Services, Frameworks, And Paradigms
for Distributed Multimedia Applications

Max Muhlh&auser & Jan Gecsei
Universities of Linz and Montréal

ABSTRACT: The development of distributed multimedia applications is supported by an in-
creasing number of ser vices. While such services pave the way to wards sophisticated m ultimedia
suppor t even in distributed systems, using them still makes the task of de veloper s quite tedious.
This is because several inconsistent services have to be interfaced in order to reflect different as-

pects. As a way to alleviate this pr oblem, we make the case for an encompassing frame work in
whic h all services would be offered under a unifying paradigm. First we give an o vervie w of e xisting
multimedia services with a focus on distrib ution, extracting the requirements imposed onm ultime-
dia extensions to general frame works as a set of so-called abstractions. Known development en vi-
ronments for distributed applications are obvious candidates for such encompassing frame works.
We review these based on four popular paradigms: ¢ lient-ser ver / remote procedure call, object-ori-
entation, hypermedia, and open documents; we also investigate possible multimedia e xtensions,
and discuss the ‘expressive po wer’ of the paradigms. In conclusion we propose steps to wards an
encompassing frame work based on a hybrid object/hypermedia paradigm.

1 Introduction

The multimedia community agrees almost unanimously that both the largest potential and the most serious problem
concern the deslopment of distributed multimedia (DMM) applicatiofiS8]. This article rgiews and compares ap-
proaches to the glelopment of such DMM applications. It turns out that thishéng domain inherits from diérent

and rather incompatible domains. On one hand, multimedia applications may either consist mainly of software, requiring
a kind of programming activity for their delopment, or mainly of multimedia data, requiring a kind of authoring ac-
tivity. On the other hand, multimedia applicationelepment has of course first tried to solve problems for stand-alone
computers before ‘going distributed’; at the same time, the state of the art in distributed applicetiopnaent has

greatly advanced, so that the two rather incompatible fieldsitifmediaapplication deelopment andlistributedap-

plication deelopment hee e/olved. Just as multimedia applicationvdlmpment has progressed in two quite separate
flavors, programming and authoring, so has distributed applicati@iagement: there is the traditional fielddi$trib-

uted programmingnd the handling of distributed multiple-media documents (such &%até-Wide Web).We use

the termdistributed authorindgor the latter. In summary, DMM applicationwddopment has to harmonize fouelfis:
multimedia programming, multimedia authoring, distributed programming, and distributed authoring.

Since we want to discuss ways of harmonizing these fields, we omit fromvaw details about the myriad of self-
contained authoring tools like Macromedia Director™ that exist on multimedia PCs, making section 2.1 rather short;
instead, we distill from the multimedia authoring and programming supporeghabistractions (see below) required

for adequate delopment support. As a look at the state of the art in distributed applicatielogi|ment teaches, we

must aim at an encompassing fravoek that comprises tools and services and for which the design center is a common
paradigm such as ‘distributed object-oriented programming’. Sidebar ‘aspects of DMM applicedilmpoent'shavs

the four fields that intervene in DMM development and how they are treated and integrated in this article.

Four basic terms must be clarified as used in the article. Thes&uicehere is to be taken in its broadest sense, co

ering facets that may be called function or class library, toolkit, aed amevork. A DMM service, then, is a set of
functions offered to deslopers which ceers DMM-specific aspectébstractionsshall hereafter denote intwig, self-
contained descriptions of functional units within a service, often reflected in software as a set of abstract data types ar
operations. As multimedia services are still in theiamdy they hardly make abstractions very explicit; rather, most of
them offer a single common abstraction to the programmer: the application programming interface cABbrApass-

(ii) a consistent, simple, and homogeneous view onto these services, following a certain mental model; the latter is called
paradigmhere. While APIs represent abstractions which are neither encompas&raj services nor based on a pre-

cise mental model, encompassing fraraeks do. Brief, paradigms below denote a way to describe virtually all compo-
nents of frameworks and applications, abstractions denote a way to describe a specific functionality.

Aspects of DMM -
apglication development DMM application development

multimedia appﬁ(mevelo/pmen distributed application development
Z

multimedia multimedia distributed distributed
authoring, 2.1 programming, 2.2-214 programming, 3.1+3.2 authoring, 3.3
abstractions paradigms & frame-
required, 2.5 works offered, 3.5

encompassing paradigm
& framework, chapter

c=3

2 Multimedia Application Development

In this chapter we briefly véew services @ailable to deelopers of multimedia applications. As discussed in the intro-
duction, we distinguish multimedia authoring and programming, distilling general abstractions used. As to multimedia
programming, we westicate three classes of support systems particularly, coined hengtamedia-augmented ser

vices microworlds andmultimedia framework&liscussed in sections 2.2 through 2.4). During this briééne we dis-

cuss some relevant abstractions as they emerge. Section 2.5 further distills and summarizes the abstractions found.

2.1 Multimedia Authoring: The Synchronization Abstraction

Creating a presentation that contains multiple media involves a good deal of media-specific work (recording, selection,
and editing of video, audio, text etc.). The true multimedia authoring is centered around the task of synchronizing such
multiple-media parts into a — maybe interaeti- multimedia presentation in time (parallel and sequential ordering of
tracks) and space (‘on the screen’, for visual media and user interface elements). Thus, multimedia authoring can be said
to be the task of spatio-temporal synchronization. A number of ways exist for specifying synchronisation such as time-
line (‘left-to-right’), transition nets, space-time (considering the time as one@fadelimensions in a finite coordinate

space, as in MHEG). Apart from the user-centered, authoring-specific task of synchronisation specification there is the
issue ofdeliveringa synchronized presentation, an issue that has to be dealt with in all of the below-mentioned multi-
media services but which is less emphasized in this article because we focus on the ‘what’ offered to a DMM application
developernot on how it is achied at runtimeTime-line based specification has yea to be the most intuite scheme

for authors, whereas, e.g., PetriNet-based schemes (which canvsel deym timeline-based ones) can be used as a
basis for both system-level checks and runtime execution. See chapter 15 in [12] for more details.

A key precursory task to synchronization specification isdisignof an oserall multimedia presentation, based on
higher-lexel semantics such as rhetorics, didactics, and the concepts tovbgecbwith the presentatiofiodays mul-

timedia authoring systems pay very little attention to this predominant issue, so that we postpone its discussion until
section 3.3, where the value of hypermedia in this context will become evident.

2.2 Multimedia-Augmented Services

Many functionalities used for some time in general-purpose computing can be adapted for specific useuiedlistrib
multimedia systemdwo domains in which this trend is most visible are communication protocols and operating sys-
tems. In order to benefit from the services discussed in this section, multimedia applicatlopete must today rely

on simple application programming interfaces, ARRI-level programming is particularly error-prone if a large num-

ber of subsequent service calls by an applications are interrelated, as is often the case in the multimedia context. Section
2.3 and, in particular, chapter 3 revise more consistent approaches. Below we focus on the principal multimedia-specifi
requirements and services provided by such protocols and operating systems.

this abstraction used across many such services. QoS is meanwhile well introduced in the multimedia literature and do«
not hare to be deeply @ewed here. Rather, we want to point out for our context that QoS processing in a typical DMM
system has two complementary aspects: (a) QoS specification and negotiation, consisting of communicating perfor
mance specifications between valet parts of a DMM system, including the user. Negotiation normally results in an
agreement between all reént components; the result is a contract stating the conditions and the performance commit-
ment types (such as best effort, bounded, statistical, guaranteed). (b) Maintaining the negotiatedgisadityitey the
application’s lifetime, achieved through the internal resource management mechanisms of the subsystems.

As the importance of QoS for managing the system resources is well recognized, QoS-oriented DMM services and sy:
tem architectures are emerging. Synchronization specifications, too, start to reflecl§gv$ein the timing, ordering,
and coordination of events; this user level is translated into system level QoS as part of the playout schedules.

Communication Protocols:it has become common knowledge that protocols used in todays mainstream datiesnetw
(such asTCP/IR Ethernet, and X.25) are designed for handling non-continuous data and are ill-suited for continuous
media. This is because of the different nature of continuous and non-continuous data: the former require high-rate isc
chronous transmission, but are somewhat more error-tolerant; the latter are mesem@sitbe, but less demanding as

far as, e.g., delay and jitter are concerfiedditional protocols provide only best effort-type, point-to point communi-
cations; thus they cannot reliably support isochronoudraior can they servefefiently in multipoint situations such

as teleconferencing and cooperativork. Real-time (RT) capability assures timely reactiowémes such as generation

of video frames by a camera. When these frames are transmitted by a protocol without RT and displayed by a non R
operating system, the display may become jerky because of unpredictable delays in transmission andvdigleédling.
capability these delays can be guaranteed to be bounded. The required values are defined using QoS spEkdsmtions.

in turn depend on the synchronization requirements of the application.

Given the increasing importance of multimedia, research has addressed adequate protocols. The most important requil
ments for multimedia-capable protocols are: (i) onfigurability in terms of QoS specifications, pernatiimgs v
tradeofs between speed, isochrony and error resiliencéddif to achige on top of complex resource management
mechanisms); (ii) coexistence of a number of different types of connections in a network; (iii) support for multipoint
communications, useful in multicast and coopeeadicenarios; (iv) lowsecution @erhead (lightness), needed toeefl

high data rates and smooth processing of continuous media.

Some protocols & been deeloped for specific layers (e.g., XTP and TP5), others in the form of entire protocol suites
(e.g., Heidelbergransport System antenet).They all feature a combination of different transmission modes with the
possibility of resource reservation. ST-1I (Stream Protocol-11) and RSVP (Resource ReSerVation Protocol) are both
transport-leel protocols supporting guaranteed performanes one-way multicast (point-to-multipoint) communica-
tions. See chapter 11 in [12] for a detailed description of these protocols.

There is a growing pressure to update the Internet from its original point-to-point, best effort-type searide aamul-
timedia-capable network. The core of Internet being the IP protocol, it is not surprising that most research effort is aimec
at improving and generalizing IP, such as in Next Generatipn] [Phe latter contains format provisions foqpanded
addressing, multicast routing, labelingWk by QoS specifications, and security ¥acy Another project aims at pro-

viding QoS capability for IP multicastinggerATM. Here, two service classes are defined: (a) real-time, with guaranteed
paclet delay and rate, using RSVP &itM's connection setup and bandwidth reservation mechanism, and (b) best ef-
fort, for applications which tolerate variations of throughput.

Operating SystemsAnother problem well recognized by the multimedia community is the limited value of todays op-
erating systems, again due to the real-time nature of continuous media. Decent multimedia presentations on Unix, M
Windows, OS/2, Apple System 7, and the like, depend on the ubiquitailetadlity of the necessary resources. This can

be easily erified, e.g., by observing the jitter andvsttown of an Apple Quicktime movie player, caused when other
jobs are initiated. These problems are not due to a real shortage of resources, but to inappropriate scheduling. Continuc
media processing is known to be of ‘soft real-time’ nature, where occasional computing errors or failures to meet dead
lines (such as missing or dedring too early or delaying a video frame) do not cause physical or functional damage as
it may happen in carentional real-time systems. Further differences include the fact that time-critical processing of con-
tinuous media is mostly periodic (e.g. reception of video frames), and that applications may adapt to variations of re-
source availability via QoS negociation (e.g. by decreasing the quality of video playback).

The principal requirements placed on multimedia-capable operating systems are:

* Real-time CPU scheduling. Rate-monotonic and earliest deadline-first are the most frequently used policies.

* Memory, huffer, and file management policies to support real-time scheduling. For example, pages allocated to a
real-time task might be locked into physical memory.

e Support for real-time synchronization. This implieBaént inter-process communicationveat notification, and
mutual exclusion mechanisms.

* Possibility to process non real-time tasks in the usual manner; this implies the coexistence of real-time and traditional
components within one system. A multimedia application typically entails both types of tasks, each canxhen be e
ecuted by the appropriate part of the OS.

* Low-overhead task management; this is needed because of frequent task switching. Lightweight threads and thread
switching in user space are employed in some systems. For more details, cf. excellent discussions in [12].

Sometimes it is difcult to distinguish between the services (accessible from outside) and the underlying implementation
mechanisms. Many of the services are ‘QoS-capable’ versions of standard services, e.g. real-time peagtebjeets]
real-time threads and bounded-delay RPC (see 2.5).

2.3 Multimedia Development Microworlds

By multimedia micravorlds we mean applicationdgopment support systemgélable usually as extensions to system
platforms. Such micnorlds (sometimes called environments or toolkits by the vendors) are rather self-contained and
platform-dependent. Usually, their design and architecture is controlled by a single vendor; their ‘openness’ emphasizes
the possibility to shield applications from the addition of new systgsi-fanctionality (e.g., ‘third party’ integce

cards such as frame grabbers, video compression HW/SW).idds are hardly designed for portability tofdient

platforms anden less for implementing applicationgeo heterogeneous distributed platforisey offer abstractions

at the API level, but APIs of different microworlds are largely incompatible.

Among the best known mionmrlds areApple’s Quicktime, Microsoft'dVindows Multimedia Extensions MME, and

IBM’s Multimedia Presentation Manager MMPM/2 for OS/2. MME provides mostly device abstractions and file servic-
es, while MMPM/2 features a more advanced form of device abstraction, where implementation detailsicé’a ‘de

(e.g. hardware or emulated) are hidden from the programmer. These logical devices are controlled through commands
in a Media Control Interface. Synchronous data streams are supported through a stream programming interface, see
chapter 3 irj6]. The philosophy of Quicktime, initially an extension of Apple's Macintosh Operating System, is centered
around the idea of integrating continuous media among the traditional data types. The main abstraction in Quicktime is
the movie data type (which alsovews audio and other media), designed to deal with time-dependent aspects: real-time
and interactie playout, editing, and various compression schemes. Neiogenents include QT-VR (Virtual Reality)

and QTC (Quicktime for Conferencing); there are also efforts to make Quicktotve ¢avards a platform-independent
framework. Numerous &ndor-specifi multimedia extensions to UNIX exist, complemented by Muse frortthena
consortium. Due to heavy vendor competition, none of these is expected to play a major role in an open market.

To summarize, micworlds basically act as intermediaries between applications ar@Vel system functions. Foxe

ample, the Media Control Interface (MCI) of héndows Multimedia Extensions is designed to support device abstrac-
tions such as VCR, videodisc, display controller, MIDI player and others. These abstractions shield the programmer
from the particularities of real devices to a certain degree only.

2.4 Multimedia Frameworks

Known multimedia frameorks can not yet be considered encompassing fxanks as required in this article, but yhe
offer a level of sophistication and consistency that goes beyond wiclds. They facilitate the design and implemen-
tation of applications in heterogeneous distributed environments. Much more thawarlidsp framevorks are intend-

ed to be extensible and portable; applicationseld@ed on such framerks are (ideally) platform- and location-
independent. We will briefly discuss recently proposed frameworks based on object-oriented class hierarchies.

Gibbs’ framework [6] derives from four abstract classédedia abstracts different media types (audio, video, image,
text, etc.)Transformrepresents certain operations on media (such as compredgoimgfi. Formatdescribes thexe
ternal representation of media data for import and export. Examples are ASCIl, MPEG abdn@ibnentepresents

ponents hee three subclasses which make up the basic typasltmedia processing elements, MEE correspond-

ing sidebar): producers, transformers and consumers of media streams. Attached to components are objects called po
pairs of ports are linked by connections, which can transmit streams. An application is created as a set of interconnecte
components; an initial design is refined by specializing the instances.

Multimedia Frameworks

Gibbs’ framework Different multimedia frameorks use

consumer different basic types ofultimedia
g?grrl,e%rég?éer processing elem_ents, MPlﬁnq of
time-related mediaall usually inte-
) grated in an object-oriented class h
g(r)%(w:pe)gﬁlgr?t erarchy In Gibbs’ framevork, only
e.g., decoder three basic types of MPE are disti
guished, called components. In mo
known multimedia frameorks, the
MPE types reflect technology-boun
aspects of media processiAgmost
all of them use system-controlle

swiich compress transmit X 0 ‘olun together’ MPE
) . L . . . streams to ‘plug together’ S.
vidéodisk application: video capture / transmission / display systein piug fog

producer
compone
e.g., camera

camera

e A small excerpt from the class hiera

MSS framework chy of the MSS frameork, represen-
Video tative for most known clas
Audio AV- me hierarchies of object-oriented multi

Virt.Re- .. Device dow- media framevorks, shows that suc

MSS- (/]source | %\ . . Device hierarchies usually reflect technolo
Object\Y Format (cf. ‘X window’) and cowentional

[Strean] - means “included in” media types (cf. audio, video).

An excerpt from the Items class hierarchy illustr
the high, media-independentvé of semantics an
the distinction between objects and relations. Th

relation subclasses match all possible combinatio
T the three subclasses of ‘object’. E.g., ‘cerserelates
relatiorg'l conversg = =2 -4 users among one another and may be instantiate
as a videophone stream or an email connection.

Iltems framework

The scope of the Interaei Multimedia Association's fram@rk called Multimedia System Services (M$8)) is wid-

er and somewhat more vague than in the previous example. The stated purposes include to ‘provide abstractions tt
male it possible for applications to deal with media devices with@ardeto specific characteristics of the platform,
attached devices, or the network(s) connecting the platforms and devices’, and ‘to provide a standard methodology, e:
pecially for handling ire data’. MSS supports distributed objects by complying with the Corba standard discussed in
3.2, in particular to Corba’'s Common Object Services Specification. Basic classes include virtual devices and medi:
streamsVirtual devices may be processors, files or hardware devices; theyattached ports with associated formats.
Applications are constructed in a plug-and-try manner within a reference archit¥atiwal. devices and usetefined
applications make up the basic types of multimedia processing elements here.

Sidebar ‘Multimedia Franveorks’illustrates how virtual devices are imbedded in the MSS object class higistrol+

ing that the semantic\el of the objects is still related to specific hardware and specific media used. The excerpt of the
class hierarchy proposed in the Items frauoik [10] comprises very ‘abstract’ objects. E.g., user interfaces (class ‘us-
er’) can be interconnected via a relation ‘eerse’'which can be instantiated at runtime as, e.gAwdioVideo stream

or an asynchronous email connection. This simple example shows that mucHéighsemantics of applications may

be of interest than those emphasized by most multimedia frameworks.

A large number of framveorks hare been deeloped and proposed recently (df3] pp. 10-76). Although most of them
are explicitly designed to be open-ended, at present no singlerfoaknis suficiently general to oger all aspects of

works. Almost all of them propose again a small set of basic types of multimedia proéessing elements and of time-de-
pendent media similar to the ones discussed.

To summarize, a franmork can be rgarded as a pool of components which represent multimedia processing elements
(MPE) plus a class hierarchy for MPE and basic media types; applications are built by selecting and interconnecting
components from the pool. Mever in order to be workable, this intwigly appealing approach needs a large compo-

nent pool to begin with, and the facility to add new components. Most presenvbrda®ffer MPEs and class hierar

chies which reflect the @est’level of semantics only. Details in the design of the class hierarchy differ a lot and a good
rationale for this design is not yet commonly accepted. The example of the Itemwsdrarsbows that it is desirable

to support a choice among different technology-bound objes,a runtime, for realizing a\gn ‘high-level’ object.

This selection may imply a replacement or transformation of media and requires very careful design of the technology-
bound class hierarchy together with higher-level hierarchies.

Another important observation concerns the ‘configuration’, i.e. the way in whickehaldopology of an application

(out of MPEs and streams) is described. Usually, freanies offer a graphical depiction and description language for
specifying one specific and static configuration per application as a network of MPEs. In contrast to thisl lofv le
sophistication, many approaches to the specification of configurations of interconnected entities exist, with arbitrary
numbers of components and dynamic changes. These approacghbsda decloped in the context of a variety of do-

mains such as distributed programming, graph theory, and hypermedia. This issue will be resumed in 3.3.

2.5 Summary of Abstractions

Section2.1 showed thasynchronizatiorspecifications represent the essential abstraction for multimedia authoring. In

the context of multimedia processinggiality-of-servicg QoS) was the first general abstraction we could iderifeg.
time-related nature of media data has lead to many proposals for abstractions. The most common agreement seems to
concern the transfer of data between components where the nogtmaafis used almost throughout; e.g., protocols

provide various combinations of QoS-controlled point-to-point and multipoint connections (e.g. isochronous, connec-
tion-oriented, connectionless). While synchronization, streams, and QoS are thus commonly accepted as necessary ab-
stractions, details about their functionality and representation are still widely disputed.

Much less agreement exists about abstractions necessary for the components that make up a multimedia application apart
from streamsWe recall that operating systems provide-evel real-time enhanced services via ports, procedure calls,

and threads. Micrworlds provide services &d°1-level primitives directly accessible to the user or application program-

mer (within the scope of a\gn platform). Multimedia franveorks provide services usually as class hierarchies aimed

at easing portable distributed applicatiowelepmen, representing a stegvéwd encompassing framverks.Virtually

all multimedia frameorks propose some kind of multimedia processing elements and, of course, of time-related media

as components. Modeling these as object-oriented classes is simple at a first, an open issue at a second glance: (i) it re-
quires adding a notion of (‘soft’ real-)time to the object model; (ii) the design rationale for such a class hierarchy is not
commonly agreed; e.g., the distinction of MPE and media types ‘smells’ like the process/data distinction which object-
orientation is supposed te@come; (iii) the support of differentdels of semantics is/en less understood. Since point

(i) above is undoubted, we can in any case retaintimet-related objects a valid abstraction. The topvi distinction

of MPE and media, lweever is disputable: e.g., a video object may be a stored sequence of frames (media) or a video-
generating program (MPE). Considering time-related object ag alistraction, one may argue that further aforemen-

tioned abstractions realize this abstraction to a certain degree (and thus do not need to be separate itemsen a list of k
abstractions to be retained):

* Real-time ports which are similar to standard OS ports in that they serve as end-points for bindings, yet time-related
via QoS parameters. Rtports implemented in Chorus (a real-time OS kernel) serve as support for reactive objects.

* Bounded delay remote procedure call (RPC), extending standard RPC with guarantees for maximal delays between
(remote) emission of the RPC and reception of the result (used for object invocation in ANSAware [4]).

* Devices and virtual devices as abstractions of physical multimedia-related devices and software modules that handle
streams. Devices can be classified into sources, sinks and transformers. Device interéastesdm, operational,
device-dependent and device-independent components.

* Reactie objectg2], proposed as extensions to the ODP fraotk (cf. 3.2) in order to accommodate multimedia
requirements. A reaete object (as opposed to ‘standard’ objects) can be thought of as an automaton with real-time
behavior which reacts to incoming events within guaranteed delay bounds.

this, we can summarizevé key abstractions to be retained, out of the great number of service abstractions found in the
multimedia programming context. While theseefabstractions are still not entirely orthogonal, wgare the list as a
considerable step forward from the existing literature where abstractrenach less mutuallyxelusive meanings;

in some cases the same notion is named differently by different authors, in others they are hierarchicallJhrelated.
following five abastractions are much more orthogonal and still stay in line with known abstractions, i.e. do vexttre-in
the wheel.

1. Synchronizationsynchronization specifications determine details of synchronized multimedia presentédteyns.
must be transformed into playout schedules for all serviesedvied. MODE offers an advanced timeline based ap-
proach, considers distribution issues, accommodates both multimedia-augmented and traditional services, and sp
tio-temporal aspects. Currently mainly an authoring issue, it should be harmonized with DMM programming.

2. Stream:Streams and stream interfaces are widely used abstractions proposed in different contexts: communication
protocols, operating system support, and application d¢8]gf6], [8]. Streams transmit continuous media data.
Stream interfaces are sources and destinations of streams, attached to other coripepentaplement the stan-
dard operational interface between objects. Parameters of streams / interfacegoiaydoS guarantees. Future
streams should harmonize isochronous and asynchronous transmission, multihop and multicast capabilities.

3. Quality-of-ServiceQoS controlled bindingR] serve to establish and manage links between interfaces and can be
considered as objects capable of controlling links\argQoS leels. Reactie objects and streams can be used as
the design centers for QoS. \Wever, for more sophisticated QoS handling whickers different lgels of semantics
from user to system level, QoS must be integrated within an encompassing framework.

4. Time-object:most multimedia frameorks distinguish two basic kinds of objects: multimedia processing elements
(MPE) and media. The essence in terms system support is the addition of time to the object notion. Ccigent defi
cies include: technology-bound semantics without matching higreds|énsuficient design rationale; topyel dis-
tinction of (blurring) MPE and media; streams either disguised as MPE or hidden from developers.

5. Configuration:as discussed in secti@rBand the corresponding sidebar, the introduction of MPE and streams brings
up the concern of ‘plugging them together’ into an application. Such configurations are usually static and determin-
istic and do not reflect the state of the art, e.g., in distributed programming.

In spite of the great variety of forms they take, all services and abstracti@ihbaame purpose: to ease the conceptual
understanding and thevddopment of distributed multimedia systeffgdays independently deloped, largely incon-

sistent, @erlapping abstractions make the task of DMM designh messy diailtifTo ease this problem, we need more
powerful systems of consistent service abstractions spanning all stages of the design process and harmonizing multim
dia development with distributed application\@#opment.Table 1 below summarizes thedikey abstractions pro-

posed, anticipating a few requirements that will become more evident in chapter 3.

TABLE 1. Key concepts to be retained

abstraction basic meaning and requirements

1: synchronization spatio-temporal arrangement of presentatﬁcme intuitve, entity-conserving, distribution-proof, suited for:
unlimited and unknown durations, with flexible degree of synchrony, translation into playout schedul¢
2: QoS ‘fuzzy’, e.g. statistical description of (/constraints on) parameters of service delivery; reflects tolerange in hu-
man perception, enables resource mgmt and tradeoffs between conflicting goals.User-level: to be injuitive &
controllable; all levels: to be compatible, negotiable, accessible for system-wide optimization.

3: stream communication channel with real-time guarantees and continuous transmission of ‘samples’ without applica-
tion intervention. In future to be multihop, multicast, covering both iso- and asynchronous transmissipn.
4: time-object umbrella for multimedia processing elements (MPE) & time-related media; to be system-supported |yet user-

extensible & distribution-proof; to support highvkd semantics which make technology, the MPE / media dis-
tinction, and run-time media choices transparent; to support QoS and synchronization.
5: configuration | composition of MPES, streams, media into an application; to support dynamically changing configuratipns with

network arbitrary numbers of components. To support distribution, authoring & programming

In this section we suey relevant approaches to thevddopment of complex distributed applications and theiere

sions tevards multimedia. In distributed applicationvdbpment environments, thewddoper's work is enhanced with

a consistent set of services and librariesgligpment languages (or language extensions), and facilities for interaction
and interworking over heterogeneous platforms.

Apart from the general distinction of distributed authoring and distributed programming, distributed applicatlon de
opment environments can be classified according to the mental model, or paradigm they are hesexlingy. the

remote procedure call (the basis for most client-server systems) and distributed object-oriented paradigmaifeddistrib
programming, and the hypermedia and open document paradigms for distributed authoring.Within each category we ad-
dress two questions: (i) Which extensiongaads distributed multimedia (DMM) supportesbeen proposed? (ii) Mo

powerful is the paradigm with respect to full-fledged DMM support?

3.1 Client-Server / Remote Procedure Call Paradigm

Remote procedure call (RPC) is an extension of the well-known procedure call mechanism and is directly related to the
client-serer notion. Interface definition languages complement different programming languages, enabling-compiler
generated code (stubs) which marshalls the remote calls, interacts with the server and assures well-defined error seman-
tics in case of failures. DCE (distributed computing environment), promoted by the OpenSoftware Foundation, is based
on a specific RPC mechanism enhanced with some useful services, such as naming and authentification. DCE represents
the most wide-spread basis for heterogeneous client-server oriented distributed programming environments [11].

Known multimedia extensionExtensions of RPC weards bounded delay ¥ been mentioned in section 2. RBE e
tensions for mass data transfer (and multimedia data transfer in particuaglba been proposed. The most common
solution is to use RPC for stream setup only and to realize the actual isochronous streams without progratiointerv
in the runtime system. Multimedia extensions to DCE in particular have been investigated [1].

Expressive power and suitability of the paradighimere is both a technical and a conceptual mismatch between the na-
ture of distributed multimedia processing and the nature of R&nically RPC is optimized for command-response

type communication and short messages. Therefore, any kinfiloiétf mass data transfer requires that RPC be com-
plemented by further mechanisms. Conceptually, RPC imposes client-server relations on distributed software compo-
nents; this kind of relation is already questionable for ordinary distributed applications (many real-world entities are not
purely client-serer-related); in particular, it matches badly with gersational uses of multimedia. The same is true for

RPC as a communication mechanism: it turned out that RPC canngalaeckas a transparent extension of local pro-
cedure call, since asynchrony and error semanties teabe introduced for decent distributed programming, dramati-
cally changing programming styles in comparison with ordinary procedures.

In summary, the RPC paradigm does not seem to be a good candidate in our search for encompassing multimedia para-

digms. It was included in this sugwmainly because some of the distributed object-oriented services discussed belo
have been built on top of, or integrated with client-server-oriented services, DCE in particular.

3.2 Distributed Object-Oriented Paradigm

DOO: distributed object-oriented programming

. Distributed object-oriented programming may sup

application migrate logical node distribution transparency: local and remote meth

X calls to other objects need not be distinguished by

A o ©O- 2 5 O 0 0© 09 grammers; the mapping of the fine-grained pbj

o m onto logical / physical nodes may be determine

runtime, objects mayven migrate to other nodes d

mapping physical namically Remainiqg drawbacks in.the mgltime

node contet: the connectionless model of inter-object c

munication does not match easily with streams,
| | distributed authoring is not considered.

call

| distributedl system

ject equals data plus methods i.e. data-manipulating code, data accessible through methods only), powerful type conce
(classes, inheritance), and extensibility (polymorphism and late binding). Its message-based neethtiohimealizes
connectionless inter-object communication. The distributed object-oriented (DOO) paradigm is much less established
since different lines of thought emphasize different aspects (such as heterogeneity of platforms and languages, locatio
transparent methodvocation and object migration). The state of the art in DOO services is presently pushed by a com-
petition of industry standards, the most vala of which are Corba by the Object Management Group, COM by Mi-
crosoft and DSOM by IBM. Others like DOE (Sun), DOMF (HP), and PDO (Next) are excluded herevityr Bhe

industry efforts are complemented by ISO ODP [11] and by academic DOO programming languages.

All industry efforts extend object-oriented programming across heterogeneous computer networks andfaceoss dif
programming languages. Corba was specifically designed to be distribwerdy €orba-compliant implementations

exist. IBM's SOM and Microsoft's COM are rather proprietary and comyettject-oriented frameorks, Distriluted

SOM (DSOM or SOM2) introduces DOO concepts in a Corba-compliantitrealizes some advanced features which

can otherwise be found only in academic DOO approaches, in particular location-transparent method calls. The IS(
ODP (open distributed processing) mofddl] may be considered less object-oriented. ODP offeesdifferent vievs

on the software under delopment. The most important one for software design, called computational viewpoint, uses
the term object to denote a communicating process. Since ODP is a model only, further discussion will refer to the con
crete implementatioANSAware. There, the computational viewpoint defines ‘objects’ as processes together with inter
faces which define a set of callable operations plus invocation constraints.

Known Multimedia Extension&NSAware has been extended for multimddig in this approach, the basic object/in-
terface concept of ODP adNSAware has been left largely unchanged. Instead, two system-provided objgotieate

were introduced for virtual devices and streams, pretty similar to the corresponding concepts introduced in chapter z
The limited conformance of ODP to the DOO paradigm and limited general acceptance restvietathealue of this
interesting approach. A rather academic, but conceptually very interesting approach must be mentioned here: the MOD
system (cf[9], pp. 207ff.). MODE is truly DOO-based and combines DOO distribution transparency with @m$ ne

ation. Streams are entirely hidden from the programmer. Rather, application-specific media object classeedhre deri
from system-defined classes, giving the runtime system a possibility to access application data. Based on these and
information about resources, data locations, network topologies etc., MODE automatically computes an optimal patt
from information sources via transformers to media presentation (or again storage) devices, sets up necessary strear
negotiates QoS with the underlying services and triggezsigtion, all following maybe a single applicationdemeth-

od call. MODE &en supports multimedia authoring via spatio-temporal synchronization specifications. The MODE re-
search project is discontinued vilver and the lack of standards-compliance and openness (with respect to
programming languages) let it stay an academic approach.

Expressive power and suitability of the paradightte simplicity, rigid encapsulation, and general applicability of ob-
ject-orientation are the foundations for its success. DOO - in contrast to RPC - supyibiesdistribution of the fie-

grained objects at run-time. Martheless, the ‘ultimate’ solution for DMM applicatiorvdlpment, harmonizing the

four fields discussed throughout the article, needs a considerable revision of the DOO Garmcepbblems will be
discussed in chapter 4 together with possible solutiimg; concern the adequate representation of streams in DOO
and the harmonization with distributed authoring. At this time, it is to be retained that DOO is an excellent starting point
for our search for an encompassing paradigm and frkanke It must also be mentioned vever, that DOO standards

like Corba are well advanced and hard to change as fundamentally as full multimedia support would require.

3.3 Hypermedia Paradigm

The hypermedia paradigm is centered around the following four basic kinds of elemogietsmeaningful units of
information), links (relations of any kind between nodeshchors(selections within nodes from and to which links
lead), andvebs(coherent sets of nodes and links, also caligebtiexts or hypermedia documents), plus various com-
posites such as versions, views, subsets, trails, etc. The term hypermedia stresses the support of different media in c
ferent nodes, the underlying paradigm is sometimes still caylpertect (hypermedia will be used in the remainder).

The hypermedia scene is split into an open, distributed, but yedatiow-featured, and a sophisticated but proprietary

part. The former comprises the open standards, mainly MHEG and HyTime, plus the Internet web approaches, mainl
WWW and Hyper-G. The latter consists of a myriad of systems built for academic, sometimes commercial use; the
show a trend towards accepting the so-called Dexter Reference Model [3] as a common reference.

edited anymore (cf. CD-ROM). The final form concept makes MHEG ill-suited as a basis for very general solutions
which we search. This statement remains tueneéhough MHEG has lately undergone radical changes in the light of
Interactive TV applications. Recent comparisonwéndrought evidence to MHEG's very high conceptuairioad

which makes it very cumbersome to author MHEG documentfL&if.pp. 140ff.). HyTime is an extension of the ISO
standard graphics markup language, SGML. Unlike MHEG, it does not include an object model, nor specific presenta-
tion rules. The concepts of hypermedia document and node are intertwined in the HyTime document concept, and the
elaborate multimedia synchronization (specification) support is not distribution-proof. Thus, HyTime is not a good start-
ing point either.

WWW is based on HTML, a markup language which is an SGMlvatkeriike HyTime. It is well integrated with the

Internet communication architecture. Like HyTime, WWW does not reflect some of the hypermedia principdes defi

in the Dexter Reference Model. E.qg., all link information is embedded in the nodes instead of a separate database, mak-
ing it is almost impossible to grasp and visualize a hypermedia document as a distributed ‘web’. WWW does not model
or support synchronized multimedia and usually uses non multimedia-capable Internet protocols. Due to a rudimentary
anchor concept, to date only some of the media may be sources of links. While continuous media are supported in
WW\W, presentation is dedated to ‘viewers’. Synchronized multimedia presentations are thus out of scope. While the
upcoming possibility to include (Ma) programs into WWW documents makegeigthing’ possible inNVWW, theWeb

is more of a collection of possibilities then a coherent system based on an elaborate paradigm. Hyper-G offers remedies
to some of the WWW syndroms: it keeps a separate web database and features consistent update of link destination
changes, supports access rights, some degree of ‘context of use’, and versioning. Hyper-G / WWW cross-compatibility
is emphasizedlo date, Hyper-G still lacks some desirable features likedef@gred anchor models, an elaborate type
concept, and further advanced features discussed below.

The Dexter Reference Model goes beyond the staéWtV. Its most important contribution is the clear distinction
between web database, node contents, and user interaction. Quite a numbérafddepliant implementations e
been discussed in the literature [3], and so-called ‘second-generation’ variants support user-defined node / link types.

Known Multimedia Extension®Vhile all the abee-mentioned systems support multiple media, true multimedia fea-
tures such as integrated synchronization models, anchors for video or audio elements, and support for isochronous dis-
tributed communication are restricted to a few academic approaches. The most important one is the extension of the
Dexter Reference modelwards multimedia authoring, called Amsterdam mofl pp. 50-62). This model harmo-

nizes distributed and multimedia authoring by extending the node concept towards synchronized multimedia.

Amsterdam Model

The Amsterdam Model combines multimedia synchroni-
zation and hypermedi&Vith Amsterdam-based synchro-
nized multimedia nodes, embedded single-media node
keep their identity and can be used in other contexts, e.qg.
in other multimedia nodes. Links can point directly to the
embedded nodes, and the author has to interface a singl
system only.Without Amsterdam, multimedia presenta-
tions can only be imported as external nodes, created by a
non Amster- external multimedia authoring tool; embedded nodes can

(single-media dam (external) : ; i i
node within A) MM node neither be reused in other contexts nor directly linked.

Expressive power and suitability of the paradigim:spite of the shortcomings of present realizations, we ratexthe e
pressie power of the hypermedia paradigm as very high. In particular, theuelpdistinction of nodes-and-links is

well suited for expressing high&vel application semantics as so-called semantic networks, such as rhetoric or didactic
concepts, design histories of complex systems, or wiatiee subject matter of an application (domain) may be. Means

hawe been implemented for mapping differeniells of semantics onto one another (yet realizatiows heostly been

ad-hoc up to now). As a disadvantage, the paradigm lacks an elaborate type concept, but in this area the DOO paradigm
has its major strength. Experience from the Nestor pr§§ddiacks all these arguments very strongly. Chapter 4 will
discuss a combined hypermedia-DOO paradigm as a foundation for an encompassing framework.

A less recognized yet important field of research is the supportaimiliés’ of webs, discussed mainly in literature
about formal hypermedia modeWe call such families ‘web types’ and cite PreScrif}, pp. 273ff.) as anxample

10

sically, allowed and forbidden ways of interconnecting thérajorial, bug report, anddiv chart are examples from the
endless list of possible web types. Since nodes and links form graphs, the elaborate research about graph grammars n
be consulted here, but their value in the hypermedia context is limited and has already been reflected in existing af
proaches to web types. In a world where the distinction of media and processing elements becomes blurred, web typ:
might obviously be used as well to describe the configuration abstractiorexibteflvay, an issue that had been left

open in chapter 2. This fact adds to our arguments that multimedia / distributed programming and authoring should b
harmonized in an encompassing paradigm and framework. We will resume this discussion in chapter 4.

Web Types Web types hae been introduced in order to descr

@ ‘families’ of hypermedia documents. The simplam-
web-type W1 (B)_sample web ples shown here use a web type concept called Pre
u * which allows to distinguish optional and mandatory p
() = Of hypermedia documents, sequences of nodes (cf.
0 e’ @ A in type W1), and bunches of links (cf. the link start

from node S in W2). In the example, the unique-des
tion-flagu indicates links which, in an actual web of t

@< e e u @ type defined, are inbound to a single natleb types ca

be used for defining highdéevel semantics of yperme-

web-type W2 E ’ @\ dia documents, for programming reusablevigation

support in hypermedia, and for assuring common-|
and-feel of hypermedia document families. In an enc
@ passing paradigm as discussed in the article, they

sample web equally serve for specifying dynamic configurations.

3.4 Open Document Paradigm

Open document models are usually impleme
using a DOO base systelthey support the inclu
sion of remote parts (in different media) in a
document. The Ul centered handling of open
uments is very authoring-centered, yet synchr
zation is rarely supported. The hub-compo
structure is less powerful than hypermedia w
Open document systems excell with compon
based programming support based on the rigo
standardization of the DOO system, class libr
and set of methods yents each part has to ser

Open Documents

0 G0

Simply put, this paradigm allows different distributed tools to work on a distributed docukgaint, two major camps

can be identified: industrial de-facto-standards whiahrlap largely with the industrial DOO approaches, and ISO stan-
dards. The latter are either based on SGML (see 3.3) or onftbe Dbcument Architecture and offer basically a subset

of the functionality discussed $13; they will not be treated furthefreatment of the industry efforts will focus on their
contritution beyond DOO and hypermedia: in particular, they offer true interoperability of compdienidready
mentioned the need for integrating many heterogeneous, in part pre-built software modules in a large software syster
This problem space is often designated as component-based programming, and is muateddggrine multimedia
contt. While open DOO approaches lay some ground for the interoperation of heterogeneous components, they do nc
determine the context of interaction rigorously enough in order to support easy combination of modules which were de
veloped without ‘knowing each other’. The industrial standards for open documents put an emphasis on this aspect.

Due to their market rel@nce, two industrial standards seem to rereiost attention: OpenDoc, a SOM-based multi-
vendor effort, and Microsoft's COM-based OLE. An open document standard can be considered to consist of three majc

11

vices Béyond basic interaction needed for making bomponents interoberable - easieddthestricted to a certain
application domain (here: document processing), and (iii) predefined functionality offered to compuakpede
(e.g., in the form of prebuilt class libraries).

Known multimedia extension§o date, open document framerks encapsulate time-based media with the notion of
‘playable object’. Such objects are subordinate to a text-based hub document. Harmonization with multimedia authoring
similar to the Amsterdam model mentioned in 3.3 is in its infancy only.

Expressive power and usabilitfhe open document efforts show that more than the DOO ‘groundrules’ is necessary in
order to allow for distinctly desloped objects to interoperate within a common user interface. The paradigm as such has
major drawbacks which make it seem inappropriate for use as a general multimedia application paradigm: (i) Hub doc-
uments are usually text-based and associated with a page-based appearance. (ii) The information modularization concept
‘components of a common document’ is irffigtiént. (iii) The application modularization concept ‘components which

handle a specific document part type each’ is equallyfiomirft. (iv) Document-centered applicationvel®pment is

usually based documentils, an approach which has been found iinsieht in many publications aboutovkflow
management and coopevatiwork [10]. It seems close to impossible to extend the document paradigmdtoa gen-

eral power andx@ressieness comparable to that of DOO or hypermedia. Therefore, the challenge comes up to map the
merits of open documents (component-based programming and interoperability) onto other paradigms.

3.5 Summary of Contributions

Table 2 lists the major advantages of the paradigms discussed in chapter 3. Since RPC has shown limitations in the mul-
timedia context and since its advantages are a full subset of what the DOO paradigm offers, RPC is notwsted belo
Since RPC and DOO contribute to distributed programming and hypermedia and open documents contribute to distrib-
uted authorindpy designrespectiely, this fact is also left outyen more so since we intend to harmonize coutioins

and requirements from all four fields/olved. It should be retained, too, that the important contributions to component-
based programming made in the context of the open document paradigm are not particularly bound to that paradigm and
that the paradigm as such is rather inappropriate for our purpose.

TABLE 2. Major contributions made by the relevant paradigms of distributed application development

paradigm contribution keywords

"DOO object-orientation| encapsulation, inheritance, polymorphism; suits MM frameworks, components, disttibution
dist. transparency, location-transparent calls, object migration, system-assisted configuration / QoS mgmt.

hypermedia | nodes & links accommodation of semantic networks (levels of semantics), unification w/ synch. model
web types type concept for distributed authoring, may serve for configuration semantics as wel

(open doc.) | components DOO base system, class library, required set of methods / events / Ul elements per part

4 Conclusion: Towards An Encompassing Paradigm & Framework

Trying to summarizing all of the above chapters in two phrases, we can state that:

e Multimedia application deelopment is still in its irdncy requires fre major abstractions, and is currently best sup-
ported with multimedia franveorks - most of which are incompatible with franeeks for distributed programming;
programming and authoring (synchronization in particular) have yet to be integrated.

» Distributed application deelopment is also split into a programming and an authoring world, best supported by the
DOO and the hypermedia paradigm; the latter are complementary; vethden used in feature-rich open distrib-
uted frameworks; these paradigms are extensible and have in part been extended towards multimedia.

Summarizing the most interesting contributions discussed in this article, we may retain that:

* Gibbs'framevork has applied a rigorowdject-orientedapproach (although not truly DOO) to most of the multi-
media programming abstractions (points 2-5 in table 1, on a low level of semantics however).

* MODE has applied rigorous DOO to multimedia, supported synchronization (without true conceptuatiorty
but did not make streams user-controllable and omitted distributed authoring;

12

* Items showed that higher-level semantics for timed objects and streams are highly desirable.
* PreScripts supported web types in a way that may be extended towards dynamic configuration networks.

As illustrated in sidebar ‘twards an encompassing paradigm’, it is an appealing idea to integrate the abstractions re-
quired in the context of multimedia services with the contributions made in the context of distributed applieation de
opment frameorks. Since the PRC paradigm has been gésded and the contribution of the open document paradigm

is not bound to that paradigm, the analysis points at an integration of the DOO and hypermedia paradigms.

Towards an encompassing paradigm

DMM application development|

dist. authoring

[MM authoring | MM programming | | dist. programming

A
/ service frame- rpc remote

: hyper-
authgring APl works procedure call

media
rld \ open doc-
Hworlds DOO: distributed uments
object-oriented
programming
| |

* streams, QoS components
o timed objects object-orientation... nodesé&links
synchronization config.networks distrib. transparency web types

abstractions cotributions

objects-relations paradigm

4.1 Why Integrate?

Recent discussions about lean programming ltaeated wareness of the dangers of integration. Feature-ladden sys-
tems hae become unmaintainable and memoryedeing. Our argument is not iaour of a monolithic system and of

a complicated underlying model, but avbur of a simple yet powerful paradigm, modular yet harmonized components,
and sophisticated component-based programming. Some arguments in favour of this approach are listed below.

* As MODE has shown, a system with consistent access to ahnel@pplication and system) information can pro-
vide sophisticated support (here: for network-wide QoS negociation, auto-configuration and auto-distribution).

* As the Amsterdam example has shown, the harmonization of concepts (here: of the hypermedia paradigm with th
synchronization abstraction) can lead to more functionality than the sum of the parts would represent.

* Today a DMM developer would hee to use, for example, Macromedia Director™ for synchronization, WWW for
embedding in a distributed/pertext, C++ and Microsoft MME (or at best an academic-stage frnamg for real-
izing advanced multimedia functionality, and Corba for making the solution a true open distributed program (note
that Jaa is no alternate - yet? - since it allows program distribution but not distributed programming). Mgy
e.g., drastically restrict the openness and make disiibvtransparencimpossible. It would be cumbersome to
write such an application and very difficult truly integrate the parts mentioned.

* Asdistributed programming framerks are much more advancedveleping incompatible multimedia franverks
is insane. Distributed programming and distributed authoring become blurred, but Corba and WWW coexist.

4.2 How to integrate?

While the harmonization of the four fields mentioned remains a substantial researcliedopndent issue, this article
has pointed out the major milestones and ingredients of a harmonized solution. Sidebar ‘objects-relations paradigm’ prc
vides a glimpse onto a unification of DOO objects, a time concept for objects, and hypermedia ‘nodes and links’.

13

a PreScript-like ‘we type’ approach. System-wide synchronization can be integrated following the Amsterdam approach.
Streams (and asynchronous channels) can be harmonized with hypermedia links, and mgpiéatéasnodes) and

MPE truly become blurred at theskd of semantics considered here. Since objects and relations are distinguished at the
top level, both sophisticated system support (consistency checks, autoconfiguration and autodistribution, bindings, QoS
negociation) and ‘upward’ mapping onto application semantics (semantic networks) become feasible. Thus, the objects-
relations-paradigm serves also as a binding element between the system (technabgyiillehe application seman-

tics. Finally, a rigid standardization of required methodgehts for time-objects and relations may build the first step

in a effort to provide component-based programming support similar to the one offered by open document systems.

Objects-Relations paradigm In a model that combines DOO and hypermedia concegterh
media nodes and multimedia processing elements (MPE, incl(@i
virtual devices) are unified as time-objects. Streams and linkjl ¢

system-detined building block both modeled as relations, with advantages that hapart bee
discussed with the Items approach. The design here illustratej t
D in an encompassing paradigm, an MPE can equally well creft¢
time-object relation stream to another MPE or a link to media dafiae versa, ‘we
\ surfing’ may irvolve MPEs transparenthjltogether time-objects
MPE node link strea and relations can be subject to synchronization and to QoS offir
zation. Objects-relation networks can be mapped argionto ap-
— plication specific semantics and ‘downward’ onto technology.

4.3 Outlook

The harmonization of the four fields of DMMw##opment requires further research, yet this article has shown that im-
portant contributions exist, paving the wayw#wds a unification of the hypermedia and DOO paradigms avatde
encompassing framerks. In order to really reduce the complexity of distributed multimedia applicati@hogenent,

ary effort must support the breaking-up of concerns into small, manageable pieces in ordit tieeasyndroms ot
software. Object-orientation and component-based open documents represent a good starting point here.

Acknowledgments: This work was partly supported by Grant No. 4566 of the National Science and Engineering Re-
search Council of Canada

5 References
1. R Adcock, N. Davies, and G. Blair, “Supporting Continuous Media in Open Distributed Systehitectures,in DCE - The
OSF Distributed Computing Environment, LNCS 731, A. Schill (ed.), Springer Verlag, Berlin Heidelberg, 1993, pp. 179-191.

2. G.S. Blair, G. Coulson, M. Papathomas, P. Robin et al., “A hybrid approach to real-time synchronisation in distributed multime-
dia systems”, Lancaster University Distributed Multimedia Research Group Report No. MPG-94-21, 1994.

3. Communications of the ACM (special issue on hypermedia), Vol. 37, No. 2, February 1994.

G. Coulson and G. Blair, “Meeting the Real-time Synchronisation Requirements of Multimedia in Open Distributed Pfocessing,
Distributed Systems Engineering Journal, 1994.

5. A.Danthine and O. Boranture, “From Best Effort to Enhanced QoS,” in Architecture and Protocols for High-Speeatkéetw
(O. Spaniol, et. al., ed.), Kluwer, 1994.

S.J. Gibbs and D.C. Tsichritzis, “Multimedia Programming - Objects, Environments and Frameworks”, Addison-Wesley, 1994.
R.M. Hinden, “IP Next Generation Overview”, Internet Draft, October 1994.
Interactive Multimedia Association, “Multimedia Systems Services,” Draft Recommended Practice, 1995.

© ® N o

M. Mihlh&auser (ed.), “Cooperative Computer-Aided Authoring and Learning”, Kluwer, Boston, Dordrecht, London, 1995.

10. M. Mihlhauser, “Modeling and Design of Complex CoopeeaBoftware; Proc. 1st IEEE Conf. Engineering of Complex Sys-
tems, Ft. Lauderdale, FL, Nov. 6-10, 1995.

11. J. Nicol, C.Wilkes, and F. Manola, “Object Orientation in Heterogeneous Distributed Computing Systems”, IEEE Gomputer
June 1993, pp. 57-67.

12. R. Steinmetz and K. Nahrstedt, “Multimedia: Computing, Communications, Applications”, Prentice Hall, 1995.
13. InternationaMWorkshop on Multimedia Software Belopment, Berlin, March 25-26 1996, IEEE Computer Society Press, 1996

14

