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In this study, a novel noise reduction algorithm for hyperspectral imagery (HSI) is proposed based on
high-order rank-1 tensor decomposition. The hyperspectral data cube is considered as a three-order ten-
sor that is able to jointly treat both the spatial and spectral modes. Subsequently, the rank-1 tensor
decomposition (R1TD) algorithm is applied to the tensor data, which takes into account both the spatial
and spectral information of the hyperspectral data cube. A noise-reduced hyperspectral image is then
obtained by combining the rank-1 tensors using an eigenvalue intensity sorting and reconstruction tech-
nique. Compared with the existing noise reduction methods such as the conventional channel-by-chan-
nel approaches and the recently developed multidimensional filter, the spatial–spectral adaptive total
variation filter, experiments with both synthetic noisy data and real HSI data reveal that the proposed
R1TD algorithm significantly improves the HSI data quality in terms of both visual inspection and image
quality indices. The subsequent image classification results further validate the effectiveness of the pro-
posed HSI noise reduction algorithm.
� 2013 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS) Published by Elsevier

B.V. All rights reserved.
1. Introduction

The development of hyperspectral remote sensing technology
makes it possible to provide a large amount of spatial and spectral
information for image analysis applications such as classification,
unmixing, subpixel mapping, and target detection (Chang, 2003;
Landgrebe, 2002). However, the acquired hyperspectral images
(HSI) are often disturbed by radiometric noise such as sensor noise,
photon (or shot) noise, calibration error, atmospheric scattering
and absorption (Kerekes and Baum, 2005), which not only
degrades the visual quality of the HSI data but also limits the
precision of the subsequent image interpretation and analysis
(Matteoli et al., 2011), for example, in classification, target detec-
tion, subpixel mapping, etc. Therefore, it is critical to remove the
noise and retain the signal component before the subsequent pro-
cess. The noise in hyperspectral imagery (HSI) can generally be cat-
egorized into two classes: random noise and fixed-pattern noise.
Fixed-pattern noise like striping, generated during the calibration
process, can be mitigated by a suitable model (Acito et al.,
2011b). In contrast, random noise cannot be removed entirely,
due to its stochastic nature. One widely used random noise model
in HSI is the additive model, which is assumed to be white,
Gaussian, and independent-from-signal. However, with the
improvement in the sensitivity of hyperspectral sensors, in some
cases, the dominant noise source is no longer determined by sig-
nal-independent additive noise, but a mixture of signal-indepen-
dent noise, signal-dependent noise, and fixed-pattern noise
(Acito et al., 2010). Acito et al. (2011a) investigated the random
noise estimation problem for HSI. Their newly developed model
takes into account the signal-dependent noise contribution and is
suitable for noise characterization in data where the signal-inde-
pendent noise is not dominant. Bioucas-Dias and Figueiredo
(2010) described a new approach to solve the optimization prob-
lem resulting from a variational estimation of images observed un-
der multiplicative noise models. Total variation (TV) regularization
was used as the prior and an augmented Lagrangian method was
applied to the constrained problem.

Since the additive noise model is the situation generally found
in HSI, many algorithms have been derived that are based on this
model. The traditional methods employ denoising algorithms such
as singular value decomposition (SVD) (Andrews and Patterson,
1976) and Wiener and wavelet filters, channel-by-channel (Ban-
ham and Katsaggelos, 1997). However, these algorithms may lead
to a loss of the inter-dimensional information since the correlation
between the spatial and spectral bands is not simultaneously con-
sidered. In recent years, some algorithms have been proposed to
combine the spatial and spectral information for HSI noise
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reduction. Othman and Qian (2006) proposed a hybrid spatial–
spectral derivative-domain wavelet shrinkage noise reduction
(HSSNR) approach. Chen and Qian (2008) proposed to simulta-
neously reduce the dimensionality and noise of HSI by the use of
bivariate wavelet shrinkage. Yuan et al. (2012) also presented a
spectral-spatial adaptive total variation model for hyperspectral
image denoising. Another type of HSI noise reduction algorithm
for removing striping artifacts is based on wavelet transform and
adaptive frequency domain filtering (Pande-Chhetri and Abd-
Elrahman, 2011).

In multilinear algebra, the hyperspectral image data cube can be
considered as a three-order tensor in which the spatial and spectral
information is completely preserved (Zhang et al., 2008). Based on
the tensor model and multilinear algebra, it has been shown that
tensor representation can simultaneously deal with the two spatial
dimensions and one spectral dimension of HSI to achieve a satisfy-
ing noise reduction performance. Examples of such approaches in-
clude multidimensional filtering based on Tucker tensor
decomposition (Bourennane et al., 2011; Muti and Bourennane,
2005; Renard and Bourennane, 2008; Renard et al., 2008), and
the use of the kernel trick in Tucker decomposition (Karami
et al., 2011). The multidimensional Wiener filtering (MWF) algo-
rithm is one of these Tucker-based noise reduction algorithms
which jointly takes into account the spatial–spectral information
and achieves a simultaneous improvement in image quality and
classification accuracy. However, the application of a core tensor
and n-mode tensor product may lead to information compression
and loss of spatial detail (Letexier and Bourennane, 2008).

In this study, we develop a new tensor decomposition which
represents a noisy image by a series of separate signal and noise
profiles, and we estimate the noise-free image by extracting the
signal-dominant component. Specifically, we present an HSI noise
reduction algorithm based on rank-1 tensor decomposition (R1TD).
As mentioned above, the HSI data cube is considered as a three-or-
der tensor that is able to jointly treat both the spatial and spectral
modes. The R1TD algorithm is then applied to the tensor data in-
put, which takes into account both the spatial and spectral infor-
mation of the hyperspectral data cube. Finally, the noise-reduced
HSI is obtained by combining the rank-1 tensors by the use of an
eigenvalue intensity sorting and reconstruction technique.

The remainder of this study is organized as follows. Section 2
introduces the definitions of tensor and multilinear algebra. Sec-
tion 3 addresses the rank-1 tensor decomposition algorithm and
decomposition-level estimator. Experiments on two widely used
hyperspectral data sets are implemented in Section 4. Finally, Sec-
tion 5 concludes this study.
2. Background

Tensor (Lathauwer, 1997) and multilinear algebra have been
receiving more and more attention and have recently been applied
to both computer vision and pattern recognition (Lu et al., 2008;
Shashua and Levin, 2001; Tao et al., 2007; Vasilescu and Terzopou-
los, 2003). A tensor, represented as A 2 RL1�L2�����LN , is defined as a
multidimensional array, which is the higher-order equivalent of a
vector (one-order tensor) and a matrix (two-order tensor). Accord-
ing to the above definition, tensor A’s order is N, and each order is
called the ith mode. An arbitrary element of A is a scalar denoted
by al1 ;l2 ;...;li ;...;lN , where 1 6 li 6 Li and 1 6 i 6 N, with li being the loca-
tion of this element in the ith mode. Specifically A 2 RL1�L2 is a two-
mode tensor or matrix. Each column is defined as ai, and an arbitrary
element is denoted by aij, where 1 6 i 6 L1;1 6 j 6 L2. In this study,
the HSI data cube is regarded as a three-order tensor A 2 RL1�L2�L3 , in
which modes 1 and 2 represent the spatial modes, and mode 3 de-
notes the spectral mode. In this subsection, we give a brief review
of the relevant concepts for the matrix and tensor in multilinear
algebra (Kolda and Bader, 2009).

Definition 1. Rank-1 tensor: Define the outer product of a tensor
A 2 RI1�I2�����Ip and another tensor B 2 RJ1�J2�����Jq as A � B. All the
values of the indices are denoted by

ðA � BÞi1 i2 ;...;ipj1 J2 ;...;jq
¼ ai1 i2 ;...;ip bj1 J2 ;...;jq ð1Þ

Let V1, V2, . . . , VN be N vectors in the Euclidean space with finite
dimensions I1, I2, . . . , IN. Consider N vectors u1 e V1, u2 e V2, . . . , uN -
e VN. An N-mode X 2 RI1�I2�����IN tensor is rank-1 if it can be written
as the outer product of N vectors:.

X ¼ u1 � u2 � � � � � uN ð2Þ
Definition 2. Tensor matricization. Also known as n-mode flatten-
ing or unfolding, tensor matricization reorders the elements of an
N-order tensor into a matrix from a given mode. The n-mode matr-
icization of X 2 RL1�L2�����LN is matnX 2 RLi�ðL1L2 ...Ln�1Lnþ1 ...LNÞ, which is
the ensemble of vectors in the n-mode obtained by keeping index
Li fixed and varying the other indices. A visual illustration of tensor
matricization is shown in Fig. 1.
Definition 3. The Kronecker product. The Kronecker product of
matrices A e RJ�K and B e RM�N is denoted by A � B:

A� B ¼

a11B a12B � � � a1K B

a21B a22B � � � a2K B

..

. ..
. . .

. ..
.

aJ1B aJ2B � � � aJK B

266664
377775 2 RðJMÞ�ðKNÞ ð3Þ
Definition 4. The Khatri–Rao product. It can be regarded as the
column-wise Kronecker product. The Khatri–Rao product of matri-
ces A = [a1, a2, . . . , aK] e RI�K and B = [b1, b2, . . . , bK] e RJ�K is deter-
mined by A � B:

A� B ¼ ½a1 � b1; a2 � b2; . . . ; aK � bK � 2 RIJ�K ð4Þ

Fig. 2 shows how the Khatri–Rao product works.
3. Methodology: R1TD noise reduction model

The flowchart of the proposed R1TD algorithm for HSI noise
reduction is shown in Fig. 3. The input HSI data cube is considered
as a three-order tensor. Subsequently, the rank-1 tensor decompo-
sition (R1TD) algorithm is used to extract the signal-dominant
component from the observed HSI data cube by sorting the eigen-
values generated by tensor decomposition. Finally, the denoised
HSI is obtained by combining the signal rank-1 profiles, shown as
the red cube in Fig. 3. It is worth noting that the size of each red
and dark red cube is equivalent to that of the input data. As the sig-
nal-dominant component and the noise component are defined as
the sum of the red cubes and dark red cubes, respectively, each
component cube size is also equal to the size of the input data.

3.1. Derivation of the R1TD noise reduction model

The HSI data can be regarded as a third-order tensor that
completely preserves the spatial and spectral information. Here,
we denote O as the observed HSI data cube consisting of the
signal-dominant component S and the additive noise component
N. By extending the classic two-dimensional additive noise model,
the tensorial formulation is:



Fig. 1. Illustration of tensor matricization in three modes.
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O ¼ Sþ N ð5Þ

In this model, the noise is assumed to be white, Gaussian, and
independent-from-signal. Based on the definitions of the rank-1
tensor and vector outer product, tensor O 2 RL1�L2�L3 can be repre-
sented with the rank-1 tensor decomposition model:

O ¼
XM

r¼1

krur � v r �wr ; ð6Þ

where ur 2 RL1 , v r 2 RL2 , and wr 2 RL3 (r = 1, 2, . . . , M) are vectors
(rank-1 tensors in this model) on three modes, and M is the number
of rank-1 tensors used to restore the whole tensor O. Considering kr

as the weight value, Eq. (6) implies that the HSI data is a linear
combination of a sequence of rank-1 tensors (Bro and Kiers,
2003). However, there is currently no straightforward solution to
M or the so-called tensor rank. The rationale of this problem is ex-
plained as follows: The rank of a three-order tensor (M in this mod-
el) is equivalent to the minimal number of triads necessary to
describe the tensor. However, due to the special structure of the
multilinear model compared to the bilinear one, there are no expli-
cit rules for determining the tensor rank in general, except for the
two-order case and some simple three-order tensors. Refer to
Harshman (1970) and Kruskal (1976) for further details.

A common assumption for additive noise in subspace analysis is
that the useful signals in HSI are highly correlated between the
spectral channels, and the noise is accordingly less correlated be-
cause of its random distribution. R1TD weights can be used to indi-
cate the correlation between each rank-1 profiles and the signals,



Table 1
Alternating least squares optimization for R1TD noise reduction.

Input: Input HSI tensor O 2 RL1�L2�L3 , decomposition level k, and maximum
number of iterations ITER

Initialization: Set U, V and W to the identity matrix, S0 = O
Step 1. For t = 1 to ITER {
Step 2. Calculate

U	 ¼ mat1St � ððW � VÞT Þ
�1
;Kði;jÞ ¼ kUð1Þk; UðiÞ ¼ U	1=Kði;iÞ

V	 ¼ mat2St � ððW � VÞT Þ
�1
;Kði;jÞ ¼ kV ð1Þk; V ðiÞ ¼ V	1=Kði;iÞ

W	 ¼ mat3St � ððU � VÞT Þ
�1
;Kði;jÞ ¼ kW ð1Þk; W ðiÞ ¼W	

1=Kði;iÞ
Step 3. Reconstruct the estimated noise-free tensor by

St ¼
Pk

r¼1krur � vr �wr

Step 4. Check the convergence, if: ErrðtÞ ¼ kSt � St�1k 6 e.}// For loop in
Step 2

Output: The denoised tensor bS 2 RL1�L2�L3 , weight matrix K, and factor
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hence, are used here to distinguish the signal and noise profiles,
which define the contribution of the rank-1 profiles to the recon-
structed signal-dominant component. We therefore propose to ex-
tract the signal-dominant component from the observed data cube
by sorting the weights of the rank-1 tensors, rather than finding
the tensor rank of the noisy data. After the noise component of
the input data cube is removed, the signal-dominant component
is obtained by reconstructing the remaining rank-1 tensors. Based
on this idea, the estimated signal-dominant component can be
written as Eq. (7), leading to a linear combination of a series of
the rank-1 tensors:

bS ¼Xk

r¼1

krur � v r �wr ð7Þ

where k is the decomposition level in this study, and it refers to the
number of rank-1 tensors corresponding to the signal-dominant
component, and is smaller than the value of M. Although the tensor
rank M is difficult to calculate, it is unimportant in the R1TD model,
in which the signal-dominant component is reconstructed from the
k rank-1 profiles. Consequently, as long as an appropriate estima-
tion of the decomposition rank k is performed, the denoising will
be completed.

3.2. Solution for the rank-1 tensor in the R1TD procedure

A series of the rank-1 tensors by R1TD should be estimated so
that the restored tensor bS is as close as possible to the noise-free
tensor (or signal-dominant component) S, i.e., we minimize the
mean squared error (MSE) between the ideal signal tensor and
the reconstructed signal tensor:

min
k;ur ;vr ;wr

S�
Xk

r¼1

krur � v r �wr

�����
�����

2

ð8Þ

In this study, we combine the vectors of each rank-1 tensor in
each mode into a factor matrix, i.e., U = [u1, u2, . . . , uk], V = [v1,
v2, . . . , vk], and W = [w1, w2, . . . , wk]. In addition, we also denote
K as a matrix form, i.e., K ¼ diagðk1; k2; . . . ; kkÞ. According to tensor
matricization, the mode-1 flattening of Eq. (7) should be expressed
as:

mat1
bS ¼ UKðW � VÞT ð9Þ

In the alternating optimization, the solution of (8) is optimized
in each mode. Each time, only one factor matrix is optimized by the
other fixed factor matrices. Here, we give the derivation to opti-
mize U by fixing V and W in mode 1 as:

minbU kmat1S� U	ðW � VÞTk2 ð10Þ

where U⁄ is the weighted factor matrix computed by U	 = U �K or
U	ð1Þ ¼ UðiÞ � Kði;iÞ, and i = 1, 2, . . . , k since K is a diagonal matrix.
The minimization (10) is a linear least-squares problem, and its
solution is written as follows:

U	 ¼ mat1S � ððW � VÞTÞ
�1

¼ mat1S � ðWT W � VT VÞ�1ðW � VÞT ð11Þ

where U⁄ is the weighted version of the mode-1 factor matrix U. In
order to achieve a unique solution for the factor matrices, it is as-
sumed that the columns of U, V, and W are normalized to length
one (Sidiropoulos and Bro, 2000), i.e. kU(i)k = kV(i)k = kW(i)k = 1 for
i = 1, 2, . . . , k. Thus, the solution for the mode-1 factor matrix (Kolda
and Bader, 2009) should be:

Kði;iÞ ¼ jjU	ðiÞjj; UðiÞ ¼ U	ðiÞ=Kði;iÞ; i ¼ 1;2; . . . ; k ð12Þ
The objective function of (8) can therefore be solved by itera-
tively optimizing each factor matrix while keeping the other matri-
ces fixed until the convergence criteria is met. In this study, since
the ideal noise-free tensor S may not be identified in practice,
the R1TD algorithm utilizes the input tensor O as the initialization
value of S. In the tth round of iteration, S is replaced by the
estimated signal tensor bS in the (t � 1)th round of iteration. The
algorithm converges when the error of the estimated signal tensorbS between two iterations decreases to a small value. Table 1
summarizes the proposed R1TD algorithm for HSI noise reduction.

3.3. Estimation of the n-mode rank and the decomposition-level
selection

The decomposition level k is correlated with the tensor rank,
which is the minimum number of rank-1 tensors necessary to de-
scribe a tensor (Kolda and Bader, 2009). Due to the special struc-
ture of the multilinear model compared to the bilinear one, it is
difficult to find an accurate method in the literature to perform
rank estimation for multilinear data. In this study, a new criterion
is proposed for the decomposition-level selection. The n-mode
rank criterion is formulated by:

k ¼ SNR �
Yn

i¼1

Ii

Yn

i¼1

Ki

,
ð13Þ

where SNR is the signal-to-noise ratio defined by dividing the quan-
tity of the power of the signal by that of the noise: Psignal/Pnoise. Ii

(i = 1, 2, . . . , n) is the dimension of the ith mode, with Ki being the
corresponding i-mode rank (Lathauwer, 1997). However, there are
two questions: The first question is how to estimate the SNR value
from the given image, and the second is how to choose the n-mode
rank on each mode properly.

The SNR can be obtained directly when a noise-free image is
available. In some situations, it is difficult to obtain a noise-free im-
age as a priori knowledge. That is to say, the SNR estimation should
be performed based only on the information provided by the input
image. Since the noise is white and Gaussian (Pauluzzi and Beau-
lieu, 2000), the quantity of the signal and noise power can be eval-
uated by the signal and noise variances, respectively. In this part, a
statistic-based algorithm is utilized to give a scalar measurement
of the noise variance and the signal variance. This SNR estimator
consists of the following three steps:

Step 1. Within a moving window of a given size, e.g., 5 � 5, the
variance of the partial image can be calculated. Find the mini-
mum variance value and denote it as the estimation of the noise
variance r̂2

noise.
matrices U, V, and W
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Step 2. Calculate the variance of the input image using (14).

r2
signal 


PI1
i¼1

PI2
j¼1

PI3
k¼1O2

i;j;k

I1 � I2 � I3
� r̂2

noise ð14Þ

Step 3. Perform the SNR prediction of the given image with the fol-
lowing equation:
SNR ¼ Psignal

Pnoise
¼

r2
signal

r2
noise

ð15Þ
Many algorithms with high estimation precision have been dis-
cussed in Pauluzzi and Beaulieu (2000). However, as the SNR esti-
mate is not the main concern in this paper, the above method has
been chosen and is adopted in this work as it is both convenient
and rapid to carry out. The results of this estimation are close to
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Fig. 4. (a) The noiseless HYDICE data cube and

Fig. 5. Noise reduction results: (a) synthetic noisy image (SNR = 15
the real SNR value, and the errors are within an acceptable range
for the parameter estimation.

Differing from the tensor rank, the n-mode rank is denoted as
the dimension of the vector space generated by unfolding the input
tensor on the nth-mode (Lathauwer, 1997). From the perspective
of hyperspectral image noise reduction, the n-mode rank can be re-
garded as the dimension of the signal subspace. As to the problem
of n-mode rank selection, two information-based rank estimation
criteria are taken into consideration in this study, namely, the
Akaike information criterion (AIC) (Akaike, 1974) and the mini-
mum description length (MDL) (Schwarz, 1978).
3.3.1. AIC (Akaike information criterion)
The AIC is introduced as an approach to select an appropriate

model for a parameterized family of probability density functions
used to best fit the sensor array data in passive sensor array
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Band number
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(b) the scaled reflectance on each band.
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processing. Since this theoretical information criterion does not
require any subjective threshold setting, the AIC model has been
proven to be effective in a variety of problems, such as detecting
the number of sources in signal processing (Chang and Du, 2004).
For signal number estimation in a multichannel time-series, the
criterion of the AIC model derived by Wax and Kailath (1985) is
defined as:

AICðrÞ ¼ �2 log
QL

i¼rþ1k
1

L�r
i

1
L�r

PL
i¼rþ1ki

 !ðL�rÞN

þ 2rð2L� rÞ ð16Þ

where r is the number of dominant eigenvalues that contain most of
the information, and k1 P k2 P . . . P kL are eigenvalues generated
by unfolding the input HSI tensor O 2 RL1�L2�L3 in each mode. L
and N are the height and width of the n-mode flattened matrix
matnO 2 RLn�ðL1L2 ...Ln�1Lnþ1 ...L3Þ. Subsequently, using Eq. (16), the rank
of the corresponding mode is obtained:
0 50 100 150

12

16

20

24

28

32

PS
N

R
 (

dB
)

Band number

 R1TD
 SSAHTV
 CCSVD
 CCWF
 MWF

(a)

0 50 100 150
15

20

25

30

35

40

45
 R1TD
 SSAHTV
 CCSVD
 CCWF
 MWF

PS
N

R
 (

dB
)

Band number

(c)

0 50
20

25

30

35

40

45

50

PS
N

R
 (

dB
)

Band

(e
Fig. 6. PSNR values of the different denoising algorithms in each band for the synthetic
SNR = 25 dB.
ðRanknOÞAIC ¼ argfmin
r

AICðrÞg ð17Þ
3.3.2. MDL (minimum description length)
Another commonly used criterion for dimension selection is the

MDL. This method was suggested by Schwarz (1978) for determin-
ing the appropriate number of factors that will fit a given set of
observations in statistics. This model is an extension of maximum
likelihood and gives a mathematical formulation of the principle of
parsimony in model building. Results obtained by MDL are sup-
posed to lean towards lower-dimensional models for large num-
bers of observations, when compared to AIC (Schwarz, 1978).
Since the problem of determining the number of factors in the
observation data set is similar to that of estimating the n-mode
rank, in this work, the MDL algorithm is applied to hyperspectral
image analysis for dimension selection by implementing the for-
mula below:
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MDLðrÞ ¼ � log
QL

i¼rþ1k
1

L�r
i

1
L�r

PL
i¼rþ1ki

 !ðL�rÞN

þ 1
2

rð2L� rÞ log N ð18Þ

Similarly, r in Eq. (18) is the number of dominant eigenvalues,
and k1 P k2 P . . . P kL are the eigenvalues generated by unfolding
the input HSI tensor O 2 RL1�L2�L3 in each mode. L stands for the
height and N is the width of the n-mode matrix unfolding
matnO 2 RLn�ðL1L2 ...Ln�1Lnþ1 ...L3Þ. Subsequently, the n-mode rank can be
calculated via:

ðRanknOÞMDL ¼ argfmin
r

MDLðrÞg ð19Þ

To summarize this section, the procedure for selecting the
decomposition level k involves the following steps. Firstly, two the-
oretical information criteria based estimators are suggested to
compute the n-mode rank of each mode. Secondly, SNR estimation
of the input image is conducted, and we can subsequently calculate
the decomposition level k with Eq. (13).
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Fig. 7. SSIM values of the different denoising algorithms in each band for the synthetic
SNR = 25 dB.
4. Imagery and experiments

4.1. Data set 1

For the synthetic experiments, we use the Hyperspectral Digital
Imagery Collection Experiment (HYDICE) urban image presented in
Fig. 4 as the test HSI data set to verify the performance of the pro-
posed algorithm. This urban data set was acquired by the HYDICE
sensor system in October 1995. The data size is 307 � 307 pixels,
with 210 spectral bands, and the spectral and spatial resolutions
are 10 nm and 2 m. The image area is located at Copperas Cove
near Fort Hood, Texas, US Before the denoising process, the water
vapor absorption bands and the low signal/high noise bands
(104–109, 138–152, and 203–210) were removed. For the purpose
of comparing the noise reduction results at different noise levels,
we generate the experimental images by adding synthetic noise
with different SNR values ranging from 5 dB to 25 dB. Since the
SNR in real data varies between different spectral bands, we
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scenarios: (a) SNR = 5 dB, (b) SNR = 10 dB, (c) SNR = 15 dB, (d) SNR = 20 dB, and (e)



Table 2
mPSNR values of the five noise reduction approaches applied to the synthetic data set.

mPSNR CCSVD CCWF MWF SSAHTV R1TD

SNR = 5 dB 14.087 17.252 17.406 20.312 24.509
SNR = 10 dB 17.607 18.686 20.215 21.237 29.603
SNR = 15 dB 21.786 21.384 23.034 23.645 33.011
SNR = 20 dB 26.519 26.382 26.403 25.679 36.038
SNR = 25 dB 31.632 32.271 28.604 27.267 39.825
Random SNR 16.771 19.987 20.992 23.382 24.668

Table 3
mSSIM values of the five noise reduction approaches applied to the synthetic data set.

mSSIM CCSVD CCWF MWF SSAHTV R1TD

SNR = 5 dB 0.329 0.493 0.545 0.634 0.818
SNR = 10 dB 0.516 0.658 0.668 0.706 0.902
SNR = 15 dB 0.692 0.686 0.768 0.812 0.946
SNR = 20 dB 0.846 0.845 0.860 0.886 0.965
SNR = 25 dB 0.931 0.939 0.897 0.929 0.978
Random noise 0.451 0.586 0.634 0.698 0.816
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randomly add different SNR noise in each band, and generate the
denoising results using the R1TD method under this condition.

To verify the effectiveness of the proposed algorithm, the pro-
posed R1TD tensor model is compared with several competitive
methods: the channel-by-channel locally adaptive Wiener filter
(CCWF) (Banham and Katsaggelos, 1997), channel-by-channel
SVD (CCSVD) (Andrews and Patterson, 1976), SSAHTV (Yuan
et al., 2012), and the MWF algorithm (Muti and Bourennane,
2005). Recently, several human visual perception indices have
been proposed for the estimation of image quality based on a ref-
erence noise-free image. In addition to the visual interpretation,
the following image quality evaluation indices are taken into ac-
count for the noise reduction performance comparison: (1) the
peak signal-to-noise ratio (PSNR); (2) the structural similarity
(SSIM) measure (Wang et al., 2004), which measures the spatial
similarity between the output HSI and the reference data; (3) the
spectral difference (SD); and (4) the spectral angle (SA) (Othman
and Qian, 2006), which determines the spectral similarity between
the processed HSI and the reference data.

From the denoising results shown in Fig. 5, it can be observed
that the CCWF algorithm (Fig. 5c) is not effective in preserving de-
tails, and the result of CCSVD (Fig. 5b) is disturbed by residual
noise. The MWF algorithm (Fig. 5d) is expected to generate noise-
less images; however, some blurring is introduced after the deno-
ising process. SSAHTV effectively removes the random noise and
gives a clear view of the input image. However, some tiny details
are over-smoothed in Fig. 5e. The denoising result of the R1TD
algorithm is presented in Fig. 5f, where most of the details (e.g.,
the edge of the path, and individual trees) are visually better recon-
structed, without artifacts, when compared with the results of the
other methods.

PSNR and SSIM are employed to give a quantitative assessment
of the denoising results from the perspectives of the spatial and
structural information. In the synthetic experiments, the PSNR
and SSIM values are computed between each clear band and the
denoised band. The values of PSNR and SSIM for the different deno-
ising strategies in the different bands of the five simulated cases
are presented in Figs. 6 and 7.

The mean values of PSNR and SSIM are reported in Table 2 and
3. MWF, SSAHTV, and R1TD outperform the other two algorithms,
because they simultaneously take both the spatial and spectral
information into consideration. However, the MWF algorithm is
mainly based on Tucker tensor decomposition and a generalized
Wiener filtering. As a result, although the application of tensor rep-
resentation helps to suppress the blurring brought about by the
Wiener filter, the denoising results after MWF are often contami-
nated by artifacts. SSAHTV employs a spectral-spatial adaptive to-
tal variation (TV) model, in which the differences for both the noise
and the spatial information between different bands are consid-
ered. However, the algorithm over-smoothes the details of the
noisy image while removing the noise. Meanwhile, R1TD estimates
the noisy image by a series of rank-1 tensors, and then removes the
noise component to reconstruct the noise-free image. Since there
are no artifacts introduced in the R1TD process, the corresponding
denoising results are better than MWF and SSAHTV for the preser-
vation of spatial information. It can also be inferred that as the SNR
value increases, the proposed rank-1 tensor-based method
achieves the best performance in terms of both the visual inspec-
tion and the quantitative results.

In addition, Fig. 8 shows the spectral difference between the
spectra of the reference image and those of the denoised images
obtained by the above noise reduction approaches (SNR = 15 dB).
These pixels are chosen from five classes: grass, forest, asphalt,
concrete, and soil. It can be observed that the results of R1TD
shows a smaller spectral difference, compared with MWF, which
has been proven to have good ability in keeping spectral informa-
tion. It can be seen that the channel-by-channel denoising methods
(CCSVD and CCWF) are worse than the tensor-based algorithm in
keeping spectral consistency. Fig. 9 shows the spectral angle be-
tween the noise-free spectra and those obtained by the different
noise reduction methods at the five specific pixels mentioned
above. The results of the spectral angle in Fig. 9 also confirm the
superiority of the proposed R1TD model.

A further comparison of the classification was also performed.
The support vector machine (SVM) algorithm (Mountrakis et al.,
2011) was used as the classifier, and the number of training and
test pixels used in the classification of the HYDICE data set are
shown in Table 4.

Classification maps of the HYDICE data set are presented in
Fig. 10 for visual inspection. The accuracies of the spectral classifi-
cation for CCSVD, CCWF, MWF, SSAHTV, and R1TD are listed and
compared in Table 5, covering all six synthetic cases.

The computation of R1TD involves the selection of the decom-
position level k, which determines the image restoration quality.
It is the only free parameter of the proposed algorithm. The impact
of the decomposition level k value on noise reduction is investi-
gated by implementing the denoising process with various k values
in synthetic experiments. In this comparative study, we employ
the relative difference as a further measurement of the denoising
performance. The relative difference value is computed with the
denoised image bS and a reference noise-free image S, and is derived
as: RD ¼ kS� bSk2

=kSk2. Fig. 11 shows the relative difference value
with respect to the variation of the decomposition level k. Here, we
treat the optimal decomposition level as the k value that makes the
reconstructed image most close to the ideal noise-free image, and
minimizes the relative difference. Given different images, the opti-
mal decomposition level varies correspondingly. It can be inferred
from Fig. 11 that when the value of k is much smaller than that re-
quired for the optimal decomposition level, the number of signal
rank-1 tensors used to estimate the noise-free image is not enough,
and thus leads to a loss of detail in the restored image. When the
value of k is much larger than that required for the optimal decom-
position level, some noise rank-1 profiles are included during the
reconstruction and will also result in a degradation of the recon-
structed image. Although the optimal decomposition level cannot
be identified by visual inspection or a priori knowledge in most
cases, Fig. 11 indicates that the decomposition levels in a certain
data range will yield denoising results that are equivalent to the
optimal decomposition level. Here, we define this data range as
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Fig. 8. Spectral differences between the noise-free spectra and the denoising results of the four denoising methods for the five classes (SNR = 15 dB). (a–e) are the pixels of
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0

8

16

24

32

40

S
pe

ct
ra

 a
ng

le
 r

an
ge

 (
de

gr
ee

)

 CCSVD               
 CCWF
 MWF
 SSAHTV
 R1TD

1.5SD
90%

50%

10%
-1.5SD

0

3

6

9

12

15

S
pe

ct
ra

 a
ng

le
 r

an
ge

 (
de

gr
ee

)

0

2

4

6

8

10

S
pe

ct
ra

 a
ng

le
 r

an
ge

 (
de

gr
ee

)

(c)(b)(a)

0

5

10

15

20

25

S
pe

ct
ra

 a
ng

le
 r

an
ge

 (
de

gr
ee

)

0

3

6

9

12

15

S
pe

ct
ra

 a
ng

le
 r

an
ge

 (
de

gr
ee

)

(e)(d)
Fig. 9. Spectral angles between the noise-free spectra and the denoising results for the five pixels chosen from each class: (a–e) are the pixels of grass, forest, asphalt,
concrete, and soil.
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the acceptable R1TD range. Practically, we manually tune the
acceptable R1TD range in each synthetic case, which is shown as
the light-green1 data set range in Fig. 11. The AIC-based and MDL-
based decomposition-level assessments are performed with respect
to various SNR values for all six synthetic experiments. Fig. 11a–f
1 For interpretation of color in Fig. 11, the reader is referred to the web version of
this article.
demonstrate that all the estimated k values fall in the acceptable
R1TD range, which helps R1TD to achieve satisfying denoising
results. Therefore, we draw the conclusion that the proposed decom-
position-level criterion works and fits well in the synthetic study.

Fig. 12 shows a convergence plot of R1TD for the different
synthetic scenarios. It can be seen that the optimization procedure
converges within 10 iterations, at the chosen decomposition
level.



Table 4
Number of training and test samples used in the classification of the HYDICE data set.

Name of class Training samples Test samples

Forest 25 2437
Grass 25 2191
Soil 25 1378
Asphalt 25 2379
Concrete 25 1923
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To summarize the synthetic experiments, due to the utilization
of the tensor representation, the proposed R1TD model is able to
process the noisy image as an entity, which preserves the inter-
dimensional relationships. The above synthetic experiments reveal
that images generated with both a fixed noise intensity and a ran-
dom noise intensity can achieve satisfactory denoising results.
Fig. 10. Classification maps of the HYDICE data set: (a) spectral classifi

Table 5
SVM Classification accuracy comparison of the R1TD-based and the state-of-the-art noise

Accuracy assessment Input image CCSV

Reference image OA (%) 98.14 97.30
Kappa 0.976 0.966

5 dB OA (%) 93.78 95.03
Kappa 0.922 0.937

10 dB OA (%) 95.30 96.21
Kappa 0.941 0.952

15 dB OA (%) 96.32 96.67
Kappa 0.954 0.958

20 dB OA (%) 97.27 97.28
Kappa 0.964 0.965

25 dB OA (%) 97.48 97.44
Kappa 0.968 0.968

Random SNR OA (%) 90.82 93.28
Kappa 0.884 0.915
4.2. Data set 2

The image data used in this real-world data experiment refers
to an agricultural area of Indiana Pines in northern Indiana, US.
The image size is 128 � 128 pixels and was acquired by the Air-
borne Visible/Infrared Imaging Spectrometer (AVIRIS) sensor in
June 1992, with 220 spectral bands (from 0.4 to 2.5 lm). It should
be noted that some bands of this AVIRIS image are corrupted by
striping noise and other kinds of noise, as well as additive noise.
The hyperspectral cube and scaled reflectance plot are presented
in Fig. 13.

The conventional channel-to-channel denoising methods
(CCSVD and CCWF), the spectral-spatial adaptive TV-based ap-
proach (SSAHTV) and the tensor-based noise removal algorithms
(MWF and R1TD) are applied to this data set. According to the
decomposition-level estimator, the estimation of SNR is 8.9 dB
cation, (b) CCSVD, (c) CCWF, (d) MWF, (e) SSAHTV, and (e) R1TD.

reduction algorithms for the HYDICE data set.

D CCWF MWF SSAHTV R1TD

97.43 97.96 97.35 98.09
0.968 0.974 0.967 0.976
95.71 95.17 95.89 96.59
0.946 0.939 0.951 0.957
96.54 96.32 97.07 97.40
0.956 0.954 0.963 0.967
96.32 97.11 97.03 97.44
0.963 0.963 0.963 0.968
97.27 97.46 96.98 97.86
0.965 0.967 0.962 0.972
97.50 97.67 96.66 97.77
0.968 0.969 0.958 0.972
95.27 96.09 96.22 97.32
0.943 0.953 0.955 0.968
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Fig. 11. The impact of different decomposition levels on the relative difference between the denoised image and the reference image in the synthetic scenarios, with the R1TD
denoising approach.
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Fig. 12. Convergence plot of R1TD for the different synthetic scenarios. (a): 5 dB fixed additive noise, (b) 10 dB,(c) 15 dB, (d) 20 dB, (e) 25 dB, (f) random noise with mean
SNR = 7.9 dB.
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for the real-world data, and the n-mode rank values (K1, K2 and K3)
obtained using AIC and MDL are (45, 45, and 40) and (43, 43, and
42). Since the n-mode rank values generated by the AIC and MDL
criteria for the decomposition-level estimation are identical, either
of these two criteria is suitable for the proposed algorithm. For this
real data experiment, the decomposition level is set to 330, with
respect to the AIC estimation. The parameters for the other three
algorithms are as follows: CCSVD is conducted with a 100 decom-
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Fig. 13. AVIRIS Indian Pines data set: (a) 3-D hyperspectral cube and (b) the scaled reflectance plot.

Fig. 14. Noise reduction results for the AVIRIS Indian Pines data set: (a) original noise band 3, (b) CCSVD, (c) CCWF, (d) MWF, (e) SSAHTV and (e) R1TD.

Table 6
Number of training and test samples used in the classification of data set 2.

Name of class Training samples Test samples

Corn-notill 50 1697
Corn-min 50 661
Grass/pasture 50 727
Grass/trees 50 712
Hay-windrowed 50 217
Soybeans-notill 50 844
Soybeans–min 50 2559
Soybeans–clean 50 490
Woods 50 763
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position level; CCWF is performed with a 4 � 4 window; MWF is
implemented with an n-mode rank (K1, K2, and K3) = (45, 45, and
40), which was also estimated by the AIC model; and in SSAHTV
the lambda that controls the strength of the noise reduction is
set to 2.2.

Fig. 14 gives the noise reduction results of the AVIRIS data set
on the 3rd band. From a visual interpretation, R1TD is more effec-
tive in removing additive noise in this real-world test data set than
the other denoising strategies. There are, however, some undesired
horizontal stripes in the R1TD results. The main reason for this is
that the R1TD approach is based on the assumption of an additive
blend of noise and signal, and hence it is expected to be effective
for the AWGN (Additive White and Gaussian Noise) scenario. How-
ever, striping-noise and mixed-noise bands are in fact found in the
AVIRIS data set. The stripes can be explained by the striping noise
that is contained in the original AVIRIS data set, which become
clear after the removal of the additive noise. Further efforts should
be devoted to improving the proposed algorithm for suppressing
multiplicative and striping noise.
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Fig. 15. Classification map obtained before and after denoising of the Indian Pines data set: (a) original image, (b) CCSVD, (c) CCWF, (d) MWF, (e) SSAHTV, and (f) R1TD.

Table 7
Class-specific accuracies comparison of the R1TD-based and the state-of-the-art noise reduction algorithms for the Indiana Pines data set.

Class 1 2 3 4 5 6 7 8 9 OA Kappa

Origin 73.7 79.6 94.5 95.7 94.3 63.5 83.3 69.7 99.5 81.1 0.777
CCSVD 73.2 80.7 94.4 95.9 93.1 65.1 84.3 68.9 99.6 81.4 0.780
CCWF 83.3 86.7 97.0 90.9 77.2 68.7 89.1 72.4 98.9 85.1 0.824
MWF 84.1 81.2 97.1 96.3 97.3 66.4 86.7 73.3 99.8 85.3 0.826
SSAHTV 86.4 87.4 94.2 92.0 83.1 73.2 90.2 70.1 98.5 86.1 0.837
R1TD 80.1 82.7 94.8 96.3 82.1 81.7 93.7 63.3 99.3 86.8 0.843
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It is worth noting that, for the Indian Pines data set, the reference
noise-free image is not available. Thus, to validate the noise re-
moval performance, classification is implemented on each denoised
image to evaluate the denoising algorithms. Nine land-cover classes
are of interest: corn-notill, corn-min, grass/pasture, grass/trees,
hay-windrowed, soybeans-notill, soybeans-min, soybeans-clean,
and woods. Classification is performed via the SVM algorithm,
and the number of training and test pixels for the nine classes are
generated randomly from the ground truth reference (Table 6).

Fig. 15 shows the classification maps. It is clear that the noise
level is different in each band of the real data cube, and the conven-
tional channel-by-channel image denoising methods tend to
remove the detailed features and destroy the spectral coherence
of the image after the denoising process. The accuracy assessments
given in Table 7 indicate that the classification accuracy using
R1TD is higher than those of CCSVD and CCWF. In summary, the
proposed algorithm is better for detail preservation and is more
effective than MWF and SSAHTV, in the classification case.
5. Conclusion

In this study, the high-order rank-1 tensor decomposition
(R1TD) model is investigated to develop a new noise removal
algorithm for hyperspectral image pre-processing. The main
advantage of the R1TD algorithm is that it treats the HSI data as
a cube and, hence, is able to simultaneously extract tensor features
in both the spectral and spatial modes. Unlike the state-of-the-art
Tucker model based denoising methods, the proposed R1TD algo-
rithm considers the fact that the different parts of HSI can be rep-
resented by a sequence of rank-1 tensors. Then, in the additive
noise condition, noise-free HSI can be obtained once the noise
component is removed. However, the determination of the decom-
position level in rank-1 tensor decomposition is a difficult and
challenging problem. In this study, we present an n-mode rank
based decomposition-level estimator, which performs the decom-
position-level estimation with the signal-to-noise ratio (SNR),
dimension, and n-mode rank of the input image. The experimental
results revealed that, for synthetic data, the image quality was im-
proved while the spectral information was well preserved. The
PSNR and SSIM indices reached 39.578 and 0.978, respectively, in
the 25 dB synthetic case. Due to the utilization of tensor represen-
tation, images generated with both a fixed noise intensity and a
random noise intensity were effectively processed in the synthetic
scenarios. Meanwhile, the proposed decomposition-level estimator
was validated by the quantitative results, and the estimated values
of k were within the acceptable range in all cases. Meanwhile, for
real-world data, R1TD was effective for additive noise removal,
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and the classification result was improved as the overall accuracy
increased from 81.1% to 86.8% with the estimated k value.

As a concluding remark, compared with the conventional deno-
ising methods, the proposed R1TD algorithm achieves a significant
improvement in HSI data quality for both synthetic noisy data and
real HSI data. However, the R1TD approach is based on the
assumption of an additive blend of noise and signal. It is therefore
effective for the additive white and Gaussian noise (AWGN) sce-
nario. However, real-world HSI contains different kinds of noise
in addition to the AWGN, and the proposed algorithm should be
improved to deal with multiplicative and striping noise.
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