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Abstract. We consider a general format for rules for not necessarily normal
modal logics based on classical or intuitionistic propositional logic and provide
relatively simple local conditions ensuring a generic cut elimination for such rule
sets. The rule format encompasses e.g. rules for the boolean connectives and
transitive modal logics such as S4 or its constructive version. We also adapt the
method of constructing suitable rule sets by saturation to the intuitionistic setting
and provide a criterium for translating axioms for intuitionistic modal logics into
sequent rules. Examples include constructive modal logics and conditional logic
VA.

1 Introduction

It can hardly be disputed that cut elimination theorems are at the foundation of both the-
oretical investigation and practical implementation of automated reasoning techniques:
the ensuing subformula property implies not only decidability of many logical systems,
but also lies – mostly in the form of tableau methods – at the heart of the vast majority
of implementations of various logics. Achieving cut elimination is usually a two stage
process. First, a (sound and complete) set of sequent rules needs to be exhibited. Sec-
ond, cut elimination is established. Both steps are equally laborious: finding the ’right’
set of rules requires ingenuity and (syntactic) proofs of cut elimination rely on the ju-
dicious analysis of a large number of cases. Given the growth of logical systems of
interest in particular in computer science, both a general methodology with efficient
tools for designing cut-free calculi, and meta-theorems that guarantee cut-elimination,
decidability, and complexity bounds are therefore increasingly important.

This paper explores the method of cut elimination by saturation and extends previ-
ous work into two important directions. First, we can now also allow for the proposi-
tional base logic to be intuitionistic which allows us to treat a range of logics that have
attracted interest in computer science [17, 2]. Second, we generalise the approach to log-
ics given by axioms of arbitrary modal rank. This is achieved by considering sequent
rules with context restrictions where each premiss only propagates context formulae of
a specific form. A prime example for this rule format are e.g. the rules of modal logic
S4, where a premiss e.g. copies only boxed formulae on the left hand side. This ex-
tended rule format necessitates an extension of the previous characterisation of cut-free
systems to deal with additional cases in the proof of cut elimination. In order to make
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full use of the extended rule format we investigate a method for translating axioms into
rules which works uniformly for classical and intuitionistic logics. The rules so con-
structed are by construction sound and complete (in the presence of cut) and give rise to
unlabelled sequent systems that are amenable to saturation under cuts between rules. In
case the resulting rules fulfil our criteria for cut elimination and are also tractable they
give rise to a generic Expspace decision algorithm for the logic. Our main contributions
are the following: we formalise the notion of a rule with context restrictions (Definition
3), give a general criterion for cut elimination to obtain for a large class of modal logics
that extend either classical or intuitionistic propositional calculus (Theorem 16), and
show how to construct sequent systems satisfying these requirements from axioms of a
certain form (Section 3.2). We illustrate these techniques by reconstructing known cut-
free sequent systems for constructive S4, constructive K, and access control logic CDD,
and also obtain a new cut-free calculus for Lewis’ conditional logic VA. The techniques
used are easily modified to treat e.g. minimal logic [9] or the {∧,∨}-fragment of intu-
itionistic logic as base logics using asymmetric sequents, but since we are not aware
of modal logics based on minimal logic or non-standard distributive modal logics we
restrict ourselves to the classical and intuitionistic cases.

Related Work: The method of cut elimination by saturation for extensions of classi-
cal logic with non-nested axioms was explored e.g. in [16, 10]. The idea of contraction
closed rule sets for first order and modal logics seems to have been formulated for the
first time in [15, 14], where also translations of axioms into rules of a labelled sequent
system are given. Our rules with context restrictions are weaker versions of the rules
with context relations from [3], which also allow the context formulae to change. While
context relations are more general than context restrictions, apparently no syntactical
criteria for cut elimination in such systems have been established yet. Our translations
of axioms for intuitionistic modal logics into rules are motivated by the translations of
(non-modal) axioms into structural rules for substructural logic in [6].

2 Preliminaries

Throughout, V denotes a denumerable set of propositional variables and Λ is a set of
connectives with associated arities. We write p for finite sequences of propositional vari-
ables. The set of Λ-formulae is defined by F (Λ) 3 A1, . . . , An ::= p | ♥(A1, . . . , An) for
p ∈ V and ♥ ∈ Λwith arity n. We writeΛ(S ) = {♥(A1, . . . , An) | ♥ ∈ Λ n-ary, A1, . . . , An ∈

S } for the set of formulae constructed from S using a single connective in Λ. Uni-
form substitution of all propositional variables in a formula A using a substitution
σ : V → F (Λ) is denoted by Aσ. The set S(F) of (symmetric) sequents over F consists
of tuples of multisets Γ, ∆ of formulae in F, written Γ ⇒ ∆. When dealing with exten-
sions of intuitionistic propositional logic we consider asymmetric sequents, in which
the right hand side ∆ consists of at most one formula. The formulae in Γ occur nega-
tively in the sequent, those in ∆ positively. The multiset union of two multisets Γ and ∆
is written Γ, ∆ and we identify formulae with singleton multisets. Substitution extends
to both multisets of formulae and sequents in the obvious way (perserving multiplicity),
e.g. (A1, A2 ⇒ B)σ = A1σ, A2σ ⇒ Bσ. We use the systems G2cp and G2ip of [18]
with axioms Γ, A⇒ ∆, A (where A ranges over the set of formulae) and the intuitionistic
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left implication rule
Γ ⇒ A Γ, B⇒ C
Γ, A→ B⇒ C

as basis for all systems that extend classical re-

spectively intuitionistic propositional logic and write G resp. Gi for these sets of rules.
Our structural rules are

Γ ⇒ ∆
Σ, Γ ⇒ ∆,Π

W,
Γ, A, A⇒ ∆

Γ, A⇒ ∆
ConL,

Γ ⇒ ∆, A, A
Γ ⇒ ∆, A ConR,

Γ ⇒ ∆, A A, Σ ⇒ Π

Γ, Σ ⇒ ∆,Π
Cut .

3 Generic Cut Elimination And Construction of Cut-free Systems

We start our investigation with the observation that while standard sequent rules for the
boolean connectives carry over the whole context to the premisses, in standard sequent
systems for many modal logics such as K or S4 [19] either no or only modalised context
formulae are propagated from conclusion to premisses. At the same time exactly one
layer of modalities is added to the principal formulae. In order to fit these different
formats into a unified framework we now generalise the notion of a shallow rule [10]
using the notion of context restrictions, a weaker form of the context relations in [3].

Definition 1 (Context restrictions). If F is a set of formulae, a context restriction C
over F (or simply a restriction) is given by a tuple of sets of formulae in F, i.e. C =

〈F1, F2〉 with F1, F2 ⊆ F. We write C(F) for the set of context restrictions over F. For
a restriction C = 〈F1, F2〉 and a sequent Γ ⇒ ∆ we write (Γ ⇒ ∆) �C= Γ �F1⇒ ∆ �F2

for the sequent consisting of the restriction of Γ (resp. ∆) to substitution instances of
formulae A with A ∈ F1 (resp. A ∈ F2) on the left (resp. right) hand side. An occurrence
of a formula in a sequent Γ ⇒ ∆ satisfies context restriction C if it also occurs in
(Γ ⇒ ∆) �C, and a sequent Γ ⇒ ∆ satisfies C if (Γ ⇒ ∆) �C= Γ ⇒ ∆. Finally, a context
restriction C′ satisfies C if every sequent which satisfies C′ also satisfies C.

Example 2. 1. The trivial restriction Cid := 〈{p}, {p}〉 does not restrict a sequent at
all, we always have (Γ ⇒ ∆) �Cid = Γ ⇒ ∆.

2. The empty restriction C∅ := 〈∅, ∅〉 deletes every formula in a sequent: (Γ ⇒
∆) �C∅= ⇒ .

3. The restriction C4� := 〈{�p}, ∅〉 deletes the right side of a sequent and restricts
the left side to boxed formulae. E.g.: (A,C∧D,�(A∨B)⇒ �D, B) �C4�= �(A∨B)⇒ .

Definition 3. A rule with context restrictions (or simply a rule) is a tuple
(
P;Σ ⇒ Π

)
where P ⊆ S(V)×C(F ) is the set of premisses with associated context restrictions, and
Σ ⇒ Π ∈ S(Λ(V)) are the principal formulae, such that no variable occurs twice in the
principal formulae and every variable occurs in the principal formulae if it occurs in at
least one of the premisses. An instance of a rule R is given by a substitution σ : V → F
and a context Γ ⇒ ∆ ∈ S(F ) and is written as{

Γ �F1 , Θσ⇒ ∆ �F2 , Υσ | (Θ⇒ Υ; 〈F1, F2〉) ∈ P
}

Γ, Σσ⇒ ∆,Πσ
.

Whenever we mention a set of rules we assume that it is closed under injective renaming
of variables and for all n-ary ♥ ∈ Λ and p = (p1, . . . , pn) and q = (q1, . . . , qn) includes
the congruence rules

(
{(pi ⇒ qi;C∅) | i ≤ n} ∪ {(qi ⇒ pi;C∅) | i ≤ n};♥p⇒ ♥q

)
.
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Thus if a formula A is in the left component of a restriction associated with a premiss of
a rule, then in an instance of this rule the premiss carries over all substitution instances
of A from the left hand side of the context, and dually for the right hand side.

Example 4. 1. The rules of G are rules with restriction Cid.
2. The rules of modal logic K are given as RK = {RKn | n ≥ 0} with RKn =(
{(p1, . . . , pn ⇒ q;C∅)};�p1, . . . ,�pn ⇒ �q

)
.

3. The rules of modal logic S4 are given as RT� :=
(
{(p ⇒ ;Cid)};�p ⇒

)
and

R4� :=
(
{(⇒ p ;C4�)}; ⇒ �p

)
.

Definition 5 (Derivations, Derivability). Let R be a set of rules and S ⊆ S(F ) a set of
sequents. We use the standard notion of derivations [18] and say that a sequent Γ ⇒ ∆
is R-derivable from S if there is a derivation of Γ ⇒ ∆ from S using only instances of
rules in R. We then write S `R Γ ⇒ ∆. If we consider rules for asymmetric sequents
we will indicate this by writing `i

R
, and we write `[i]

R
if a result holds in both settings.

Derivability from ∅ is denoted by `[i]
R
Γ ⇒ ∆ and derivability in R1 ∪ R2 by `[i]

R1R2
. We

write R[CutCon] if a statement holds for R and extensions with Cut and / or Con.

Admissibility of Weakening is shown by a standard induction on the derivations:

Lemma 6. For every set R of rules and (asymmetric) sequent Γ ⇒ ∆ we have `[i]
R[CutCon]

Γ ⇒ ∆ whenever `[i]
RW[CutCon] Γ ⇒ ∆.

3.1 Cuts Between Rules and Cut Elimination

The main tool in the construction of cut free rule sets is the notion of cuts between rules
from [10, 11] that we need to adapt to handle context restrictions. Cut between rules is a
two-stage process: we first replace a pair of rules by the rule arising from performing a
cut between the conclusions. In a second step we modify the premisses so that variables
that no longer appear in the conclusion of the cut are eliminated.

Definition 7. If P ⊆ S(V) × C(F ) is a set of premisses with context restrictions, then
for p ∈ V the p-elimination of P is the set

P 	 p := { (Γ, Σ ⇒ ∆,Π ; C1 ∪ C2) | (Γ ⇒ ∆, p; C1) ∈ P, (p, Σ ⇒ Π ; C2) ∈ P }
∪ { (Γ ⇒ ∆; C) | (Γ ⇒ ∆; C) ∈ P, p < Γ, ∆ } ,

where for restrictions C1 = 〈F1, F2〉 and C2 = 〈G1,G2〉 we write C1 ∪ C2 for 〈F1 ∪

G1, F2 ∪G2〉. Iterated elimination of variables p = p1, . . . , pn is denoted by P 	 p. For
rules R = (PR;Γ ⇒ ∆,♥p) and Q = (PQ;♥p, Σ ⇒ Π) the cut between R and Q on ♥p
is the rule cut(R,Q,♥p) :=

(
(PR ∪PQ)	 p; Γ, Σ ⇒ ∆,Π

)
. A rule set R is principal-cut

closed if it is closed under cuts between rules.

Example 8. 1. The rule sets G[i] are principal-cut closed, since cuts between rules
can be replaced by the identity rule Rid :=

(
{(⇒ ;Cid)}; ⇒

)
.

2. The rule set RK is principal-cut closed, since cut(RKn ,RKm ,�q) = RKn+m−1 ∈ RK .
3. The rule set RS4 is principal-cut closed, since cut(R4�,RT�,�p) = Rid.
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Since in the presence of the rules for (intuitionistic) propositional logic it is possible to
re-construct the cut formula from the premisses of the cut between two rules, saturating
a rule set under cuts between rules does not change the set of derivable sequents:

Lemma 9. IfR is a set of rules and R is a cut between two rules fromR, then `[i]
G[i]CutConRR

Γ ⇒ ∆ iff `[i]
G[i]CutConR Γ ⇒ ∆.

Cuts between rules provide us with a means of eliminating cuts on principal formulae
of two rules by replacing the cut with an instance of the cut between the two rules and a
number of cuts on formulae of lower complexity. Moreover, Lemma 9 guarantees that
we may simply add missing cuts to a rule set without jeopardising soundness. While this
is enough for axioms without nested modalities [10], in the more general setting with
context restrictions we need additional criteria for cuts involving context formulae:

Definition 10. Two restrictions C1 = 〈F1, F2〉,C2 = 〈G1,G2〉 overlap if there are for-
mulae A1 ∈ F2, A2 ∈ G1 and substitutions σ1, σ2 with A1σ1 = A2σ2. A rule set R is

1. context-cut closed if whenever R0,R1 ∈ R and there are context restrictions C0 of
R0 and C1 of R1 which overlap, then there is i ∈ {0, 1} such that all context restrictions
of Ri which overlap Ci−1 and the principal formulae of Ri satisfy Ci−1.

2. mixed-cut closed if whenever R,Q ∈ R and a principal formula A of R satisfies a
context restriction of Q, then all context restrictions of R and all principal formulae of
R except for A satisfy all those context restrictions of Q satisfied by A.

Intuitively, these conditions allow pushing cuts involving context formulae into the pre-
misses of one of the rules and eliminating them by induction on the cut level.

Example 11. 1. The rule sets G[i] are context- and mixed-cut closed because all the
rules involve only the restriction Cid or its asymmetric version Ci

id := 〈{p}, ∅〉. Hence
every restriction is satisfied by every principal formula and every other restriction.

2. The rule set RK is trivially context- and mixed-cut closed.
3. The rule set RS4 is mixed-cut closed, since the restriction C4� satisfies Cid. Since

the principal formula of R4� also satisfies Cid, the set is furthermore context-cut closed.

When proving cut elimination we will follow Gentzen’s original strategy [8] and elimi-

nate multicuts
Γ ⇒ ∆, An Am, Σ ⇒ Π

Γ, Σ ⇒ ∆,Π
instead of cuts. Thus we also need to deal with

multiple principal occurrences of the same formula. We do this by elevating contraction
to the level of derivation rules and considering rule sets closed under this operation.

Definition 12 ([11]). IfP is a set of premisses with context restrictions and p = (p1, . . . , pn)
and q = (q1, . . . , qn) are n-tuples of variables, then P[q ← p] is the result of replacing
every occurrence of qi in a sequent occurring in a premiss in P by pi for all i = 1, . . . , n
and contracting duplicate instances of p1, . . . , pn. Let R = (P;Γ,♥p,♥q ⇒ ∆) be a
rule. The left contraction of R on ♥p and ♥q is the rule ConL(R,♥p,♥q) = (P[q ←
p];Γ,♥p ⇒ ∆). The right contraction ConR(R,♥p,♥q) is defined dually. A rule set R
is contraction closed if for every rule R ∈ R instances of the rules ConL(R,♥p,♥q)
and ConR(R,♥p,♥q) can be simulated by applications of Weakening and Contraction,
followed by at most one application of a rule R′ ∈ R and Weakening. A set of rules is
saturated if it is contraction, principal-cut, context-cut, and mixed-cut closed.
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Example 13. 1. The rules of G[i] and RS4 are trivially contraction closed.
2. RK is contraction closed because ConL(RKn ,�pn−1,�pn) = RKn−1 ∈ RK .

Thus each of G[i],RK ,RS4 are saturated.

Theorem 14 (Cut Elimination). For every saturated set R of rules and (asymmetric)
sequent Γ ⇒ ∆ we have `[i]

RCon Γ ⇒ ∆ whenever `[i]
RConCut Γ ⇒ ∆.

While saturated rule sets allow for cut elimination, we are also interested in decision
procedures via backwards proof search. For this we also need admissibility of Contrac-
tion. While contraction closure of the rule set takes care of contractions of two principal
formulae of a rule, for contractions of principal and context formulae we use the stan-
dard method of copying the relevant principal formulae into the premisses.

Definition 15. For a rule R = (P;Σ ⇒ Π) a modified instance{
(Γ, Σσ) �F1 , Θσ⇒ (∆,Πσ) �F2 , Υσ | (Θ⇒ Υ; 〈F1, F2〉) ∈ P

}
Γ, Σσ⇒ ∆,Πσ

of R is given by a substitution σ : V → F and a context Γ ⇒ ∆ ∈ S(F ). We write `R∗
for derivability using modified instances instead of instances of rules in R.

Theorem 16 (Admissibility of Contraction). For every set R of rules and (asymmet-
ric) sequent Γ ⇒ ∆ we have `[i]

RCon Γ ⇒ ∆ iff `[i]
R∗Con Γ ⇒ ∆ iff `[i]

R∗
Γ ⇒ ∆.

If the rule set is furthermore tractable in the sense that given a sequent the rules with
this sequent as conclusion have codes of size polynomial in the size of the sequent,
which can be recognised in space polynomial in the size of the sequent, and given the
code of a rule its premisses can be recognised in space polynomial in the code, we get a
generic complexity bound for deciding derivability using modified instances. Due to the
more general rule format this bound is higher than the Pspace bound in [10]. Whether
this can be improved in general is subject of ongoing work.

Theorem 17. For a tractable set R of rules, derivability in R∗ is decidable in Expspace.

3.2 Construction of cut-free sequent systems from axioms

With Theorems 14 and 16 we have presented a general criterion for a sequent system
with context restrictions to admit both cut and contraction. Of course now we need to
construct sequent systems satisfying this criterion. As in the case without context re-
strictions [10] these results suggest constructing saturated rule sets by saturation: start-
ing with a set of rules with context restrictions simply add missing cuts and contractions
until no more new rules are found. In the presence of context restrictions, however, we
then need to check that the resulting rule set is also context-cut closed and mixed-cut
closed. The following well-known example shows that this need not be the case.

Example 18. The rule set RS5 :=
{

({(p ⇒ ;Cid)};�p ⇒ ), ({( ⇒ p;C5�)}; ⇒ �p)
}

with C5� := 〈{�p}, {�p}〉 is contraction closed and principal- and context-cut closed.
It is not mixed-cut closed, since the occurrence of the principal formula �p of RT�

satisfies the restriction C5� of R5�, but the restriction Cid does not.
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The method of constructing cut-free rule sets by saturation works reasonably well if
we start with a set of sequent rules, but often the modal logics of interest are given in
a Hilbert-style system by a set of axioms. Thus the first step in constructing a cut free
sequent system from such axioms is to translate the axioms into sequent rules. While
this can alway be done if the axioms are non-nested, i.e. without nested modalities, and
the underlying propositional logic is classical, in the general case we need to be more
careful. The notion of cuts between rules will be a useful tool in this step as well.

We assume that the underlying propositional logic is either classical or intuitionis-
tic. In a first step we extend the method for converting non-nested axioms from [10]
to the asymmetric setting using notions from [6]. The main idea is to first treat the
modal subformulae in a non-nested axiom like propositional variables, use invertibil-
ity of the underlying rule set to break the axiom into a finite number of sequents, and
then resolve propositional logic under the modalities by introducing new variables and
premisses stating that these variables are equivalent to the original formulae. In the last
step these premisses are again broken up using invertibility of the underlying rules. To
identify the axioms which can be broken up we loosely follow the idea of the substruc-
tural hierarchy from [6] and consider the notions of left resolvable and right resolvable
formulae. Intuitively the idea is that if a right resolvable formula occurs positively in
a sequent, its main (boolean) connective can be broken up. We introduce these notions
in a generic form which allows treating classical and intuitionistic logics in the same
framework. Also this shows that they are easily adapted to other logics such as minimal
or distributive logic.

Definition 19. The sets Fr of right resolvable formulae and F` of left resolvable for-
mulae and their intuitionistic versions Fr

i and F` i are defined recursively by
1. if p ∈ V then p ∈ Fr

[i] and p ∈ F`[i];
2. ⊥ ∈ Fr

[i] and ⊥ ∈ F`[i];
3. if A1, A2 ∈ Fr

[i] then A1 ∧ A2 ∈ Fr
[i] and A1 ∨ A2 ∈ Fr;

4. if A1, A2 ∈ F`
[i] then A1 ∧ A2 ∈ F`

[i] and A1 ∨ A2 ∈ F`
[i];

5. if A1 ∈ F`
[i] and A2 ∈ Fr

[i] then A1 → A2 ∈ Fr
[i];

6. if A1 ∈ Fr and A2 ∈ F` then A1 → A2 ∈ F`

where again we write Fr
[i] if a clause applies both to Fr and Fr

i.

Example 20. The formula p ∧ ((p ∨ q) → r) is intuitionistically right resolvable. The
formulae p ∨ q and (p → q) → ⊥ are classically right resolvable, but not intuitionisti-
cally.

Since the premisses of the right (left) rule for the main connective of a right (left)
resolvable formula can be derived from its conclusion in G[i]Cut, we may decompose
an axiom⇒ A for A ∈ Fr into a number of sequents over V, similar to computing the
regular normal form [15] of a formula:

Lemma 21. Let Γ ⊆ F`[i] and ∆ ⊆ Fr
[i]. Then there are unique sequents Γi ⇒ ∆i ∈

S(V) such that the axiom Γ ⇒ ∆ is equivalent in G[i]CutCon to the axioms Γ1 ⇒ ∆1, . . . , Γn ⇒ ∆n.

This Lemma is used to break modal axioms into sequents by treating the modalised sub-
formulae as variables. Then the propositional variables are moved into the premisses:
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Lemma 22. For Γ ⇒ ∆ ∈ S(V) and Σ ⇒ Π ∈ S(Λ(V)) the axiom Γ, Σ ⇒ ∆,Π is
equivalent in G[i]CutCon to the rule ({( ⇒ p;C[i]

id ) | p ∈ Γ} ∪ {(p ⇒ ;Cid) | p ∈
∆};Σ ⇒ Π).

In the case of axioms with modal nesting depth one we now eliminate propositional
logic under the modalities by adding new variables for the immediate subformulae and
new premisses stating that the variables are equivalent to the original subformulae. Un-
fortunately the result of this operation is not necessarily a rule in our sense, since the
sequents occurring in the premisses do not only include variables. Fortunately, if the
modality in question is monotone or antitone (see below), we can cut this “rule” with
the monotonicity rule (or its antitone counterpart) to eliminate one of the new premisses.
We call the newly introduced premisses the premisses for the subformula A and say that
the premisses for a subformula can be resolved if there are equivalent premisses con-
sisting of sequents over variables. The following Definition and Lemma give criteria on
when the premisses can be resolved.

Definition 23. Let R be a set of rules, p = p1, . . . , pn and q = q1, . . . , qn. For k ≤ n
a n-ary modality ♥p is monotone in the k-th argument if the rule Rmonk = ({(pk ⇒

qk;C∅)} ∪ {(p` ⇒ q`;C∅) | k , ` ≤ n} ∪ {(q` ⇒ p`;C∅) | k , ` ≤ n};♥p⇒ ♥q) is in R.
It is antitone in the k-th argument if the rule Rantk with premiss (qk ⇒ pk;C∅) instead of
(pk ⇒ qk;C∅) is in R.

Lemma 24. Let R be a rule set. Then for a sequent Γ ⇒ ∆,♥(. . . , Ak, . . . ) the pre-
misses for Ak can be resolved if: Ak ∈ F`

[i] and ♥ is monotone in the k-th argument; or
Ak ∈ Fr

[i] and ♥ is antitone in the k-th argument; or Ak ∈ F`
[i]
∩ Fr

[i]. For a sequent
♥(. . . , Ak, . . . ), Γ ⇒ ∆ we have the analogous result with F`[i] and Fr

[i] exchanged.

The previous Lemmata yield general criteria as to which axioms are translatable into
rules. For the sake of brevity we only state the result for unary monotone modalities;
The generalisations to non-monotone modalities and higher arities are straightforward.

Definition 25. For A ∈ Fr
[i] and p ∈ V we say that p is positive (resp. negative) in A, if

it occurs positively (resp. negatively) in a sequent of the decomposition of the sequent
⇒ A according to Lemma 21.

Theorem 26. Let A be a propositional formula with variables p1, . . . , pn, q1, . . . , qm,
and for i = 1, . . . ,m let the modality ♥i be unary monotone and Ai a propositional
formula with variables in p1, . . . , pn such that: qi is only positive in A and Ai ∈ F`

[i]; or
qi is only negative in A and Ai ∈ Fr

[i]; or A ∈ F`[i]
∩ Fr

[i]. Then there is a rule which is
equivalent in G[i]CutCon to the axiom ⇒ Aσ where σ(qi) = Ai and σ(pi) = (pi).

Remark 27. Since for classical propositional logic all propositional formulae are both
right and left resolvable, the previous Theorem yields the translation result for non-
nested axioms from [10] as a Corollary.

For axioms with nested modalities we may sometimes use a similar procedure if a
modalised formula occurs both on the top level of the axiom and under a modality. The
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idea is to introduce a fresh variable for this formula and apply the methods above with-
out moving the variable into the premisses with Lemma 22. If now the occurrences of
this variable in the premisses and the conclusion are all negative (resp. positive), we
may it with the original formula again. Since this formula now occurs both in the pre-
misses and the conclusion this often gives rise to a context restriction. We will illustrate
this method using examples in the next section.

4 Applications

Example 28 (Constructive K). Constructive modal logic K from [4, 13] is based on
intuitionistic propositional logic and has rules Reg� =

(
{(p ⇒ q;C∅)};�p ⇒ �q

)
and Reg♦ =

(
{(p ⇒ q;C∅)}; ♦p ⇒ ♦q

)
and axioms (FS1) �>, (FS2) (�(p ∧ q) →

(�p ∧ �q)) ∧ ((�p ∧ �q) → �(p ∧ q)) and (FS6) ♦(p → q) → (�p → ♦q). Since
the propositional part is intuitionistic we base our treatment on the asymmetric setting.
The rules Reg� and Reg♦ ensure that both modalities � and ♦ are monotone in the sense
of Definition 23. Treating modalised subformulae as variables and using Lemma 21
and the fact that A → B is intuitionistically left resolvable to break up axiom (FS6)
first yields the axiom ♦(p→ q),�p⇒ ♦q. Now introducing a new variable rp→q and
premisses for subformula p→ q yields

rp→q ⇒ p→ q p→ q⇒ rp→q

♦rp→q,�p⇒ ♦q .

But now a cut with rule Reg♦ on ♦rp→q and resolving the remaining premiss gives the

rule
s, p⇒ q
♦s,�p⇒ ♦q RFS6. The analogous treatment for axioms (FS2) and (FS1) gives

the well-known rules RFS2 :=
(
{(p, q ⇒ r;C∅)};�p,�q ⇒ �r

)
and RFS1 :=

(
{( ⇒

p;C∅)}; ⇒ �p
)
. Now saturating the rule set under cuts yields the rule set

RCK :=
{ p1, . . . , pn ⇒ q
Γ,�p1, . . . ,�pn ⇒ �q

RCKn | n ≥ 0
}
∪

{ p1, . . . , pn, q⇒ r
Γ,�p1, . . . ,�pn, ♦q⇒ ♦r

| n ≥ 0
}
.

Of course this rule set is not new [4]. The point here is that we constructed it in a purely
syntactical way from the axioms of the Hilbert-system.

To illustrate the use of Lemma 22 let us add the T -axioms (T�) �p → p and
(T♦) p → ♦p. Again, the axioms are first broken up into �p⇒ p and p⇒ ♦p. Then
they are transformed into equivalent rules RT� =

(
{(p ⇒ ;Cid)};�p ⇒

)
and RT♦ =(

{( ⇒ p;Ci
id)}; ⇒ ♦p

)
. Now saturation under cuts would yield the additional rules(

{(p1, . . . , pn ⇒ ;Cid)};�p1, . . . ,�pn ⇒
)

and
(
{(p1, . . . , pn ⇒ r;Ci

id)};�p1, . . . ,�pn ⇒

♦r
)

for n ≥ 0, but these are simulated by repeated applications of RT� and RT♦. Thus it
is easy to see that the rule sets RCK and RCK ∪ {RT�,RT♦} are saturated.

Note that these constructions do not give rise to context restrictions apart from C∅ and
C

[i]
id . For this we need to consider axioms with nested modalities. Unfortunately, if we

are dealing with nested modalities the translation becomes more involved and much less
automatic. Nonetheless, as mentioned before in some cases we can still use the method
of cutting rules on principal formulae to construct rules with context restrictions. The
main idea is to make use of formulae occurring both under a modality and on the top
level of the sequent and to construct a context restriction out of this formula.
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Example 29 (Constructive S4). Constructive modal logic CS4 from [17, 2] contains
the rules RCK ∪{RT�,RT♦} and additional axioms (4�) �p→ ��p and (4♦) ♦♦p→ ♦p.
We make use of the fact that in these we have the same modalised formula occurring on
the top level and under a modality as follows: Take axiom (4�) and in a first step replace
the occurrence of �p under the modality by a fresh variable q. The resulting axiom
�p → �q is broken up into the sequent �p ⇒ �q. Then adding the premisses for q we

get
�p⇒ q q⇒ �p
�p⇒ �q and a cut with the monotonicity rule Reg� yields

�p⇒ q
�p⇒ �q. Now

computing principal cuts of a number of instances of this rule with rule RCKn yields

�p1, . . . ,�pm, q1, . . . , qk ⇒ r
Γ,�p1, . . . ,�pm,�q1, . . . ,�qk ⇒ �r .

But since the �pi occur both in conclusion and premiss of the rule, this is exactly
the rule R4� =

(
{(q1, . . . , qk ⇒ r;C4�)};�q1, . . . ,�qk ⇒ �r

)
. Moreover, the rule

�p⇒ q
�p⇒ �q is sound by the methods of the last section, and since R4� was constructed
from this rule and RCKn by means of principal cuts, Lemma 9 ensures that it is sound
as well. A similar process for axiom (4♦) yields the rules R4♦ :=

(
{(p1, . . . , pn, q ⇒

C4♦)};�p1, . . . ,�pn, ♦q ⇒
)

with context restriction C4♦ = 〈∅, {♦p}〉. Now adding the
missing principal cuts again yields a rule set which is principal-cut closed. It is triv-
ially context-cut closed, and easily checked to be mixed-cut and contraction closed and
therefore saturated. Again, the rules are not new, but we constructed them in a purely
syntactical way, and their soundness and completeness is guaranteed by construction.

This method can also be applied if the subformula occurs under a modality more than
once, or if it is more complex. In the latter case in general this gives rise to more com-
plex context restrictions. The following example shows how sometimes more complex
restrictions can be simplified and how context restrictions C[i]

id may arise other than as a
consequence of Lemma 22.

Example 30 (Access Control Logic CDD). Access control logic CDD from [1] is
based on intuitionistic propositional logic and has indexed normal (and thus mono-
tone) modalities ©kA which are interpreted as principal k says A. For this example we
consider the axiomatisation with the axioms [unit] p → ©k p and [GHO] ©k (p →
©kq) → (p → ©kq) (see [1]). The first axiom straightforwardly translates into the rule
R[unit] =

(
{( ⇒ p;Ci

id)}; ⇒ ©k p
)
. For the latter axiom we first introduce a variable r

for the formula (p→ ©kq) under the modality and apply the methods above to obtain

r ⇒ p→ ©kq
Γ,©kr ⇒ p→ ©kq

.

But now instead of turning this into a rule with context restriction 〈∅, {p → ©kq}〉 we

break up the boolean part to arrive at
r, p⇒ ©kq

Γ,©kr, p⇒ ©kq
. Since disjunctions are intuition-

istically left resolvable the variable p can be taken to be the context on the left hand
side, and this is equivalent to the rule R[GHO] =

(
{(r ⇒ ;Ccdd,k)};©kr ⇒

)
with restric-

tion Ccdd,k := 〈{p}, {©k p}〉. Since the rules RKn for ©k are simulated by applications of
R[unit] and R[GHO], this yields the rule set RCDD :=

{
R[unit],R[GHO]

}
which again is easily



The Doodling Calculus 11

seen to be saturated and thus have cut elimination. Of course again this rule set is not
new (see e.g. [7, 5]) and there are other ways to construct it, but it nicely illustrates how
context restrictions arise.

Example 31 (Conditional Logic with Absoluteness). As a final example let us con-
struct a cut-free set of rules with context restrictions for a logic based on classical propo-
sitional logic, namely for Lewis’ conditional logic VA from [12]. The language for this
logic contains the binary modality 4 called entrenchment with the intuitive reading “A
is at least as plausible as B” for A 4 B. The logic VA is given as an axiomatic extension
of the logic V, where the latter is characterised by non-nested axioms only and does not
necessitate the use of rules with context restrictions. For this reason we concentrate on
the new axioms and make use of the rules RV =

{
Rn,m | n ≥ 1,m ≥ 0

}
from [11] for the

logic V, where rule Rn,m in our notation is given as
(
{(sk ⇒ r1, . . . , rn, q1, . . . , qm;C∅) |

k ≤ n} ∪ {(pk ⇒ r1, . . . , rn, q1, . . . , qk−1;C∅) | k ≤ m}; p1 4 q1, . . . , pm 4 qm ⇒ r1 4
s1, . . . , rn 4 sn

)
.

For VA we need to add the two absoluteness axioms (p 4 q)→ (⊥ 4 ¬(p 4 q)) and
¬(p 4 q)→ (⊥ 4 (p 4 q)). We use the fact that the formula (p 4 q) occurs both on the
top level and under a modality, and in a first step using monotonicity of 4 in the second

argument convert the two axioms into
p⇒ q⇒ r 4 s
⇒ p 4 q, r 4 s and

p⇒ r 4 s, q⇒
r 4 s⇒ p 4 q . Now

computing a principal cut between the first of these rules and a rule Rn,m effectively
replaces one negative principal formula of Rn,m with a positive contextual formula r 4
s. Repeating this process we get arbitrarily many positive context formulae rk 4 sk

and thus arrive at the context restriction 〈∅, {r 4 s}〉. Similarly, principal cuts with
the second rule replace negative principal formulae of Rn,m with negative contextual
formulae r 4 s, yielding the context restriction CVA := 〈{r 4 s}, {r 4 s}〉. As usual, since
all the cuts involved were cuts on principal formulae, Lemma 9 guarantees soundness
of the resulting rule set. Setting RVA = {R′n,m | n ≥ 1,m ≥ 0} with R′n,m given as(
{(sk ⇒ r1, . . . , rn, q1, . . . , qm;CVA) | k ≤ n} ∪ {(pk ⇒ r1, . . . , rn, q1, . . . , qk−1;CVA) |

k ≤ m}; p1 4 q1, . . . , pm 4 qm ⇒ r1 4 s1, . . . , rn 4 sn
)

thus gives a sound and complete
rule set for VA, which is easily checked to be saturated and thus cut-free. As far as we
are aware this rule set is new. This yields the following Theorem.

Theorem 32. The rule set GRVA is sound and complete for VA. Moreover, it is satu-
rated and therefore has cut elimination. Thus backwards proof search in (GRVA)∗ can
be implemented in Expspace.

5 Conclusion

We presented a generic cut elimination result for symmetric and asymmetric sequent
systems consisting of rules with context restrictions which are saturated, i.e. closed un-
der cuts and contractions. This not only extends previous methods to modal axioms
of nesting depth greater than one, but also to logics based on intuitionistic logic. Fur-
thermore, we introduced techniques to translate axioms of a Hilbert style system into
sequent rules. All the results and techniques can easily be adapted to other base log-
ics such as minimal or distributive logic. Examples included the reconstruction of al-
ready known sequent systems for constructive modal logics and the construction of an
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apparently new sequent system for Lewis’ conditional logic VA in the entrenchment
language.
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