIBLINEAR [40] and LIBSVM [41]. Both software packages are designed for the efficient
classification of large-scale data. We have conducted several experiments on LIBLINEAR and LIBSVM,
and we found that LIBLINEAR is about 20% faster than LIBSVM. Thus, we use LIBLINEAR in the
proposed method as classifier.

4.2. Comparison

The main objective of the proposed method is to detect change between multi-temporal SAR
images. As shown in Tables 1–3, the proposed method is compared with closely related methods
on three SAR datasets. The methods used for the purpose of comparison are PCAKM, MRFFCM,
GaborTLC and D_MRFFCM.

From the experimental results on the three datasets, the proposed method obtains the maximum
KC values and the smallest OE values. It is evident that the proposed method is more robust to the
speckle noise by extracting representative features for each pixel by using SVD networks. Therefore,
the OE yielded by the proposed method is much lower. In addition, it should be noted that the value
of KC is the most cogent and discriminative criterion for change detection. The KC value of the
proposed method is the best on all these three datasets. Thus, the proposed method outperforms
all the other methods, and efficiently improves the change detection performance. Moreover, from
Tables 1–3, we can observe that the proposed method is able to find a balance between FP and FN.
It demonstrates that the SVD networks can effectively exploit the nonlinear relations from the original
data, and therefore can suppress the noisy unchanged regions while preserving details.

PCAKM and MRFFCM utilize single K-means and FCM clustering for change detection,
respectively. It is hardly enough for both methods to generate satisfying results, since a cascade
scheme is necessary for a change detection model with high classification power. GaborTLC obtains
good performance by using a two-layer classification model. Nevertheless, it is of less discrimination
power compared with D_MRFFCM and the proposed method. This is owing to the reason that
D_MRFFCM and the proposed methods use deep learning-based models. Therefore, both methods can
automatically obtain more representative semantic features in a hierarchical manner. The proposed
method performs better D_MRFFCM. This is because D_MRFFCM requires tens of millions of training
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samples for training, which is nearly impossible to obtain for the task of SAR image change detection.
The proposed method is a lightweight model and performs well with relatively fewer samples.

5. Conclusions

In this paper, we proposed a novel SAR image change detection method based on Deep Semi-NMF
and SVD Networks. In the proposed method, Deep Semi-NMF is used for pre-classification, and
reliable samples of high accuracy can be obtained. In addition, nonlinear relations of multi-temporal
SAR images can be exploited by SVD networks. We use two SVD convolutional layers to obtain reliable
features, which effectively improve the classification performance. The proposed method makes no
rigorous assumption and is unsupervised. Therefore, it can be easily adapted for data across different
SAR sensors. The experimental results have demonstrated the effectiveness of the proposed method
on three SAR image datasets.

The proposed method is a promising tool to detect changed regions for multi-temporal SAR
images. However, it is still challenging to change point targets, such as aircrafts at an airport and cars
in a parking lot. Therefore, in the future, we will conduct research on detecting change point targets.
In addition, as more and more multisource remote sensing data covering the same area are available,
it is demanding to develop change detection techniques for multisource data. Therefore, we will
continue to investigate the proposed method to detect changes from multisource data. Moreover, if a
series of multi-temporal SAR images are used for change detection, the spatial and temporal dynamics
of a specified region can be obtained. The spatial and temporal dynamics can provide predictions of
likely changes in the future. They can also provide intricate information for effective planning and
management activities. In the future, we will continue our work on investigating change detection by
using a series of multi-temporal SAR images.
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