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In this paper we show that all nodes can be found optimally for almost all random Erdős-
Rényi G(n, p) graphs using continuous-time quantum spatial search procedure. This works for
both adjacency and Laplacian matrices, though under different conditions. The first one requires
p = ω(log8(n)/n), while the seconds requires p ≥ (1+ε) log(n)/n, where ε > 0. The proof was made
by analyzing the convergence of eigenvectors corresponding to outlying eigenvalues in the ‖ · ‖∞
norm. At the same time for p < (1− ε) log(n)/n, the property does not hold for any matrix, due to
the connectivity issues. Hence, our derivation concerning Laplacian matrix is tight.

Quantum spatial search is an example of a quan-
tum procedure which yields a result much faster than
its classical counterpart. Hence, since the very first
paper describing it was published [1], plenty of new
results have appeared in the literature. This includes
the noise resistance [2], efficiency analysis [1, 3–6],
imperfect implementation [7], difference in imple-
mentation [8], etc.

Unfortunately, most of the results concern very
specific graph classes like complete graphs [1, 2] or
their simplex [7], and binary trees [6]. Due to some
kind of ‘symmetry’, it was not necessary to make
analysis for all vertices separately (as for example in
complete graphs or hypercubes), or at least it could
be easily fixed (for example by the level in binary
trees). The first big step towards the generaliza-
tion into a large collection of graphs is the work of
Chakraborty et al. [3], where Erdős-Rényi random
graph model was analyzed. The authors have proven
that for almost all graphs almost all vertices can
be found optimally. Since there are already known
examples of graphs for which some vertices are
searched in Θ(n

1
2+a) time for a > 0 [1, 6] (through-

out this paper O, o,Ω, ω,Θ,∼ denote asymptotic re-
lations, see [9]), the result cannot be strengthened
into ‘all graphs’.

The proof of the main result of Chakraborty et
al. in [3] is based on a lemma describing limit be-
havior of a principal vector |λ1〉. The authors show

that for p > log
3
2 (n)/n, if |s〉 = 1√

n

∑
v∈V |v〉 =

α|λ1〉 + β|λ1〉⊥, then almost surely α = 1 − o(1).
Since the time needed for quantum spatial search is
Θ( 1
|〈w|λ1〉| ), we have that almost all vertices can be
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found in optimal time. However, in this case it is not
trivial which vertex is chosen, since the Erdős-Rényi
graph is symmetric only in expectation. This kind
of convergence allows the existence of vertices, which
can be found in Ω(n) time. As an example consider
|λ′1〉 = 1√

n−k
∑n
i=k+1 |i〉. For k = o(n), the vector

satisfies α = 1− o(1) requirement, but then the ver-
tices 1, . . . , k will be found in Ω(n) time, which is
actually a random guess complexity. Note that it is
even possible that for almost all graphs such vertices
exist. Furthermore, many of the applications men-
tioned in [3] require 〈i|v1〉 ≈ 〈j|v1〉 for arbitrary i, j.
Otherwise, creating Bell states or quantum trans-
port will be at least very difficult.

What is more, due to the laws of quantum me-
chanics, the measurement time needs to be known
since the beginning. This includes not only dif-
ferences in the complexity, but a constant as well.
For example, if for two different nodes v, v′ we have
〈v|λ1〉 = 1√

n
and 〈v′|λ1〉 = 2√

n
, then different mea-

surement times should be chosen for each.

Both effects mentioned above can be described as
hiding nodes in the graphs. Finally, we propose a
following research problem: can we actually ‘hide’
a vertex in a random Erdős-Rényi graph? We have
managed to show, that in the case of adjacency ma-
trix, p = ω(log3(n)/(n log2(log(n))) is a sufficient
requirement for all-vertices optimal search. Under
further constraint p = ω(log8(n)/n) we have com-
mon time measurement. In the case of Laplacian
matrix, p > (1+ε) log(n)/n is sufficient for common
time measurement, however in the p = Θ(log(n)/n)
case, it may not be true that almost surely the prob-
ability 1 of a successful measurement is achieved. If
p < (1− ε) log(n)/n, then a random graph contains
almost surely isolated nodes [10], hence it is possible
to hide a vertex.
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Element-wise optimality for adjacency matrix. Let
G = (V,E) be a simple undirected graph with node
set V = {1, . . . , n} and edge set E ⊂ V × V . More-
over, let HG be a quantum system spanned by an
orthonormal basis {|v〉 : v ∈ V }. Quantum spatial
search is based on the Schrödinger differential equa-
tion

|ψ̇t〉 = iH|ψt〉 = i (MG + |w〉〈w|) |ψt〉, (1)

where MG is a matrix corresponding to the graph
structure, typically rescaled adjacency matrix A or
Laplacian L, and w is a marked vertex. In [3], au-
thors have proven that for a random Erdős-Rényi
graph in case of an adjacency matrix almost all ver-
tices from almost all graphs can be found optimally.
We say some property holds almost surely for all
graphs, where the probability of choosing random
graph having such is 1− o(1).

Two properties of MG are useful in proving search
optimality. Firstly, the matrix should have a sin-
gle outlying eigenvalue. Secondly, its corresponding
eigenvector |ν〉 should satisfy|〈w|ν〉| = Θ( 1√

n
).

Note that in the limit n → ∞, norms cease to
be equivalent, thus different concepts of closeness
of vectors can be chosen. In [3], authors choose
1 − |〈ψ|φ〉|, which allows that o(n) of nodes can
be found in time ω(

√
n). Hence we should be in-

terested the limit behavior of the principal vec-
tor in ‖ · ‖∞ norm. More precisely, we are inter-

ested whether ‖|ν〉 − |s〉‖∞ = o(1)√
n

. This would im-

ply that for an arbitrary marked node w we have
〈ω|ν〉 = (1 + o(1)) 1√

n
.

Indeed, such a convergence was shown by Mi-
tra [11] providing p ≥ log6(n)/n. We have managed
to weaken the assumptions and thereby strengthen
the result.

Proposition 1. Suppose A is an adjacency ma-
trix of a random Erdős-Rényi graph G(n, p) with
p = ω(log3(n)/(n log2 log n)). Let |λ1〉 denote the
eigenvector corresponding to the largest eigenvalue
of A and let |s〉 = 1√

n

∑
v |v〉. Then

‖|λ1〉 − |s〉‖∞ = o

(
1√
n

)
(2)

with probability 1− o(1).

The proof, which follows the concept proposed by
Mitra [11], can be found in Section A in Supplemen-
tary Materials. This implies that all vertices can be
found optimally in Θ(

√
n) time for almost all graphs.

To show the common time measurement suppose
that the largest eigenvalue of 1

npA satisfies

|λ1 − 1| ≤ δ, (3)

where δ → 0. Then the probability of measuring the
searched vertex w in time t can be approximated
by [3]

Pω(t) = |〈w| exp(iHt)|s〉|2

≈ 1

1 + nδ2/4
sin2

(√
δ2/4 + 1/nt

)
.

(4)

Since |λ1〉 tends to |s〉 in the ‖·‖∞ norm, the approxi-
mation works for all nodes. Hence, when δ = O( 1√

n
)

(with small constant in the Θ( 1√
n

) case), then all of

the vertices can be found in time O(
√
n). Never-

theless, δ depends on a chosen graph, and thus the
measurement time may differ. In order to ensure
that the time and probability of measurement are
the same for all marked nodes and almost all graph
chosen, one should provide δ = o( 1√

n
) almost surely.

If p = ω(log8(n)/n), then the largest eigenvalue λ1

follows N
(

1, 1
n

√
2(1− p)/p

)
distribution [12], see

Section B in Supplementary Materials for a step-
by-step derivation, where N (µ, σ) is the normal dis-
tribution with mean µ and standard deviation σ.
Therefore, one can show that asymptotically almost
surely ∣∣∣∣λ1( 1

np
A

)
− 1

∣∣∣∣ ≤ δ, (5)

where δ = o( 1
n
√
p ). Note that since np = ω(log8(n)),

we have actually δ = o( 1√
n log4(n)

) in the worst case

scenario. This, in turn, allows us to use the simpli-
fied version of Eq. (4)

Pω(t) ≈ sin2

(
t√
n

)
(6)

for large n. Thus we have that in time t = π
2

√
n,

the probability of measurement is optimal, indepen-
dently on a chosen marked node. Finally, we can
conclude our results concerning adjacency matrix
with the following theorem.

Theorem 2. Suppose we chose a graph according to
Erdős-Rényi G(n, p) model with p = ω(log8(n)/n).
Then by choosing MG = 1

npA, where A is an ad-

jacency matrix in Eq. (1), almost surely all vertices
can be found with probability 1− o(1) with common
measurement time approximately t = π

√
n/2.

Element-wise optimality for Laplacian matrix. Sim-
ilar property holds for a Laplacian matrix L. This
is a positive semi-definite matrix, where the dimen-
sionality of null-space corresponds to the number of
connected components. Based on the results from
[13], one can show that for p = ω(log(n)/n) all of the
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others eigenvalues of L
np converge to 1, see Section C

in Supplementary Materials. At the same time, the
eigenvector corresponding to the null-space is exactly
the equal superposition |s〉 = |µn〉 = 1√

n

∑
v∈V |v〉.

Thus, since for p > (1 + ε) log(n)/n a graph is al-
most surely connected, the Laplacian matrix takes
the form

L

np
= 0 · |s〉〈s|+

n−1∑
i=1

µi|µi〉〈µi|, (7)

where µi → 1 almost surely for 1 ≤ i ≤ n − 1.
Here µ1, . . . , µn denote eigenvalues of Laplacian ma-
trix with corresponding eigenvectors |µ1〉, . . . , |µn〉.
Note that since the identity matrix corresponds to
global phase change only, which is an unmeasurable
parameter, we can equivalently choose

I− L

np
= |s〉〈s| −

n−1∑
i=1

(µi − 1)|µi〉〈µi|. (8)

Note that the matrix above satisfies the require-
ments of Lemma 1 from [3], and therefore all of
the vertices can be found optimally with probabil-
ity 1 − o(1). Common time measurement is a di-
rect application of Lemma 1 from [3], since more
in-depth proof analysis shows, that under the theo-
rem assumptions, t = π

√
n/2 should be chosen for

maximizing the success probability.
The situation changes in the case of p =

O(log(n)/n). Note that for both adjacency and
Laplacian matrices the evolution does not change
the probability of measuring isolated vertices. If
p < (1− ε) log(n)/n, then graphs almost surely con-
tain such vertices and hence you actually can hide a
vertex in such a graph.

The p ∼ p0 log(n)/n for p0 > 1 is a smooth
transition case between hiding and non-hiding cases
mentioned before. In this case based on the Ex-
ercise III.4 from [14], one can show that µ1 ∼
(1 − p0)(W0( 1−p0

ep0
))−1 log(n) and µn−1 ∼ (1 −

p0)(W−1( 1−p0
ep0

))−1 log(n), where W0,W−1 are Lam-

bert W functions, see Section D in Supplemen-
tary Materials. Here we use the notation f(n) ∼
g(n) ⇐⇒ f(n) − g(n) = o(g(n)) . In this case,
the MG = I− 1

npL does not imply that both µ1 and
µn−1 converge to 1.

Nevertheless, we can still make simple changes
in a matrix in order to obtain optimality of the
procedure. Let a = (1 − p0)(W0( 1−p0

ep0
))−1 and

b = (1 − p0)(W−1( 1−p0
ep0

))−1 denote constants cor-

responding to µ1 and µn−1 limit behavior. Then

I− 2

(a+ b) log n
L (9)
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FIG. 1. The lower bound of success probability of

quantum spatial search for p = p0
log(n)

n
for almost all

graph from Erdős-Rényi graph model. The exact for-

mula is pbound = W0

(
1−p0
ep0

)
/W−1

(
1−p0
ep0

)
. Note that

pbound → 0 as p0 → 1+, where connectivity threshold is
achieved. Furthermore pbound → 1 as p0 →∞

again satisfies Lemma 1 from [3] with c = a−b
2 . Ac-

cording to the Lemma 1, the probability of success
after time t = π

2
√
n

is bounded from below by

pbound =
1− c
1 + c

= W0

(
1− p0

ep0

)
/W−1

(
1− p0

ep0

)
.

(10)
The bound converges to 0 when p0 → 1+ and to 1
when p0 →∞ and monotonically changes in (1,∞),
see Fig. 1. Note that this corresponds to the other
results: when p0 < 1, then the probability of mea-
suring all vertices is equal to 0, due to the connec-
tivity issues mentioned before. For p0 → ∞, the
situation becomes similar to p = ω(log(n)/n), where
non-hiding property was already shown. Eventually,
we conclude all of the results by the following theo-
rems.

Theorem 3. Suppose we chose a graph according
to Erdős-Rényi G(n, p) model. For p = ω(log(n)/n),
by choosing MG = 1

npL in Eq. (1), almost surely

all vertices can be found with probability 1− o(1) in
asymptotic π

√
n/2 time. For p ∼ p0 log(n)/n, by

choosing MG = (1 + r)γL for some proper r, where
γ is defined as in Eq. (9), all vertices can be found
in asymptotic π

√
n/2 time with probability bounded

from below by the constant in Eq. (10).

We leave determining proper r value as open ques-
tion.

Theorem 4. Suppose we chose a graph according to
Erdős-Rényi G(n, p) model with p ≤ (1−ε) log(n)/n,
where ε > 0. Then for both adjacency and Laplacian
matrices there exist vertices which cannot be found
in o(n) time.
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Conclusion and discussion. In this work we
prove that all vertices can be found optimally with
common measurement time (π

√
n)/2 for almost all

Erdős-Rényi graphs for both adjacency and Lapla-
cian matrices under conditions p = ω(log8(n)/n)
and p ≥ (1 + ε) log(n)/n respectively. The proof
is based on element-wise ergodicity of the eigenvec-
tor corresponding to the outlying eigenvalue of ad-
jacency or Laplacian matrix. While under the men-
tioned constraint adjacency matrix almost surely
achieves success probability 1−o(1), the same prob-
ability for Laplacian matrix in the p ∼ p0 log(n)/n
case for some p0 > 1 can only be bounded from be-
low by some positive constant. At the same time for
p < (1−ε) log(n)/n, the property does not hold any-
more, since almost surely there exist isolated vertices
which need Ω(n) time to be found.

While our derivation concerning the Laplacian
matrix is nearlt complete, since only upper-bound
for success probability is missing in the p =
Θ(log(n)/n) case, in our opinion it is possible to
weaken the condition on p for the adjacency matrix.

The first key step would be showing that the largest
eigenvalue λ( 1

npA) follows N (1, 1
n

√
2(1− p)/p) dis-

tribution for p ≥ (1 + ε) log(n)/n. Then, since
element-wise convergence of principal vector requires
p = ω(log3(n)/(n log2 log n)), the result would be
strengthened to the last mentioned constraint. The
second step would be the generalization of the men-
tioned element-wise convergence theorem.

Further interesting generalization of the result
would be the analysis of more general random graph
models as well. While this proposition has already
been stated [3], our results show that in order to
prove security of the quantum spatial search, it
would be desirable to analyze the limit behavior of
the principal vector in the sense of ‖ · ‖∞ norm.
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[12] L. Erdős, A. Knowles, H.-T. Yau, J. Yin, and others,
“Spectral statistics of Erdős-Rényi graphs I: local
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Appendix A: Element-wise bound on principal
eigenvector

Let Gn,p be a random Erdős-Rényi graph, deg(v)
be a degree of the vertex v ∈ V and A be its adja-
cency matrix with eigenvalues λ1 ≥ λ2 ≥ . . . ≥ λn.
Let also |λi〉 be an eigenvector corresponding to the
eigenvalue λi and |s〉 = 1√

n
|1〉 = 1√

n

∑n
i=1 |v〉.

Proposition 5. For the probability p =
ω
(
ln3(n)/(n log2 log n)

)
and some constant c > 0 we

have

‖|λ1〉 − |s〉‖∞ ≤ c
1√
n

ln3/2(n)
√
np ln(np)

(A1)

with probability 1− o(1).

Proof. Using [13], we have

‖A− E(A)‖ ≤
√

8np ln(n), (A2)

|λ1 − np| ≤
√

8np ln(
√

2n), (A3)

max
i≥2
|λi| ≤

√
8np ln(

√
2n), (A4)

with probability 1 − o(1). The first inequality was
shown in the proof of Theorem 1 while the second
and third inequalities come from Theorem 3 in [13].
Note deg(v) follows a binomial distribution. Using
Lindenberg’s CLT and the fact that the convergence
is uniform one can show that

P
(
|deg(v)− np| ≤ 2

√
ln(n)np(1− p)

)
≈ P

(
|X | ≤ 2

√
ln(n)

)
≥ 1− 1√

2π ln(n)n2
, (A5)

where X is a random variable with standard normal
distribution. Let A = λ1|λ1〉〈λ1| +

∑
i≥2 λi|λi〉〈λi|

and |s〉 = α|λ1〉+β|λ⊥1 〉. Assume that |λ1〉, |λ⊥1 〉, |λi〉
are normed vectors and |λ⊥1 〉 =

∑
i≥2 γi|λi〉. By the

Perron-Frobenius Theorem we can choose a vector
|λ1〉 such that 〈v|λ1〉 ≥ 0 and hence obtain 〈s|λ1〉 =
α > 0. Thus

(A− E(A)) |λ1〉

=

λ1|λ1〉〈λ1|+∑
i≥2

λi|λi〉〈λi| − np|s〉〈s|

 |λ1〉
= (λ1 − npα2)|λ1〉 − npαβ|λ⊥1 〉. (A6)

With probability 1− o(1), using Eq. (A2) we have

(λ1 − npα2)2 + (np)2α2β2 = ‖ (A− E(A)) |λ1〉‖2

≤ 8np ln(n)

(A7)

and thus since β2 = 1− α2, then

α2np(np− 2λ1) + λ21 ≤ 8np ln(n). (A8)

Eventually, we receive

1 ≥ α ≥ α2 ≥ λ21 − 8np ln(n)

2λ1np− (np)2

≥ 1− 4

2 +
√

np

8 ln(
√
2n)

≥ 1− 16√
np

ln(n)

,

(A9)

where the fourth inequality comes from Eq. (A3).

We know that |deg(v) − np| ≤ 2
√
n ln(n)p(1− p)

with probability greater than 1 − 1
n2 . Thus, with

probability 1 − 1
n the above is true for all v ∈ V

simultaneously. Now, since deg(v) = 〈v|A|1〉, we
have

np− 2
√
n ln(n)p(1− p)
λ1

≤ 1

λ1
〈v|A|1〉

≤
np+ 2

√
n ln(n)p(1− p)
λ1

(A10)

The lower bound can be estimated as

np− 2
√
n ln(n)p(1− p)
λ1

(A3)

≥
1− 2

√
ln(n) 1−p

np

1 +
√

8 ln(
√
2n)

np

≥
1− 2

√
ln(n)
np

1 + 4
√

ln(n)
np

=: d

(A11)

and similarly the upper bound

np+ 2
√
n ln(n)p(1− p)
λ1

≤
1 + 2

√
ln(n)
np

1− 4
√

ln(n)
np

=: u.

(A12)
Consequently

d√
n
≤ 1

λ1
〈v|A|s〉 ≤ u√

n
(A13)

for all v ∈ V . Let l = c ln(n)

ln(
√

np
ln(n)

/4)
, where c =

c(n, p) ∈ [1, 2) is chosen to satisfy l =

⌈
ln(n)

ln(
√

np
ln(n)

/4)

⌉
.

Hence

dl√
n
≤ 〈v|

(
A

λ

)l
|s〉 ≤ ul√

n
(A14)
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for all v ∈ V . On the other hand

(
1

λ1
A

)l (
α|λ1〉+ β|λ⊥1 〉

)
=|λ1〉〈λ1|+∑

i≥2

(
λi
λ1

)l
|λi〉〈λi|

(α|λ1〉+ β|λ⊥1 〉
)

= α|λ1〉+ β
∑
i≥2

(
λi
λ1

)l
γi|λi〉. (A15)

Using Eq. (A2,A3) we are able to estimate λi

λ1
by

λi
λ1
≤

√
8np ln(

√
2n)

np−
√

8np ln(
√

2n)

=
1√

np

8 ln(
√
2n)
− 1
≤ 4√

np
ln(n)

.

(A16)

Thus∥∥∥∥∥∥β
∑
i≥2

(
λi
λ1

)l
γi|λi〉

∥∥∥∥∥∥
∞

≤ |β|

∥∥∥∥∥∥
∑
i≥2

(
λi
λ1

)l
γi|λi〉

∥∥∥∥∥∥
2

≤ |β|

√√√√√√∑
i≥2

γ2i

 4√
np

ln(n)

2l

=
|β|(√
np

ln(n)

4

)l =
|β|
nc

≤ 4(
np

ln(n)

)1/4
n

,

(A17)

where the last inequality comes from Eq. (A9)
and ‖ · ‖2 denotes the Euclidean norm. By
Eq. (A13,A15) we get

dl√
n
≤ α〈v|λ1〉+ 〈v|

β∑
i≥2

(
λi
λ1

)l
γi|λi〉

 ≤ ul√
n
,

(A18)
for all v ∈ V and using Eq. (A9,A17) we eventually
obtain

dl√
n
− 4

( np
ln(n) )

1/4
n

1
≤ 〈v|λ1〉 ≤

ul
√
n

+ 4

( np
ln(n) )

1/4
n

1− 16√
np

ln(n)

(A19)

for all v ∈ V . In order to finish the proof it is nec-
essary to show that

(1−dl)+
4(

np
ln(n)

)1/4√
n

= O

(
ln3/2(n)
√
np ln(np)

)
(A20)

and

(ul − 1) +
4(

np
ln(n)

)1/4√
n

= O

(
ln3/2(n)
√
np ln(np)

)
.

(A21)
We need to estimate how quickly dl converges to 1.
Using the fact that d → 1, it is enough to observe
that

(1− d)l = O

 ln3/2(n)
√
np ln

(√
np

ln(n)/4
)
 , (A22)

and thus

1− dl ≈ 1− e(d−1)l = O

(
ln3/2(n)
√
np ln(np)

)
. (A23)

The second term of LHS of Eq. (A20) converges to
0 more rapidly than the bound, so it completes the
proof for the lower bound. The same thing for the
upper bound can be shown analogously.

Appendix B: Distribution of the largest
eigenvalue of adjacency matrix

Theorem 6.2 from [12] considers the distribution
of the largest eigenvalue of rescaled adjacency matrix
Ã = A/

√
(1− p)pn. They show that as long as p >

1
n , then

Eλ1(Ã) =

√
np

1− p
+

√
1− p
np

+ o(1). (B1)

Furthermore, under another condition p =
ω(log8(n)/n) we have

√
n

2

(
λ1(Ã)− Eλ1(Ã)

)
→ N (0, 1) (B2)
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in a distribution. This allows us to derive the distri-
bution of the largest eigenvalue of the 1

npA matrix

λ1

(
1

np
A

)
=

√
1− p
np

λ1(Ã)

=

√
2(1− p)
n
√
p

(√
n

2

(
λ1(Ã)− Eλ1(Ã)

)
+

√
n

2
Eλ1(Ã)

)
=

√
2(1− p)
n
√
p
X + 1 +

1− p
np

+

√
1− p
np

o(1)

(B3)

where X → N (0, 1). Hence we have that λ1( 1
npA) ∼

N (1, 1
n

√
2(1−p)
p ). Note, that under the condition

p = ω(log8(n)/n), the standard deviation tends
to 0. This means that the largest eigenvalue actually
tends to the Dirac distribution δx=1.

This gives as a bound for λ1( 1
npA). Note that

P(|λ1(A/(np))− 1| ≤ δ) = 1− erfc

(
n
√
pδ

2
√

1− p

)
.

(B4)
The probability tends to 1 as long as the argument
tends to ∞. In order to achieve this, we need to
assume n

√
pδ →∞ as n→∞. This can be done by

choosing δ = o( 1
n
√
p ). Eventually, we have asymp-

totically almost surely∣∣∣∣λ1( 1

np
A

)
− 1

∣∣∣∣ = o

(
1

n
√
p

)
. (B5)

Note that for p = o(1) the bound is better than the
one used in [3].

Appendix C: Laplacian matrix spectrum

Algebraic connectivity satisfies µn−1 = np +
O(
√
np log n) for p = ω(log(n)/n). Similarly we con-

clude from results of Bryc et al. [15], that µ1 ∼ np.

Theorem 6. Let Ln be a Laplacian matrix of ran-
dom Erdős-Rényi graph G(n, p), where p = ω( logn

n ).
Then µ1 = µ(L) ∼ np.

Proof. By Theorem 1.5 from [15], if L̃ is a symmetric
matrix whose off-diagonal elements have two-points
distribution with mean 0 and variance p(1− p) and

L̃ii =
∑
j 6=i L̃ij . Then

lim
n→∞

µ(L̃)√
2np(1− p) log n

= 1. (C1)

Note that in the following version p may depend on
n. Hence, we can extend the Corollary 1.6 from the
same paper.

Let Ln = L̃n + Yn, where Yn is a deterministic
matrix with −p on off-diagonal and (n − 1)p on di-
agonal. Note that Yn is an expectation of a random
Erdős-Rényi Laplacian matrix. Yn has a single 0
eigenvalue and all of the others take the form np.
By this we have µ(Yn) = ‖Yn‖ = np. Then we have∣∣∣∣‖Ln‖np

− ‖Yn‖
np

∣∣∣∣ ≤ ‖Ln − Yn‖np
=
‖L̃n‖
np

→ 0 (C2)

where the limit comes from the Eq. (C1), assuming

p = ω(log n/n). Finally µ(Ln)
np → 1.

Appendix D: The largest eigenvalue of
Laplacian matrix near the connectivity treshold

Suppose G is a random graph chosen according to

G(n, p0
log(n)
n ) distribution, for p0 > 1 being a con-

stant. It can be shown, that

δ ∼ (1− p0)

(
W−1

(
1− p0

ep0

))−1
log(n) (D1)

and

∆ ∼ (1− p0)

(
W0

(
1− p0

ep0

))−1
log(n), (D2)

see [14], Exercise III.4. Here δ and ∆ denote respec-
tively minimal and maximal degree of the graph. In
[16] authors have shown that providing

|δ − cnp| = O(
√
np) (D3)

we have

|µn−1 − cnp| = O(
√
np), (D4)

where µn−1 is the second smallest eigenvalue of the
Laplacian matrix. In fact, similar behavior can be
stated for the largest eigenvalue, i.e. if

|∆− cnp| = o(np) (D5)

we have

|µ1 − cnp| = o(np). (D6)

While we plan to prove the statement above, it is
possible that the RHS can be reduced to O(

√
np) by

following the proof in [16]. Nonetheless, we are sat-
isfied with the mentioned result. The proof is very
similar to the proof of Lemma 3.4 in [16]. Further-
more, note, that the theorem holds for p0 > 0.
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Theorem 7. Suppose there exists a p0 > 0 so that
np ≥ p0 log(n) and ∆ ∼ cnp almost surely. Then
almost surely µ1 ∼ cnp.

Proof. Note, that since the eigenvector correspond-
ing to 0 eigenvalue is the equal superposition, we
have

µ1 = max
{|φ〉⊥|s〉:〈φ|φ〉=1}

〈φ|L|φ〉

= max
{|φ〉⊥|s〉:〈φ|φ〉=1}

(〈φ|D|φ〉 − 〈φ|A|φ〉).
(D7)

Note that

µ1 ≤ max
{|φ〉⊥|s〉:〈φ|φ〉=1}

〈φ|D|φ〉

+ max
{|φ〉⊥|s〉:〈φ|φ〉=1}

|〈φ|A|φ〉)|

≤ ∆ + C
√
np

(D8)

by Theorem 2.5 from [17]. Similarly one can show
µ1 ≥ ∆, which can be done by taking maximum over
canonical vectors. After combining those bounds
and ∆ ∼ cnp, we obtain the result.
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