
1

Services, Frameworks, And Paradigms
for Distributed Multimedia Applications

Max Mühlhäuser & Jan Gecsei
Universities of Linz and Montréal

A B S T R A C T : The development of distributed multimedia applications is supported by an in-
creasing number of ser vices. While such services pave the way to wards sophisticated m ultimedia
suppor t even in distributed systems, using them still makes the task of de veloper s quite tedious.
This is because several inconsistent services have to be interfaced in order to reflect different as-
pects. As a way to alleviate this pr oblem, we make the case for an encompassing frame work in
whic h all services would be offered under a unifying paradigm. First we give an o vervie w of e xisting
multimedia services with a focus on distrib ution, extracting the requirements imposed on m ultime-
dia extensions to general frame works as a set of so-called abstractions. Known development en vi-
ronments for distributed applications are obvious candidates for such encompassing frame works.
We review these based on four popular paradigms: c lient-ser ver / remote procedure call, object-ori-
entation, hypermedia, and open documents; we also investigate possible multimedia e xtensions,
and discuss the ‘expressive po wer’ of the paradigms. In conclusion we propose steps to wards an
encompassing frame work based on a hybrid object/hypermedia paradigm.

1 Introduction

The multimedia community agrees almost unanimously that both the largest potential and the most serious problems
concern the development of distributed multimedia (DMM) applications [13]. This article reviews and compares ap-
proaches to the development of such DMM applications. It turns out that this evolving domain inherits from different
and rather incompatible domains. On one hand, multimedia applications may either consist mainly of software, requiring
a kind of programming activity for their development, or mainly of multimedia data, requiring a kind of authoring ac-
tivity. On the other hand, multimedia application development has of course first tried to solve problems for stand-alone
computers before ‘going distributed’; at the same time, the state of the art in distributed application development has
greatly advanced, so that the two rather incompatible fields of multimedia application development and distributed ap-
plication development have evolved. Just as multimedia application development has progressed in two quite separate
flavors, programming and authoring, so has distributed application development: there is the traditional field of distrib-
uted programming and the handling of distributed multiple-media documents (such as the World-Wide Web). We use
the term distributed authoring for the latter. In summary, DMM application development has to harmonize four fields:
multimedia programming, multimedia authoring, distributed programming, and distributed authoring.

Since we want to discuss ways of harmonizing these fields, we omit from our review details about the myriad of self-
contained authoring tools like Macromedia Director™ that exist on multimedia PCs, making section 2.1 rather short;
instead, we distill from the multimedia authoring and programming support the key abstractions (see below) required
for adequate development support. As a look at the state of the art in distributed application development teaches, we
must aim at an encompassing framework that comprises tools and services and for which the design center is a common
paradigm such as ‘distributed object-oriented programming’. Sidebar ‘aspects of DMM application development’ shows
the four fields that intervene in DMM development and how they are treated and integrated in this article.

Four basic terms must be clarified as used in the article. The term service here is to be taken in its broadest sense, cov-
ering facets that may be called function or class library, toolkit, and even framework. A DMM service, then, is a set of
functions offered to developers which covers DMM-specific aspects. Abstractions shall hereafter denote intuitive, self-
contained descriptions of functional units within a service, often reflected in software as a set of abstract data types and
operations. As multimedia services are still in their infancy, they hardly make abstractions very explicit; rather, most of
them offer a single common abstraction to the programmer: the application programming interface, API. An encompass-

A revised version of this article was published and is © IEEE Multimedia 3,3 (1996), 48–61

2

ing framework provides (i) organized access to all (DMM and other) services relevant to application development and
(ii) a consistent, simple, and homogeneous view onto these services, following a certain mental model; the latter is called
paradigm here. While APIs represent abstractions which are neither encompassing several services nor based on a pre-
cise mental model, encompassing frameworks do. Brief, paradigms below denote a way to describe virtually all compo-
nents of frameworks and applications, abstractions denote a way to describe a specific functionality.

2 Multimedia Application Development

In this chapter we briefly review services available to developers of multimedia applications. As discussed in the intro-
duction, we distinguish multimedia authoring and programming, distilling general abstractions used. As to multimedia
programming, we investigate three classes of support systems particularly, coined here as multimedia-augmented ser-
vices, microworlds, and multimedia frameworks (discussed in sections 2.2 through 2.4). During this brief review, we dis-
cuss some relevant abstractions as they emerge. Section 2.5 further distills and summarizes the abstractions found.

2.1 Multimedia Authoring: The Synchronization Abstraction

Creating a presentation that contains multiple media involves a good deal of media-specific work (recording, selection,
and editing of video, audio, text etc.). The true multimedia authoring is centered around the task of synchronizing such
multiple-media parts into a – maybe interactive – multimedia presentation in time (parallel and sequential ordering of
tracks) and space (‘on the screen’, for visual media and user interface elements). Thus, multimedia authoring can be said
to be the task of spatio-temporal synchronization. A number of ways exist for specifying synchronisation such as time-
line (‘left-to-right’), transition nets, space-time (considering the time as one of several dimensions in a finite coordinate
space, as in MHEG). Apart from the user-centered, authoring-specific task of synchronisation specification there is the
issue of delivering a synchronized presentation, an issue that has to be dealt with in all of the below-mentioned multi-
media services but which is less emphasized in this article because we focus on the ‘what’ offered to a DMM application
developer, not on how it is achieved at runtime. Time-line based specification has proven to be the most intuitive scheme
for authors, whereas, e.g., PetriNet-based schemes (which can be derived from timeline-based ones) can be used as a
basis for both system-level checks and runtime execution. See chapter 15 in [12] for more details.

A key precursory task to synchronization specification is the design of an overall multimedia presentation, based on
higher-level semantics such as rhetorics, didactics, and the concepts to be conveyed with the presentation. Todays mul-
timedia authoring systems pay very little attention to this predominant issue, so that we postpone its discussion until
section 3.3, where the value of hypermedia in this context will become evident.

2.2 Multimedia-Augmented Services

Many functionalities used for some time in general-purpose computing can be adapted for specific use in distributed
multimedia systems. Two domains in which this trend is most visible are communication protocols and operating sys-
tems. In order to benefit from the services discussed in this section, multimedia application developers must today rely
on simple application programming interfaces, APIs. API-level programming is particularly error-prone if a large num-
ber of subsequent service calls by an applications are interrelated, as is often the case in the multimedia context. Section
2.3 and, in particular, chapter 3 revise more consistent approaches. Below we focus on the principal multimedia-specific
requirements and services provided by such protocols and operating systems.

DMM application development

multimedia distributedmultimedia distributed
authoring, 2.1 programming, 2.2-2.4 programming, 3.1+3.2 authoring, 3.3+3.4

abstractions
required, 2.5

paradigms & frame-
works offered, 3.5

encompassing paradigm
& framework, chapter 4

multimedia application development distributed application development

Aspects of DMM
application development

3

The Quality-of-Service (QoS) abstraction: before we start to discuss individual services, we must briefly introduce
this abstraction used across many such services. QoS is meanwhile well introduced in the multimedia literature and does
not have to be deeply reviewed here. Rather, we want to point out for our context that QoS processing in a typical DMM
system has two complementary aspects: (a) QoS specification and negotiation, consisting of communicating perfor-
mance specifications between relevant parts of a DMM system, including the user. Negotiation normally results in an
agreement between all relevant components; the result is a contract stating the conditions and the performance commit-
ment types (such as best effort, bounded, statistical, guaranteed). (b) Maintaining the negotiated quality levels during the
application's lifetime, achieved through the internal resource management mechanisms of the subsystems.

As the importance of QoS for managing the system resources is well recognized, QoS-oriented DMM services and sys-
tem architectures are emerging. Synchronization specifications, too, start to reflect user level QoS in the timing, ordering,
and coordination of events; this user level is translated into system level QoS as part of the playout schedules.

Communication Protocols: it has become common knowledge that protocols used in todays mainstream data networks
(such as TCP/IP, Ethernet, and X.25) are designed for handling non-continuous data and are ill-suited for continuous
media. This is because of the different nature of continuous and non-continuous data: the former require high-rate iso-
chronous transmission, but are somewhat more error-tolerant; the latter are more error-sensitive, but less demanding as
far as, e.g., delay and jitter are concerned. Traditional protocols provide only best effort-type, point-to point communi-
cations; thus they cannot reliably support isochronous traffic, nor can they serve efficiently in multipoint situations such
as teleconferencing and cooperative work. Real-time (RT) capability assures timely reaction to events such as generation
of video frames by a camera. When these frames are transmitted by a protocol without RT and displayed by a non RT
operating system, the display may become jerky because of unpredictable delays in transmission and decoding. With RT
capability these delays can be guaranteed to be bounded. The required values are defined using QoS specifications. These
in turn depend on the synchronization requirements of the application.

Given the increasing importance of multimedia, research has addressed adequate protocols. The most important require-
ments for multimedia-capable protocols are: (i) onfigurability in terms of QoS specifications, permitting various
tradeoffs between speed, isochrony and error resilience (difficult to achieve on top of complex resource management
mechanisms); (ii) coexistence of a number of different types of connections in a network; (iii) support for multipoint
communications, useful in multicast and cooperative scenarios; (iv) low execution overhead (lightness), needed to reflect
high data rates and smooth processing of continuous media.

Some protocols have been developed for specific layers (e.g., XTP and TP5), others in the form of entire protocol suites
(e.g., Heidelberg Transport System and Tenet). They all feature a combination of different transmission modes with the
possibility of resource reservation. ST-II (Stream Protocol-II) and RSVP (Resource ReSerVation Protocol) are both
transport-level protocols supporting guaranteed performance over one-way multicast (point-to-multipoint) communica-
tions. See chapter 11 in [12] for a detailed description of these protocols.

There is a growing pressure to update the Internet from its original point-to-point, best effort-type service towards a mul-
timedia-capable network. The core of Internet being the IP protocol, it is not surprising that most research effort is aimed
at improving and generalizing IP, such as in Next Generation IP [7].The latter contains format provisions for expanded
addressing, multicast routing, labeling flows by QoS specifications, and security / privacy. Another project aims at pro-
viding QoS capability for IP multicasting over ATM. Here, two service classes are defined: (a) real-time, with guaranteed
packet delay and rate, using RSVP and ATM's connection setup and bandwidth reservation mechanism, and (b) best ef-
fort, for applications which tolerate variations of throughput.

Operating Systems: Another problem well recognized by the multimedia community is the limited value of todays op-
erating systems, again due to the real-time nature of continuous media. Decent multimedia presentations on Unix, MS
Windows, OS/2, Apple System 7, and the like, depend on the ubiquitous availability of the necessary resources. This can
be easily verified, e.g., by observing the jitter and slowdown of an Apple Quicktime movie player, caused when other
jobs are initiated. These problems are not due to a real shortage of resources, but to inappropriate scheduling. Continuous
media processing is known to be of ‘soft real-time’ nature, where occasional computing errors or failures to meet dead-
lines (such as missing or delivering too early or delaying a video frame) do not cause physical or functional damage as
it may happen in conventional real-time systems. Further differences include the fact that time-critical processing of con-
tinuous media is mostly periodic (e.g. reception of video frames), and that applications may adapt to variations of re-
source availability via QoS negociation (e.g. by decreasing the quality of video playback).

The principal requirements placed on multimedia-capable operating systems are:

4

• QoS-based resource management.

• Real-time CPU scheduling. Rate-monotonic and earliest deadline-first are the most frequently used policies.

• Memory, buffer, and file management policies to support real-time scheduling. For example, pages allocated to a
real-time task might be locked into physical memory.

• Support for real-time synchronization. This implies efficient inter-process communication, event notification, and
mutual exclusion mechanisms.

• Possibility to process non real-time tasks in the usual manner; this implies the coexistence of real-time and traditional
components within one system. A multimedia application typically entails both types of tasks, each can then be ex-
ecuted by the appropriate part of the OS.

• Low-overhead task management; this is needed because of frequent task switching. Lightweight threads and thread
switching in user space are employed in some systems. For more details, cf. excellent discussions in [12].

Sometimes it is difficult to distinguish between the services (accessible from outside) and the underlying implementation
mechanisms. Many of the services are ‘QoS-capable’ versions of standard services, e.g. real-time ports, reactive objects,
real-time threads and bounded-delay RPC (see 2.5).

2.3 Multimedia Development Microworlds

By multimedia microworlds we mean application development support systems available usually as extensions to system
platforms. Such microworlds (sometimes called environments or toolkits by the vendors) are rather self-contained and
platform-dependent. Usually, their design and architecture is controlled by a single vendor; their ‘openness’ emphasizes
the possibility to shield applications from the addition of new system-level functionality (e.g., ‘third party’ interface
cards such as frame grabbers, video compression HW/SW). Microworlds are hardly designed for portability to different
platforms and even less for implementing applications over heterogeneous distributed platforms. They offer abstractions
at the API level, but APIs of different microworlds are largely incompatible.

Among the best known microworlds are Apple’s Quicktime, Microsoft’s Windows Multimedia Extensions MME, and
IBM’ s Multimedia Presentation Manager MMPM/2 for OS/2. MME provides mostly device abstractions and file servic-
es, while MMPM/2 features a more advanced form of device abstraction, where implementation details of a ‘device’
(e.g. hardware or emulated) are hidden from the programmer. These logical devices are controlled through commands
in a Media Control Interface. Synchronous data streams are supported through a stream programming interface, see
chapter 3 in [6]. The philosophy of Quicktime, initially an extension of Apple's Macintosh Operating System, is centered
around the idea of integrating continuous media among the traditional data types. The main abstraction in Quicktime is
the movie data type (which also covers audio and other media), designed to deal with time-dependent aspects: real-time
and interactive playout, editing, and various compression schemes. New developments include QT-VR (Virtual Reality)
and QTC (Quicktime for Conferencing); there are also efforts to make Quicktime evolve towards a platform-independent
framework. Numerous vendor-specific multimedia extensions to UNIX exist, complemented by Muse from the Athena
consortium. Due to heavy vendor competition, none of these is expected to play a major role in an open market.

To summarize, microworlds basically act as intermediaries between applications and low-level system functions. For ex-
ample, the Media Control Interface (MCI) of the Windows Multimedia Extensions is designed to support device abstrac-
tions such as VCR, videodisc, display controller, MIDI player and others. These abstractions shield the programmer
from the particularities of real devices to a certain degree only.

2.4 Multimedia Frameworks

Known multimedia frameworks can not yet be considered encompassing frameworks as required in this article, but they
offer a level of sophistication and consistency that goes beyond microworlds. They facilitate the design and implemen-
tation of applications in heterogeneous distributed environments. Much more than microworlds, frameworks are intend-
ed to be extensible and portable; applications developed on such frameworks are (ideally) platform- and location-
independent. We will briefly discuss recently proposed frameworks based on object-oriented class hierarchies.

Gibbs’ framework [6] derives from four abstract classes: Media abstracts different media types (audio, video, image,
text, etc.).Transform represents certain operations on media (such as compression, filtering). Format describes the ex-
ternal representation of media data for import and export. Examples are ASCII, MPEG and CIF. Component represents

5

all devices that create, manipulate and consume media streams in real time (such as cameras, memories, displays). Com-
ponents have three subclasses which make up the basic types of multimedia processing elements, MPE (cf. correspond-
ing sidebar): producers, transformers and consumers of media streams. Attached to components are objects called ports;
pairs of ports are linked by connections, which can transmit streams. An application is created as a set of interconnected
components; an initial design is refined by specializing the instances.

The scope of the Interactive Multimedia Association's framework called Multimedia System Services (MSS) [8], is wid-
er and somewhat more vague than in the previous example. The stated purposes include to ‘provide abstractions that
make it possible for applications to deal with media devices without regard to specific characteristics of the platform,
attached devices, or the network(s) connecting the platforms and devices’, and ‘to provide a standard methodology, es-
pecially for handling live data’. MSS supports distributed objects by complying with the Corba standard discussed in
3.2, in particular to Corba’s Common Object Services Specification. Basic classes include virtual devices and media
streams. Virtual devices may be processors, files or hardware devices; they have attached ports with associated formats.
Applications are constructed in a plug-and-try manner within a reference architecture. Virtual devices and user-defined
applications make up the basic types of multimedia processing elements here.

Sidebar ‘Multimedia Frameworks’ illustrates how virtual devices are imbedded in the MSS object class hierarchy, show-
ing that the semantic level of the objects is still related to specific hardware and specific media used. The excerpt of the
class hierarchy proposed in the Items framework [10] comprises very ‘abstract’ objects. E.g., user interfaces (class ‘us-
er’) can be interconnected via a relation ‘converse’ which can be instantiated at runtime as, e.g., an AudioVideo stream
or an asynchronous email connection. This simple example shows that much higher-level semantics of applications may
be of interest than those emphasized by most multimedia frameworks.

A large number of frameworks have been developed and proposed recently (cf. [13] pp. 10-76). Although most of them
are explicitly designed to be open-ended, at present no single framework is sufficiently general to cover all aspects of

producer

consumer

camera

videodisk

switch compress transmit decomp. display

application: video capture / transmission / display system

component
e.g., camera

component
e.g., recorder

component pool

processing
component
e.g., decoder

Different multimedia frameworks use
different basic types of multimedia
processing elements, MPE, and of
time-related media, all usually inte-
grated in an object-oriented class hi-
erarchy. In Gibbs’ framework, only
three basic types of MPE are distin-
guished, called components. In most
known multimedia frameworks, the
MPE types reflect technology-bound
aspects of media processing. Almost
all of them use system-controlled
streams to ‘plug together’ MPEs.

Multimedia Frameworks
Gibbs’ framework

A small excerpt from the class hierar-
chy of the MSS framework, represen-
tative for most known class
hierarchies of object-oriented multi-
media frameworks, shows that such
hierarchies usually reflect technology
(cf. ‘X window’) and conventional
media types (cf. audio, video).

MSS-

Format

Stream

VirtualDevice

Video
Audio

Xwindow

AV- AV-

: means “included in”

Virt.Re- Device
source

Object

Xwin-
dow-
Device

MSS framework

Item
Object

relation

User
Archive

Agent

converse

Items framework An excerpt from the Items class hierarchy illustrates
the high, media-independent level of semantics and
the distinction between objects and relations. The six
relation subclasses match all possible combinations of
the three subclasses of ‘object’. E.g., ‘converse’ relates
users among one another and may be instantiated e.g.,
as a videophone stream or an email connection.

…

…

6

applications involving multimedia. For example, interactivity is not dealt with satisfactorily in either of the above frame-
works. Almost all of them propose again a small set of basic types of multimedia processing elements and of time-de-
pendent media similar to the ones discussed.

To summarize, a framework can be regarded as a pool of components which represent multimedia processing elements
(MPE) plus a class hierarchy for MPE and basic media types; applications are built by selecting and interconnecting
components from the pool. However, in order to be workable, this intuitively appealing approach needs a large compo-
nent pool to begin with, and the facility to add new components. Most present frameworks offer MPEs and class hierar-
chies which reflect the ‘lowest’ level of semantics only. Details in the design of the class hierarchy differ a lot and a good
rationale for this design is not yet commonly accepted. The example of the Items framework shows that it is desirable
to support a choice among different technology-bound objects, even at runtime, for realizing a given ‘high-level’ object.
This selection may imply a replacement or transformation of media and requires very careful design of the technology-
bound class hierarchy together with higher-level hierarchies.

Another important observation concerns the ‘configuration’, i.e. the way in which the overall topology of an application
(out of MPEs and streams) is described. Usually, frameworks offer a graphical depiction and description language for
specifying one specific and static configuration per application as a network of MPEs. In contrast to this low level of
sophistication, many approaches to the specification of configurations of interconnected entities exist, with arbitrary
numbers of components and dynamic changes. These approaches have been developed in the context of a variety of do-
mains such as distributed programming, graph theory, and hypermedia. This issue will be resumed in 3.3.

2.5 Summary of Abstractions

Section 2.1 showed that synchronization specifications represent the essential abstraction for multimedia authoring. In
the context of multimedia processing, quality-of-service (QoS) was the first general abstraction we could identify. The
time-related nature of media data has lead to many proposals for abstractions. The most common agreement seems to
concern the transfer of data between components where the notion of stream is used almost throughout; e.g., protocols
provide various combinations of QoS-controlled point-to-point and multipoint connections (e.g. isochronous, connec-
tion-oriented, connectionless). While synchronization, streams, and QoS are thus commonly accepted as necessary ab-
stractions, details about their functionality and representation are still widely disputed.

Much less agreement exists about abstractions necessary for the components that make up a multimedia application apart
from streams. We recall that operating systems provide low-level real-time enhanced services via ports, procedure calls,
and threads. Microworlds provide services as API-level primitives directly accessible to the user or application program-
mer (within the scope of a given platform). Multimedia frameworks provide services usually as class hierarchies aimed
at easing portable distributed application developmen, representing a step toward encompassing frameworks.Virtually
all multimedia frameworks propose some kind of multimedia processing elements and, of course, of time-related media
as components. Modeling these as object-oriented classes is simple at a first, an open issue at a second glance: (i) it re-
quires adding a notion of (‘soft’ real-)time to the object model; (ii) the design rationale for such a class hierarchy is not
commonly agreed; e.g., the distinction of MPE and media types ‘smells’ like the process/data distinction which object-
orientation is supposed to overcome; (iii) the support of different levels of semantics is even less understood. Since point
(i) above is undoubted, we can in any case retain that time-related object is a valid abstraction. The top-level distinction
of MPE and media, however, is disputable: e.g., a video object may be a stored sequence of frames (media) or a video-
generating program (MPE). Considering time-related object as a key abstraction, one may argue that further aforemen-
tioned abstractions realize this abstraction to a certain degree (and thus do not need to be separate items on a list of key
abstractions to be retained):

• Real-time ports which are similar to standard OS ports in that they serve as end-points for bindings, yet time-related
via QoS parameters. Rtports implemented in Chorus (a real-time OS kernel) serve as support for reactive objects.

• Bounded delay remote procedure call (RPC), extending standard RPC with guarantees for maximal delays between
(remote) emission of the RPC and reception of the result (used for object invocation in ANSAware [4]).

• Devices and virtual devices as abstractions of physical multimedia-related devices and software modules that handle
streams. Devices can be classified into sources, sinks and transformers. Device interfaces have stream, operational,
device-dependent and device-independent components.

• Reactive objects [2], proposed as extensions to the ODP framework (cf. 3.2) in order to accommodate multimedia
requirements. A reactive object (as opposed to ‘standard’ objects) can be thought of as an automaton with real-time
behavior which reacts to incoming events within guaranteed delay bounds.

7

Finally, we have to recall that multimedia frameworks bring up the issue of configuring MPE into an application. With
this, we can summarize five key abstractions to be retained, out of the great number of service abstractions found in the
multimedia programming context. While these five abstractions are still not entirely orthogonal, we regard the list as a
considerable step forward from the existing literature where abstraction have much less mutually exclusive meanings;
in some cases the same notion is named differently by different authors, in others they are hierarchically related. The
following five abastractions are much more orthogonal and still stay in line with known abstractions, i.e. do not ‘re-invent
the wheel’.

1. Synchronization: synchronization specifications determine details of synchronized multimedia presentations. They
must be transformed into playout schedules for all services involved. MODE offers an advanced timeline based ap-
proach, considers distribution issues, accommodates both multimedia-augmented and traditional services, and spa-
tio-temporal aspects. Currently mainly an authoring issue, it should be harmonized with DMM programming.

2. Stream: Streams and stream interfaces are widely used abstractions proposed in different contexts: communications
protocols, operating system support, and application design [2], [6], [8]. Streams transmit continuous media data.
Stream interfaces are sources and destinations of streams, attached to other components. They complement the stan-
dard operational interface between objects. Parameters of streams / interfaces may involve QoS guarantees. Future
streams should harmonize isochronous and asynchronous transmission, multihop and multicast capabilities.

3. Quality-of-Service: QoS controlled bindings [2] serve to establish and manage links between interfaces and can be
considered as objects capable of controlling links at given QoS levels. Reactive objects and streams can be used as
the design centers for QoS. However, for more sophisticated QoS handling which covers different levels of semantics
from user to system level, QoS must be integrated within an encompassing framework.

4. Time-object: most multimedia frameworks distinguish two basic kinds of objects: multimedia processing elements
(MPE) and media. The essence in terms system support is the addition of time to the object notion. Current deficien-
cies include: technology-bound semantics without matching higher levels, insufficient design rationale; top-level dis-
tinction of (blurring) MPE and media; streams either disguised as MPE or hidden from developers.

5. Configuration: as discussed in section 2.3 and the corresponding sidebar, the introduction of MPE and streams brings
up the concern of ‘plugging them together’ into an application. Such configurations are usually static and determin-
istic and do not reflect the state of the art, e.g., in distributed programming.

In spite of the great variety of forms they take, all services and abstractions have the same purpose: to ease the conceptual
understanding and the development of distributed multimedia systems. Todays independently developed, largely incon-
sistent, overlapping abstractions make the task of DMM design messy and difficult. To ease this problem, we need more
powerful systems of consistent service abstractions spanning all stages of the design process and harmonizing multime-
dia development with distributed application development. Table 1 below summarizes the five key abstractions pro-
posed, anticipating a few requirements that will become more evident in chapter 3.

TABLE 1. Key concepts to be retained

abstraction basic meaning and requirements

1: synchronizationspatio-temporal arrangement of presentations. To be intuitive, entity-conserving, distribution-proof, suited for:
unlimited and unknown durations, with flexible degree of synchrony, translation into playout schedule

2: QoS ‘fuzzy’, e.g. statistical description of (/constraints on) parameters of service delivery; reflects tolerance in hu-
man perception, enables resource mgmt and tradeoffs between conflicting goals.User-level: to be intuitive &
controllable; all levels: to be compatible, negotiable, accessible for system-wide optimization.

3: stream communication channel with real-time guarantees and continuous transmission of ‘samples’ without applica-
tion intervention. In future to be multihop, multicast, covering both iso- and asynchronous transmission.

4: time-object umbrella for multimedia processing elements (MPE) & time-related media; to be system-supported yet user-
extensible & distribution-proof; to support high-level semantics which make technology, the MPE / media dis-
tinction, and run-time media choices transparent; to support QoS and synchronization.

5: configuration
network

composition of MPEs, streams, media into an application; to support dynamically changing configurations with
arbitrary numbers of components. To support distribution, authoring & programming

8

3 Distributed Application Development

In this section we survey relevant approaches to the development of complex distributed applications and their exten-
sions towards multimedia. In distributed application development environments, the developer's work is enhanced with
a consistent set of services and libraries, development languages (or language extensions), and facilities for interaction
and interworking over heterogeneous platforms.

Apart from the general distinction of distributed authoring and distributed programming, distributed application devel-
opment environments can be classified according to the mental model, or paradigm they are based on. We survey the
remote procedure call (the basis for most client-server systems) and distributed object-oriented paradigms for distributed
programming, and the hypermedia and open document paradigms for distributed authoring.Within each category we ad-
dress two questions: (i) Which extensions towards distributed multimedia (DMM) support have been proposed? (ii) How
powerful is the paradigm with respect to full-fledged DMM support?

3.1 Client-Server / Remote Procedure Call Paradigm

Remote procedure call (RPC) is an extension of the well-known procedure call mechanism and is directly related to the
client-server notion. Interface definition languages complement different programming languages, enabling compiler-
generated code (stubs) which marshalls the remote calls, interacts with the server and assures well-defined error seman-
tics in case of failures. DCE (distributed computing environment), promoted by the OpenSoftware Foundation, is based
on a specific RPC mechanism enhanced with some useful services, such as naming and authentification. DCE represents
the most wide-spread basis for heterogeneous client-server oriented distributed programming environments [11].

Known multimedia extensions: Extensions of RPC towards bounded delay have been mentioned in section 2. RPC ex-
tensions for mass data transfer (and multimedia data transfer in particular) have also been proposed. The most common
solution is to use RPC for stream setup only and to realize the actual isochronous streams without program intervention
in the runtime system. Multimedia extensions to DCE in particular have been investigated [1].

Expressive power and suitability of the paradigm: There is both a technical and a conceptual mismatch between the na-
ture of distributed multimedia processing and the nature of RPC. Technically, RPC is optimized for command-response
type communication and short messages. Therefore, any kind of efficient mass data transfer requires that RPC be com-
plemented by further mechanisms. Conceptually, RPC imposes client-server relations on distributed software compo-
nents; this kind of relation is already questionable for ordinary distributed applications (many real-world entities are not
purely client-server-related); in particular, it matches badly with conversational uses of multimedia. The same is true for
RPC as a communication mechanism: it turned out that RPC cannot be regarded as a transparent extension of local pro-
cedure call, since asynchrony and error semantics have to be introduced for decent distributed programming, dramati-
cally changing programming styles in comparison with ordinary procedures.

In summary, the RPC paradigm does not seem to be a good candidate in our search for encompassing multimedia para-
digms. It was included in this survey mainly because some of the distributed object-oriented services discussed below
have been built on top of, or integrated with client-server-oriented services, DCE in particular.

3.2 Distributed Object-Oriented Paradigm

Distributed object-oriented programming may support
distribution transparency: local and remote method-
calls to other objects need not be distinguished by pro-
grammers; the mapping of the fine-grained objects
onto logical / physical nodes may be determined at
runtime, objects may even migrate to other nodes dy-
namically. Remaining drawbacks in the multimedia
context: the connectionless model of inter-object com-
munication does not match easily with streams, and
distributed authoring is not considered.

DOO: distributed object-oriented programming

migrate

call

application logical node

mapping

distributed system

physical
node

9

The object-oriented paradigm draws its power from rigid fine-grained encapsulation / modularization (self-contained ob-
ject equals data plus methods i.e. data-manipulating code, data accessible through methods only), powerful type concept
(classes, inheritance), and extensibility (polymorphism and late binding). Its message-based method invocation realizes
connectionless inter-object communication. The distributed object-oriented (DOO) paradigm is much less established,
since different lines of thought emphasize different aspects (such as heterogeneity of platforms and languages, location-
transparent method invocation and object migration). The state of the art in DOO services is presently pushed by a com-
petition of industry standards, the most relevant of which are Corba by the Object Management Group, COM by Mi-
crosoft and DSOM by IBM. Others like DOE (Sun), DOMF (HP), and PDO (Next) are excluded here for brevity. The
industry efforts are complemented by ISO ODP [11] and by academic DOO programming languages.

All industry efforts extend object-oriented programming across heterogeneous computer networks and across different
programming languages. Corba was specifically designed to be distributed, several Corba-compliant implementations
exist. IBM's SOM and Microsoft's COM are rather proprietary and competitive object-oriented frameworks, Distributed
SOM (DSOM or SOM2) introduces DOO concepts in a Corba-compliant way. It realizes some advanced features which
can otherwise be found only in academic DOO approaches, in particular location-transparent method calls. The ISO
ODP (open distributed processing) model [11] may be considered less object-oriented. ODP offers five different views
on the software under development. The most important one for software design, called computational viewpoint, uses
the term object to denote a communicating process. Since ODP is a model only, further discussion will refer to the con-
crete implementation ANSAware. There, the computational viewpoint defines ‘objects’ as processes together with inter-
faces which define a set of callable operations plus invocation constraints.

Known Multimedia Extensions: ANSAware has been extended for multimedia [4]; in this approach, the basic object/in-
terface concept of ODP and ANSAware has been left largely unchanged. Instead, two system-provided object categories
were introduced for virtual devices and streams, pretty similar to the corresponding concepts introduced in chapter 2.
The limited conformance of ODP to the DOO paradigm and limited general acceptance restrict the overall value of this
interesting approach. A rather academic, but conceptually very interesting approach must be mentioned here: the MODE
system (cf. [9], pp. 207ff.). MODE is truly DOO-based and combines DOO distribution transparency with QoS negoci-
ation. Streams are entirely hidden from the programmer. Rather, application-specific media object classes are derived
from system-defined classes, giving the runtime system a possibility to access application data. Based on these and on
information about resources, data locations, network topologies etc., MODE automatically computes an optimal path
from information sources via transformers to media presentation (or again storage) devices, sets up necessary streams,
negotiates QoS with the underlying services and triggers execution, all following maybe a single application-level meth-
od call. MODE even supports multimedia authoring via spatio-temporal synchronization specifications. The MODE re-
search project is discontinued however, and the lack of standards-compliance and openness (with respect to
programming languages) let it stay an academic approach.

Expressive power and suitability of the paradigm: The simplicity, rigid encapsulation, and general applicability of ob-
ject-orientation are the foundations for its success. DOO - in contrast to RPC - supports flexible distribution of the fine-
grained objects at run-time. Nevertheless, the ‘ultimate’ solution for DMM application development, harmonizing the
four fields discussed throughout the article, needs a considerable revision of the DOO concept. Two problems will be
discussed in chapter 4 together with possible solutions. They concern the adequate representation of streams in DOO
and the harmonization with distributed authoring. At this time, it is to be retained that DOO is an excellent starting point
for our search for an encompassing paradigm and framework. It must also be mentioned, however, that DOO standards
like Corba are well advanced and hard to change as fundamentally as full multimedia support would require.

3.3 Hypermedia Paradigm

The hypermedia paradigm is centered around the following four basic kinds of elements: nodes (meaningful units of
information), links (relations of any kind between nodes), anchors (selections within nodes from and to which links
lead), and webs (coherent sets of nodes and links, also called hypertexts or hypermedia documents), plus various com-
posites such as versions, views, subsets, trails, etc. The term hypermedia stresses the support of different media in dif-
ferent nodes, the underlying paradigm is sometimes still called hypertext (hypermedia will be used in the remainder).
The hypermedia scene is split into an open, distributed, but (relatively) low-featured, and a sophisticated but proprietary
part. The former comprises the open standards, mainly MHEG and HyTime, plus the Internet web approaches, mainly
WWW and Hyper-G. The latter consists of a myriad of systems built for academic, sometimes commercial use; they
show a trend towards accepting the so-called Dexter Reference Model [3] as a common reference.

10

MHEG is an ISO standard intended for so-called final form hypermedia documents, supposed to be presented but not
edited anymore (cf. CD-ROM). The final form concept makes MHEG ill-suited as a basis for very general solutions
which we search. This statement remains true even though MHEG has lately undergone radical changes in the light of
Interactive TV applications. Recent comparisons have brought evidence to MHEG's very high conceptual overload
which makes it very cumbersome to author MHEG documents (cf. [13], pp. 140ff.). HyTime is an extension of the ISO
standard graphics markup language, SGML. Unlike MHEG, it does not include an object model, nor specific presenta-
tion rules. The concepts of hypermedia document and node are intertwined in the HyTime document concept, and the
elaborate multimedia synchronization (specification) support is not distribution-proof. Thus, HyTime is not a good start-
ing point either.

WWW is based on HTML, a markup language which is an SGML derivate like HyTime. It is well integrated with the
Internet communication architecture. Like HyTime, WWW does not reflect some of the hypermedia principles defined
in the Dexter Reference Model. E.g., all link information is embedded in the nodes instead of a separate database, mak-
ing it is almost impossible to grasp and visualize a hypermedia document as a distributed ‘web’. WWW does not model
or support synchronized multimedia and usually uses non multimedia-capable Internet protocols. Due to a rudimentary
anchor concept, to date only some of the media may be sources of links. While continuous media are supported in
WWW, presentation is delegated to ‘viewers’. Synchronized multimedia presentations are thus out of scope. While the
upcoming possibility to include (Java) programs into WWW documents makes ‘everything’ possible in WWW, the Web
is more of a collection of possibilities then a coherent system based on an elaborate paradigm. Hyper-G offers remedies
to some of the WWW syndroms: it keeps a separate web database and features consistent update of link destination
changes, supports access rights, some degree of ‘context of use’, and versioning. Hyper-G / WWW cross-compatibility
is emphasized. To date, Hyper-G still lacks some desirable features like user-defined anchor models, an elaborate type
concept, and further advanced features discussed below.

The Dexter Reference Model goes beyond the state of WWW. Its most important contribution is the clear distinction
between web database, node contents, and user interaction. Quite a number of Dexter-compliant implementations have
been discussed in the literature [3], and so-called ‘second-generation’ variants support user-defined node / link types.

Known Multimedia Extensions: While all the above-mentioned systems support multiple media, true multimedia fea-
tures such as integrated synchronization models, anchors for video or audio elements, and support for isochronous dis-
tributed communication are restricted to a few academic approaches. The most important one is the extension of the
Dexter Reference model towards multimedia authoring, called Amsterdam model ([3], pp. 50-62). This model harmo-
nizes distributed and multimedia authoring by extending the node concept towards synchronized multimedia.

Expressive power and suitability of the paradigm: In spite of the shortcomings of present realizations, we rate the ex-
pressive power of the hypermedia paradigm as very high. In particular, the top-level distinction of nodes-and-links is
well suited for expressing higher-level application semantics as so-called semantic networks, such as rhetoric or didactic
concepts, design histories of complex systems, or whatever the subject matter of an application (domain) may be. Means
have been implemented for mapping different levels of semantics onto one another (yet realizations have mostly been
ad-hoc up to now). As a disadvantage, the paradigm lacks an elaborate type concept, but in this area the DOO paradigm
has its major strength. Experience from the Nestor project [9] backs all these arguments very strongly. Chapter 4 will
discuss a combined hypermedia-DOO paradigm as a foundation for an encompassing framework.

A less recognized yet important field of research is the support for ‘families’ of webs, discussed mainly in literature
about formal hypermedia models. We call such families ‘web types’ and cite PreScripts ([9], pp. 273ff.) as an example

t
MM node B

link

(single-media

The Amsterdam Model combines multimedia synchroni-
zation and hypermedia. With Amsterdam-based synchro-
nized multimedia nodes, embedded single-media nodes
keep their identity and can be used in other contexts, e.g.,
in other multimedia nodes. Links can point directly to the
embedded nodes, and the author has to interface a single
system only. Without Amsterdam, multimedia presenta-
tions can only be imported as external nodes, created by an
external multimedia authoring tool; embedded nodes can
neither be reused in other contexts nor directly linked.

non Amster-
dam (external)

t

MM node A

Amsterdam Model

MM nodenode within A)

11

(see sidebar). Web types specify mandatory, optional, and repetitive nodes and links along with construction rules (ba-
sically, allowed and forbidden ways of interconnecting them). Tutorial, bug report, and flow chart are examples from the
endless list of possible web types. Since nodes and links form graphs, the elaborate research about graph grammars may
be consulted here, but their value in the hypermedia context is limited and has already been reflected in existing ap-
proaches to web types. In a world where the distinction of media and processing elements becomes blurred, web types
might obviously be used as well to describe the configuration abstraction in a flexible way, an issue that had been left
open in chapter 2. This fact adds to our arguments that multimedia / distributed programming and authoring should be
harmonized in an encompassing paradigm and framework. We will resume this discussion in chapter 4.

3.4 Open Document Paradigm

Simply put, this paradigm allows different distributed tools to work on a distributed document. Again, two major camps
can be identified: industrial de-facto-standards which overlap largely with the industrial DOO approaches, and ISO stan-
dards. The latter are either based on SGML (see 3.3) or on the Office Document Architecture and offer basically a subset
of the functionality discussed in 3.3; they will not be treated further. Treatment of the industry efforts will focus on their
contribution beyond DOO and hypermedia: in particular, they offer true interoperability of components. We already
mentioned the need for integrating many heterogeneous, in part pre-built software modules in a large software system.
This problem space is often designated as component-based programming, and is much aggravated in the multimedia
context. While open DOO approaches lay some ground for the interoperation of heterogeneous components, they do not
determine the context of interaction rigorously enough in order to support easy combination of modules which were de-
veloped without ‘knowing each other’. The industrial standards for open documents put an emphasis on this aspect.

Due to their market relevance, two industrial standards seem to receive most attention: OpenDoc, a SOM-based multi-
vendor effort, and Microsoft’s COM-based OLE. An open document standard can be considered to consist of three major

Web types have been introduced in order to describe
‘families’ of hypermedia documents. The simple exam-
ples shown here use a web type concept called PreScript
which allows to distinguish optional and mandatory parts
of hypermedia documents, sequences of nodes (cf. node
A in type W1), and bunches of links (cf. the link starting
from node S in W2). In the example, the unique-destina-
tion-flag u indicates links which, in an actual web of the
type defined, are inbound to a single node. Web types can
be used for defining higher-level semantics of hyperme-
dia documents, for programming reusable navigation
support in hypermedia, and for assuring common-look-
and-feel of hypermedia document families. In an encom-
passing paradigm as discussed in the article, they may
equally serve for specifying dynamic configurations.

S B2

B3

EC2

C3

B

A1 A2 A3

B1 C1

S B C E
u

web-type W2

sample web

web-type W1 sample web

u

A

B

Web Types

Open document models are usually implemented
using a DOO base system. They support the inclu-
sion of remote parts (in different media) in a hub
document. The UI centered handling of open doc-
uments is very authoring-centered, yet synchroni-
zation is rarely supported. The hub-component
structure is less powerful than hypermedia webs.
Open document systems excell with component-
based programming support based on the rigorous
standardization of the DOO system, class library,
and set of methods / events each part has to serve.

Open Documents

media
specific
compo-
nent

media
specific
compo-
nent

12

parts: (i) an interaction syntax as the basis for component interaction (SOM and COM in the above examples); (ii) ser-
vices beyond basic interaction needed for making components interoperable - easier achieved if restricted to a certain
application domain (here: document processing), and (iii) predefined functionality offered to component developers
(e.g., in the form of prebuilt class libraries).

Known multimedia extensions: To date, open document frameworks encapsulate time-based media with the notion of
‘playable object’. Such objects are subordinate to a text-based hub document. Harmonization with multimedia authoring
similar to the Amsterdam model mentioned in 3.3 is in its infancy only.

Expressive power and usability: The open document efforts show that more than the DOO ‘groundrules’ is necessary in
order to allow for distinctly developed objects to interoperate within a common user interface. The paradigm as such has
major drawbacks which make it seem inappropriate for use as a general multimedia application paradigm: (i) Hub doc-
uments are usually text-based and associated with a page-based appearance. (ii) The information modularization concept
‘components of a common document’ is insufficient. (iii) The application modularization concept ‘components which
handle a specific document part type each’ is equally insufficient. (iv) Document-centered application development is
usually based document flows, an approach which has been found insufficient in many publications about workflow
management and cooperative-work [10]. It seems close to impossible to extend the document paradigm towards a gen-
eral power and expressiveness comparable to that of DOO or hypermedia. Therefore, the challenge comes up to map the
merits of open documents (component-based programming and interoperability) onto other paradigms.

3.5 Summary of Contributions

Table 2 lists the major advantages of the paradigms discussed in chapter 3. Since RPC has shown limitations in the mul-
timedia context and since its advantages are a full subset of what the DOO paradigm offers, RPC is not listed below.
Since RPC and DOO contribute to distributed programming and hypermedia and open documents contribute to distrib-
uted authoring by design, respectively, this fact is also left out, even more so since we intend to harmonize contributions
and requirements from all four fields involved. It should be retained, too, that the important contributions to component-
based programming made in the context of the open document paradigm are not particularly bound to that paradigm and
that the paradigm as such is rather inappropriate for our purpose.

4 Conclusion: Towards An Encompassing Paradigm & Framework

Trying to summarizing all of the above chapters in two phrases, we can state that:

• Multimedia application development is still in its infancy, requires five major abstractions, and is currently best sup-
ported with multimedia frameworks - most of which are incompatible with frameworks for distributed programming;
programming and authoring (synchronization in particular) have yet to be integrated.

• Distributed application development is also split into a programming and an authoring world, best supported by the
DOO and the hypermedia paradigm; the latter are complementary; both have been used in feature-rich open distrib-
uted frameworks; these paradigms are extensible and have in part been extended towards multimedia.

Summarizing the most interesting contributions discussed in this article, we may retain that:

• Gibbs’ framework has applied a rigorous object-oriented approach (although not truly DOO) to most of the multi-
media programming abstractions (points 2-5 in table 1, on a low level of semantics however).

• MODE has applied rigorous DOO to multimedia, supported synchronization (without true conceptual integration),
but did not make streams user-controllable and omitted distributed authoring;

TABLE 2. Major contributions made by the relevant paradigms of distributed application development

paradigm contribution keywords

DOO object-orientation encapsulation, inheritance, polymorphism; suits MM frameworks, components, distribution
dist. transparency location-transparent calls, object migration, system-assisted configuration / QoS mgmt.

hypermedia nodes & links accommodation of semantic networks (levels of semantics), unification w/ synch. model
web types type concept for distributed authoring, may serve for configuration semantics as well

(open doc.) components DOO base system, class library, required set of methods / events / UI elements per part

13

• The Amsterdam model integrated synchronization with the hypermedia paradigm.

• Items showed that higher-level semantics for timed objects and streams are highly desirable.

• PreScripts supported web types in a way that may be extended towards dynamic configuration networks.

As illustrated in sidebar ‘towards an encompassing paradigm’, it is an appealing idea to integrate the abstractions re-
quired in the context of multimedia services with the contributions made in the context of distributed application devel-
opment frameworks. Since the PRC paradigm has been disregarded and the contribution of the open document paradigm
is not bound to that paradigm, the analysis points at an integration of the DOO and hypermedia paradigms.

4.1 Why Integrate?

Recent discussions about lean programming have created awareness of the dangers of integration. Feature-ladden sys-
tems have become unmaintainable and memory-devouring. Our argument is not in favour of a monolithic system and of
a complicated underlying model, but in favour of a simple yet powerful paradigm, modular yet harmonized components,
and sophisticated component-based programming. Some arguments in favour of this approach are listed below.

• As MODE has shown, a system with consistent access to all relevant (application and system) information can pro-
vide sophisticated support (here: for network-wide QoS negociation, auto-configuration and auto-distribution).

• As the Amsterdam example has shown, the harmonization of concepts (here: of the hypermedia paradigm with the
synchronization abstraction) can lead to more functionality than the sum of the parts would represent.

• Today, a DMM developer would have to use, for example, Macromedia Director™ for synchronization, WWW for
embedding in a distributed hypertext, C++ and Microsoft MME (or at best an academic-stage framework) for real-
izing advanced multimedia functionality, and Corba for making the solution a true open distributed program (note
that Java is no alternative - yet? - since it allows program distribution but not distributed programming). MME would,
e.g., drastically restrict the openness and make distribution-transparency impossible. It would be cumbersome to
write such an application and very difficult truly integrate the parts mentioned.

• As distributed programming frameworks are much more advanced, developing incompatible multimedia frameworks
is insane. Distributed programming and distributed authoring become blurred, but Corba and WWW coexist.

4.2 How to integrate?

While the harmonization of the four fields mentioned remains a substantial research and development issue, this article
has pointed out the major milestones and ingredients of a harmonized solution. Sidebar ‘objects-relations paradigm’ pro-
vides a glimpse onto a unification of DOO objects, a time concept for objects, and hypermedia ‘nodes and links’.

DMM application development

MM authoring dist. programmingMM programming dist. authoring

authoring
tools

service
APIs

µworlds

frame-
works

RPC: remote
procedure call

DOO: distributed
object-oriented
programming

hyper-

open doc-
uments

media

synchronization

streams, QoS
timed objects
config.networks

object-orientation…
distrib. transparency

nodes&links
web types

objects-relations paradigm

components

Towards an encompassing paradigm

abstractions cotributions

14

Using this unification, application configurations and hypermedia webs are united, subject to configuration support with
a PreScript-like ‘we type’ approach. System-wide synchronization can be integrated following the Amsterdam approach.
Streams (and asynchronous channels) can be harmonized with hypermedia links, and media (as hypertext nodes) and
MPE truly become blurred at the level of semantics considered here. Since objects and relations are distinguished at the
top level, both sophisticated system support (consistency checks, autoconfiguration and autodistribution, bindings, QoS
negociation) and ‘upward’ mapping onto application semantics (semantic networks) become feasible. Thus, the objects-
relations-paradigm serves also as a binding element between the system (technology) level and the application seman-
tics. Finally, a rigid standardization of required methods / events for time-objects and relations may build the first step
in a effort to provide component-based programming support similar to the one offered by open document systems.

4.3 Outlook

The harmonization of the four fields of DMM development requires further research, yet this article has shown that im-
portant contributions exist, paving the way towards a unification of the hypermedia and DOO paradigms and towards
encompassing frameworks. In order to really reduce the complexity of distributed multimedia application development,
any effort must support the breaking-up of concerns into small, manageable pieces in order to avoid the syndroms of fat
software. Object-orientation and component-based open documents represent a good starting point here.

Acknowledgments: This work was partly supported by Grant No. 4566 of the National Science and Engineering Re-
search Council of Canada.

5 References

1. P. Adcock, N. Davies, and G. Blair, “Supporting Continuous Media in Open Distributed Systems Architectures,” in DCE - The
OSF Distributed Computing Environment, LNCS 731, A. Schill (ed.), Springer Verlag, Berlin Heidelberg, 1993, pp. 179-191.

2. G.S. Blair, G. Coulson, M. Papathomas, P. Robin et al., “A hybrid approach to real-time synchronisation in distributed multime-
dia systems”, Lancaster University Distributed Multimedia Research Group Report No. MPG-94-21, 1994.

3. Communications of the ACM (special issue on hypermedia), Vol. 37, No. 2, February 1994.

4. G. Coulson and G. Blair, “Meeting the Real-time Synchronisation Requirements of Multimedia in Open Distributed Processing,”
Distributed Systems Engineering Journal, 1994.

5. A. Danthine and O. Bonaventure, “From Best Effort to Enhanced QoS,” in Architecture and Protocols for High-Speed Networks,
(O. Spaniol, et. al., ed.), Kluwer, 1994.

6. S.J. Gibbs and D.C. Tsichritzis, “Multimedia Programming - Objects, Environments and Frameworks”, Addison-Wesley, 1994.

7. R.M. Hinden, “IP Next Generation Overview”, Internet Draft, October 1994.

8. Interactive Multimedia Association, “Multimedia Systems Services,” Draft Recommended Practice, 1995.

9. M. Mühlhäuser (ed.), “Cooperative Computer-Aided Authoring and Learning”, Kluwer, Boston, Dordrecht, London, 1995.

10. M. Mühlhäuser, “Modeling and Design of Complex Cooperative Software,” Proc. 1st IEEE Conf. Engineering of Complex Sys-
tems, Ft. Lauderdale, FL, Nov. 6-10, 1995.

11. J. Nicol, C. Wilkes, and F. Manola, “Object Orientation in Heterogeneous Distributed Computing Systems”, IEEE Computer,
June 1993, pp. 57-67.

12. R. Steinmetz and K. Nahrstedt, “Multimedia: Computing, Communications, Applications”, Prentice Hall, 1995.

13. International Workshop on Multimedia Software Development, Berlin, March 25-26 1996, IEEE Computer Society Press, 1996

In a model that combines DOO and hypermedia concepts, hyper-
media nodes and multimedia processing elements (MPE, including
virtual devices) are unified as time-objects. Streams and links are
both modeled as relations, with advantages that have in part been
discussed with the Items approach. The design here illustrates that
in an encompassing paradigm, an MPE can equally well create a
stream to another MPE or a link to media data. Vice versa, ‘web
surfing’ may involve MPEs transparently. Altogether, time-objects
and relations can be subject to synchronization and to QoS optimi-
zation. Objects-relation networks can be mapped ‘upward’ onto ap-
plication specific semantics and ‘downward’ onto technology.

link

time-object

streamnodeMPE

relation

system-defined building blocks

domain model (semantic network)

system support

Objects-Relations paradigm

