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Because of the growing interest in real-time stability monitoring, there is a need for online 

methods that can detect off-nominal behavior in control systems. Therefore, we present a real-

time frequency domain method for detecting oscillations in control systems. The method uses 

recursive Fourier transform for representing the measured time domain signal in frequency 

domain. Oscillations are then detected by monitoring the norm of the Fourier coefficients over a 

time window of pre-specified size across a range of frequencies that represent off-nominal 

behavior for the plant. This method is computationally efficient and requires limited memory, 

hence it can be used for onboard health monitoring of Unmanned Aerial Systems (UAS). 

Consequently, we demonstrate the feasibility of using this method for real-time detection of 

oscillation on the Georgia Tech GT Twinstar (UAS).  

 

I. Introduction 

Real-time stability monitoring is becoming an important area of research as autonomous systems continue to take 

on increasing responsibilities. Technologies are being developed to reduce aircraft accidents resulting from loss of 

vehicle control as well as failures. The Intelligent Resilient Aircraft Control (IRAC) project is an excellent example of 

recent efforts to increase safety of aerospace systems in adverse environments
1
. The ability to monitor the health 

of onboard systems and to assess the effectiveness of control action in real-time aids greatly in preventing and 

recovering from loss of control situations, and in mitigating undesirable control induced scenarios. Undesirable 

oscillations in the system states are one potential cause for instability. The detection of such oscillations is an 

important aspect of system health and stability monitoring that cannot be addressed by monitoring only the 

instantaneous system state or the tracking error. 

Oscillations in systems states can be control induced, for example, it is well known that high gains in linear 

controllers may lead to control system induced oscillations. Furthermore, it is also well known that adaptive 

systems are susceptible to the “bursting” phenomenon which is characterized by intermittent high frequency 

oscillations and is a result of large adaptation gain
2
. Such induced oscillations can lead to variety of undesirable 

phenomena including actuator saturation, excitation of unmodeled dynamics, and loss of system stability. Early 

detection and mitigation of these effects is extremely important in assuring safe operation and optimal 

performance. For example, in autopilot systems for modern flight vehicles, fast and efficient detection of 

oscillations is imperative to prevent deterioration of ride quality and to minimize the possibility of systems failure.  
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Several methods have been proposed in the literature for detecting oscillations and their characteristics. Miao and 

Seborg studied a statistically based off-line approach in which the dependence of time series data was 

characterized using sample auto-correlation coefficients
3
. The decay ratio of these coefficients was used as an 

indicator to determine if the signal was excessively oscillatory. Thornhill et al.
 
studied the use of zero crossing of 

filtered auto-correlation functions for detection of oscillations at different frequencies in process control loops
4
.  

Both these methods require an integral of the data over a finite time window and hence do not lend easily to real-

time implementation. Korba et al.
 
proposed a Kalman filter based method for real-time estimation of the 

oscillatory modes in a system using measured data
5
. The dominant frequency and damping of the oscillatory 

modes was estimated from the measured data by estimating the eigenvalues and eigenvectors of the state matrix 

of a linearized model.  However, if the underlying controller or dynamics do not yield to a linear model, the 

eigenvalue estimates may not converge. 

Cox, Lewis and Suchomel developed a Neural Network based algorithm for detecting and compensating Pilot 

Induced Oscillations
6
. A Neural Network (NN) based discrimination function was trained using a gradient-descent 

like method to indicate the presence of oscillations. This method needs an explicit storage of a window of data, 

furthermore, the reliability of this method is dependent on the convergence of the gradient descent method for 

NN training which in turn depends on the number of unknown NN weights and the excitation in the system 

signals
2
. Odgaard and Wickerhauser developed a method wherein the principal components of a signal could be 

obtained using Karhunen-Loeve analysis
7
. This analysis method was used to detect as well as localize the oscillation 

to specific measurements/sensors. This is a method suitable primarily for offline analysis and is computationally 

intensive to implement online.  

Harris et al.
8 

compared the variance of the signal to the lowest achievable variance of the control loop. A priori 

knowledge of the latter, which is hard to obtain, is needed to set a threshold value. Adami, Best and Zhu presented 

an instability indicator based on Lyapunov’s first method
9
. The indicator can be used to indicate if the system is 

moving away from the equilibrium state. This method however, is concerned more with the detection of instability 

and the presence of persistent oscillations in the system could give rise to incorrect information. Thompson et al.
10 

developed wavelet based methods for detecting loss-of-control in real-time applications. In this method, the time 

domain signal was decomposed into basis functions that translate in time and whose length and magnitude were 

scaled as a function of the frequency. Morani et al.
11 

proposed the use of suitable band-pass filters-bank to capture 

the sinusoidal components in the signal. The benefit of this method is that it needs only limited knowledge of the 

process under control and can be used in real-time to detect oscillations, however, the method can be very 

sensitive to noise.     

In this paper we present a frequency domain method for detection of oscillation. Our method relies on 

representing the time domain data into frequency domain using a Fourier basis over a frequency range that 

represents off-nominal behavior for the plant. Once in frequency domain, the dominant frequencies can be 

analyzed to detect and even to mitigate oscillations. A key benefit of the method presented here arises from the 

use of recursive Fourier transform
12

, which ensures that no explicit storage of measured data is required; rather 

only a fixed dimension vector of the Fourier coefficients over the desired frequency range needs to be stored.  

These qualities of the presented method are conducive to real time implementation onboard Unmanned Aerial 

Systems (UAS) where computational resources may be restricted.  

We begin by describing the details of discrete recursive implementation of Fourier transform. The feasibility of this 

method is then assessed for detection of high-gain control induced oscillation on an exemplary adaptive control 

problem. Finally, the presented method is used to detect the onset of angle of attack oscillation on the data from 
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the GT Twinstar UAS recorded during an enforced 50% loss of right wing, and to detect oscillations due to injected 

time delay.  

II. Frequency Domain Detection of Oscillation 

In the following, � denotes the time variable, and � denotes the frequency variable. The Fourier transform of an 

arbitrary signal x (t) is given by:   

 ������� 	 �
��� 	 � �����
������  

� . (1)  

 

The signals of interest in this study are collected via a data sampling system so the discrete version of the Fourier 

transform is required.  The discrete Fourier transform is given by:  

 ���� 	 � �������
���� .�
�
���  (2)  

 

Let Δ� denote the sampling interval, and N the total number of data points, then the Euler approximation of the 

Fourier transform in equation 1 is given by:   

 �
��� � ������. (3)  

 

This approximation is suitable if the sampling rate is much higher than any of the frequencies of interest.  This is 

assumed to be the case in this paper. The discrete version of the Fourier transform can be propagated in a 

recursive manner, for a data point index k, the Fourier transform can be propagated as follows
12

:  

 � ��� ! � 
���� " ��� ��
�� #� . (4)  

 

The recursive propagation of the Fourier Transform greatly facilitates real time implementation as the matrix �  is 

the only matrix that needs to be stored in the system memory.  For a frequency range of interest, �1 … &�, the 

matrix representing the Fourier basis of the time domain data is given by: 

 X)�ω� ! + �
�1��
�2�-�
�&�.. (5)  

 

Using the above equations, the frequency content of the measured data can be approximated by a finite Fourier 

basis. For detection of oscillation, we simply restrict our attention to a particular frequency range of interest that 

characterizes the off-nominal behavior of the plant. This is similar to projecting the data over a finite subset of the 

Fourier basis. The Discrete Fourier Transform of a signal at a particular time instant (t = T) contains the frequency 

information in the signal from time t = 0 to t = T. This memory-like property can cause past oscillations to 

mistakenly trigger the detection algorithm. We handle this issue by using a windowed DFT given below.   

 �������/ ! ������/ 0  ������/
 . (6) 
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The difference between the DFT at � !  1  and the DFT at � !  1 0 2 is a measure of the frequency content in the 

signal in the time window between 1 and 1 0  2. In this way, the information about the magnitude and frequency 

of oscillations over a window of data can be stored in a single variable. To detect oscillations, we monitor the norm 

of this windowed Fourier transform. If the norm exceeds a pre-specified threshold value, it indicates the presence 

of excessive activity in that frequency range, which is considered as a strong indication of undesirable oscillation 

and a flag is raised. Let � 3 40,16 denote the output of the flag, with � ! 1 if the norm exceeds the threshold 

value, and � ! 0 otherwise.  The flag is passed through a discrete implementation of a first order low pass filter to 

smoothen the output. Let 7 denote the filter state, and  8 denote the filter time constant, then the low pass filter 

has the form: 

 79 ��� !  0:7��� 0  ����;8 . (7) 

 

Equation 7 represents a first order low pass filter, with a continuous output 7 constrained between 0 and 1. The 

numerical value of the output can be thought of as an indicator of the confidence of the method in detection of 

oscillations. Furthermore, the time rate of change of 7 can be thought of as an indicator of whether the oscillations 

are increasing or diminishing. Therefore, the time constant 8 becomes a design parameter for this method. A larger 

time constant results in a smoother output, and is desirable for detecting the presence of sustained oscillations; 

whereas, a smaller time constant increases the sensitivity of the algorithm, and is desirable for detecting the 

presence of transient oscillations. Along with the time constant 8, the design parameters for this method are: the 

frequency band of interest to be monitored, the threshold value, and the window size 2. The frequency band and 

the threshold value should be physically motivated to characterize the off-nominal behavior of the plant. The 

window size, along with the time constant, determines the sensitivity of the algorithm.  A smaller window size 

results in the algorithm considering only recent data for oscillation detection, while a larger window size ensures 

that the effect of past data are also included. In practice, the size of the window should be chosen to be at least as 

large as the period of the lowest frequency in the frequency band to be monitored. Instead of windowed Fourier 

transforms it is also possible to use a forgetting factor to discount old data
12

. 

III. Detection of Oscillation for an Exemplary Adaptive Control Problem 

In order to assess the feasibility of the presented approach, we present an exemplary problem of detection of 

bursting phenomena
2
 in an adaptive controller simulation. Let � denote the state vector, < denote the control 

input, =>  denote the disturbance in the state and consider the problem of controlling the following system: 

 �9��� ! 3���� " 2<��� "  =>���,  (8) 
   
 7��� !  ���� "  =@���. (9) 
   

Here y denotes the measurement vector and =@ denotes the sensor noise. A linear reference model is chosen to 

characterize the response of the system. Let �A  denote the states of the reference model, and B��� denote a 

desired reference signal which is treated as an input to the reference model given by: 

 �9A��� !  02�A��� "  3B���.   (10) 

The tracking error can be defined as:   ���� ! �A��� 0 ����. 

 



5 

 

A stable adaptive controller for this problem can be found by using Lyapunov theory
2, 13, 14

 , and is given as: 

 <��� ! 2C������� " 2A���B��� (11) 

 

where 2C���, 2A��� are the adaptive weights updated by the following well known learning law
2, 13, 14

: 

 29 C��� ! 0ΓC��������EFGH�I�, (12) 

  

 29 A��� ! 0ΓAB�������EFGH�I�, (13) 

 

were ΓC, ΓA denote the adaptation gains (also known as learning rates). High learning rates �ΓC ! 10, ΓA ! 0.5� are 

used in order to simulate the bursting phenomena
2
. Bursting is a sudden onset of high frequency and high 

amplitude oscillation in the system state caused due to high adaptation gains. Early detection of the onset of 

bursting can be used to prevent damage to the system and to mitigate the oscillations.  In order to detect the 

onset of bursting, we monitor the tracking error ���� over a frequency range of 2Hz to 6Hz using the windowed 

Fourier Transform method discussed in the previous section. The time step used for the simulation is 0.01 sec. The 

threshold value and the window size are determined to be 64 and 0.36 seconds respectively by using the nominal 

transient response characteristics of the reference model. Particularly, the threshold value was obtained by taking 

the mean of the recorded norm at each time step of the tracking error windowed Fourier transform for a nominal 

step input until steady state is reached.  Alternatively, the threshold value can also be determined using the known 

frequency response characteristics of the reference model. 

Zero mean Gaussian white noise with a standard deviation of 0.1 was added to the system to simulate the effect of 

sensor noise (=@) in the measurements. A significant source of state disturbance (=>) that many mechanical 

systems are subject to is vibration caused due to loose mechanical parts and rotating elements. We model these 

disturbances as low amplitude high frequency sinusoidal oscillations. If such oscillations are considered nominal, 

then they should not be detected by the oscillation detection algorithm. 

 

Figure 1 shows the performance of the adaptive controller for a nominal linear system. The controller attempts to 

track a constant reference command of B��� ! 5. It can be seen that the controller tracks the command with little 

error until about 1.3 seconds. Between 1.3 seconds and 5.8 seconds the system state exhibits the bursting 

phenomena characterized by high frequency, high amplitude oscillation about the reference model state.  

 

Figure 2 shows the performance of the detection algorithm.  A flag that is passed through a discrete low pass filter 

with a time constant of 0.05 sec is plotted on the bottom part of the figure. A value of 1 for the filtered flag value 

indicates high confidence in the presence of oscillations, while a value of 0 indicates that no oscillations over the 

frequency range of interest are present. The algorithm is able to detect the onset of bursting early on and drives 

the oscillation detection flag to 1. Furthermore, the algorithm also detects the end of the bursting phenomena and 

drives the oscillation detection flag back to 0 as the system resumes nominal behavior in presence of noise. 
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Figure 1 Performance of the Adaptive Controller 

 

Figure 2 Detection of onset of bursting 
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IV. Application to Vehicle Health Monitoring for the GT Twinstar UA

The Georgia Tech (GT) Twinstar, shown in Figure 3 is a fixed Wing UAS. It is a foam built, twin engine aircraft that is 

equipped with an integrated off-the-

specifically developed for fault tolerant control system work

actuator time delays and simulate actuator failure

(starboard) wing while in autonomous flight. In this section we use recorded data from GT Twinstar for 

demonstrating the feasibility of the developed approach

controlled system response to 50%loss of right wing

applications described in the following sections, the threshold value was obtained in the following manner: Using 

data sets that had been collected previously when the aircraft was

windowed Fourier transform of the states

calculated at each time step and its mean value was used as the threshold for detecting oscillations in the system.

A. Detection of oscillations in angle of attack due to asymmetric loss of liftin

Figure 4 shows the GT Twinstar in flight with 50% 

autonomous holding pattern about a given waypoint. 

measurements onboard the GT Twinstar. A sharp spike in the y

the engagement of the jettisoning mechanism. The wing physically separates from the vehicle 

seconds later, at around 22 seconds into the recorded data. The result

dynamics is characterized by an oscillation primarily in the angle of attack and roll rate. 

recorded angular rate measurements onboard GT Twinstar.

Figure 7 shows the performance of the presented osci

frequency range between 2Hz to 6Hz based on physical considerations and power spectral density analysis of 

recorded data in nominal flight conditions.

setting oscillation detection flag to 1.

constant of 0.67 seconds implemented discretely with an update rate of 50Hz

the data was recorded. The output of the low pass filter

value of 1 indicates high confidence in the presence of 

oscillations over the frequency range characterizing off

detect the onset of oscillations immediately after the partial loss of wing 

filter to 1. The response of the system is characterized by int

recorded data, this is also reflected by the output of the low pass filter

Figure 
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Application to Vehicle Health Monitoring for the GT Twinstar UA

The Georgia Tech (GT) Twinstar, shown in Figure 3 is a fixed Wing UAS. It is a foam built, twin engine aircraft that is 

-shelf autopilot system (Adaptive Flight FCS 20
©

).  GT Twinsta

for fault tolerant control system work
16,17,18

. It comes equipped with an ability to inject 

simulate actuator failures, furthermore GT Twinstar is capable of jettisoning 50% right 

(starboard) wing while in autonomous flight. In this section we use recorded data from GT Twinstar for 

demonstrating the feasibility of the developed approach for detecting oscillations. This recorded data includes 

loss of right wing
18

, and to injected actuator time delay

applications described in the following sections, the threshold value was obtained in the following manner: Using 

data sets that had been collected previously when the aircraft was performing System-ID maneuvers

states was monitored. The norm of the windowed Fourier transform was 

and its mean value was used as the threshold for detecting oscillations in the system.

oscillations in angle of attack due to asymmetric loss of lifting surface 

shows the GT Twinstar in flight with 50% of its right (starboard) wing lost as the aircraft performs an 

autonomous holding pattern about a given waypoint. Figure 5 shows a slice of recorded accelerometer 

tar. A sharp spike in the y-axis accelerometer at around 16 seconds indicates 

the engagement of the jettisoning mechanism. The wing physically separates from the vehicle 

seconds later, at around 22 seconds into the recorded data. The resulting significant change in the system 

dynamics is characterized by an oscillation primarily in the angle of attack and roll rate. 

recorded angular rate measurements onboard GT Twinstar. 

shows the performance of the presented oscillation detection algorithm. The algorithm monitors a 

between 2Hz to 6Hz based on physical considerations and power spectral density analysis of 

recorded data in nominal flight conditions. Nominal flight data was used to determine the thres

1. The flag is passed through a low pass filter (equation (7))

implemented discretely with an update rate of 50Hz corresponding to the rate at which 

. The output of the low pass filter is plotted on the bottom part of the figure. 

value of 1 indicates high confidence in the presence of sustained oscillations, while a value of 0 indicates that no 

ange characterizing off-nominal behavior are present. The algorithm is able to 

immediately after the partial loss of wing and drives the output of the low pass 

The response of the system is characterized by intermittent oscillations after around 50 seconds into the 

recorded data, this is also reflected by the output of the low pass filter.   

 

Figure 3 Georgia Tech Twinstar Fixed Wing UAV 

Application to Vehicle Health Monitoring for the GT Twinstar UAS 

The Georgia Tech (GT) Twinstar, shown in Figure 3 is a fixed Wing UAS. It is a foam built, twin engine aircraft that is 

GT Twinstar has been 

t comes equipped with an ability to inject 

is capable of jettisoning 50% right 

(starboard) wing while in autonomous flight. In this section we use recorded data from GT Twinstar for 

ecorded data includes 

, and to injected actuator time delay
19

.  For both the 

applications described in the following sections, the threshold value was obtained in the following manner: Using 

ID maneuvers
17

, the 

was monitored. The norm of the windowed Fourier transform was 

and its mean value was used as the threshold for detecting oscillations in the system. 

as the aircraft performs an 

shows a slice of recorded accelerometer 

axis accelerometer at around 16 seconds indicates 

the engagement of the jettisoning mechanism. The wing physically separates from the vehicle approximately 4 

ing significant change in the system 

dynamics is characterized by an oscillation primarily in the angle of attack and roll rate. Figure 6 shows the 

The algorithm monitors a 

between 2Hz to 6Hz based on physical considerations and power spectral density analysis of 

threshold value used for 

(equation (7)) with a time 

corresponding to the rate at which 

is plotted on the bottom part of the figure. In that plot, a 

, while a value of 0 indicates that no 

algorithm is able to 

rives the output of the low pass 

ermittent oscillations after around 50 seconds into the 



 

Figure 4 GT Twinstar in autonomous flight with 50% right wing failure
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Figure 5 Recorded Accelerometer Measurements  
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Figure 6 Recorded Angular Rate Measurements  

 

Figure 7 Detection of Oscillation due to asymmetric loss of lifting surface 
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B. Detection of Oscillations  due to Injected  Time Delay 

The presence of time delay can lead to sustained oscillations and instability in adaptive controllers. To counter this, 

Calise et al. have develop the Adaptive Loop Recovery
16

 (ALR) method capable of recovering the phase margin of 

the baseline non-adaptive design. In this section we demonstrate the effectiveness of the presented method in 

detecting oscillations in the control system due to injected time delay on the GT Twinstar UAS.  Figure 8 shows the 

performance presented algorithm in detecting oscillations in the roll rate due to the injected time delay. Nominal 

flight data was used to determine the threshold value used for setting the oscillation detection flag to 1. The flag 

data is passed through a low pass filter with a time constant of 0.67 seconds implemented discretely with an 

update rate of 100Hz corresponding to the rate at which the data was recorded. The algorithm detects the 

oscillation in the roll rate due to injected time delay at about 27 sec. As the ALR gains are gradually increased 

starting from around 36 seconds, a gradual reduction in the oscillation is seen; reflected by a downward trend in 

the filtered flag value. The flag eventually settles down to 0 once the oscillations due to time delay are effectively 

mitigated by ALR.  

 

Figure 8 Detection of Oscillation due to the injection of time delay  
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domain data in a frequency domain Fourier basis over a range of frequency that indicates off-nominal behavior for 
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presented method was also used to detect structural failure and time delay induced oscillations in recorded flight 

data from the GT Twinstar UAS. A unique benefit of this method is that it enumerates magnitude and frequency 

information about the oscillations in a single variable. Hence, this method holds great potential for use in 

mitigation of oscillations in control loops. 
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