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Abstract—In this paper we investigate the problem
of designing a spectrum scanning strategy to detect
an intelligent Invader who wants to utilize spectrum
undetected for his/her unapproved purposes. To deal
with this problem we model the situation as two games,
between a Scanner and an Invader, and solve them
sequentially. The first game is formulated to design
the optimal (in maxmin sense) scanning algorithm,
while the second one allows one to find the optimal
values of the parameters for the algorithm depending
on parameters of the network. These games provide
solutions for two dilemmas that the rivals face. The
Invader’s dilemma consists of the following: the more
bandwidth the Invader attempts to use leads to a larger
payoff if he is not detected, but at the same time
also increases the probability of being detected and
thus fined. Similarly, the Scanner faces a dilemma: the
wider the bandwidth scanned, the higher the proba-
bility of detecting the Invader, but at the expense of
increasing the cost of building the scanning system. The
equilibrium strategies are found explicitly and reveal
interesting properties. In particular, we have found a
discontinuous dependence of the equilibrium strategies
on the network parameters, fine and the type of the
Invader’s award. This discontinuity of the fine means
that the network provider has to take into account
a human/social factor since some threshold values of
fine could be very sensible for the Invader, while in
other situations simply increasing the fine has minimal
deterrence impact. Also we show how incomplete in-
formation about the Invader’s technical characteristics
and reward (e.g. motivated by using different type of
application, say, video-streaming or downloading files)
can be incorporated into scanning strategy to increase
its efficiency.

I. Introduction
Over the last few decades, the increasing demand for

wireless communications has motivated the exploration
for more efficient usage of spectral resources ([1], [2]). In
particular, it has been noticed that there are large portions
of spectrum that are severely under-utilized [3]. Recently,
cognitive radio technologies (CR) have been proposed as
a means to intelligently use such spectrum opportunities
by sensing the radio environment and exploiting available
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spectrum holes for secondary usage [4]. In CR systems,
secondary users are allowed to “borrow (or lease)” the
usage of spectrum from primary users (licensed users),
as long as they do not hinder in the proper operation of
the primary users’ communications. Unfortunately, as we
move to make the CR technologies commercial, which will
allow secondary users to access spectrum owned by pri-
mary users, we will face the inevitable risk that adversaries
will be tempted to use CR technology for illicit and selfish
purposes [5]. If we imagine an unauthorized user (Invader)
attempting to sneak usage of spectrum without obeying
proper regulations or leasing the usage of the spectrum,
the result will be that both legitimate secondary users and
primary users will face unexpected interference, resulting
in significant performance degradation across the system.

The challenge of enforcing the proper usage of spectrum
requires the notion of a “spectrum policing agent”, whose
primary job is to ensure the proper usage of spectrum
and identify anomalous activities occurring within the
spectrum[5]. As a starting point to being able to police
the usage of spectrum, we must have the ability to scan
spectrum and effectively identify anomalous activities.
Towards this objective, there have been several research
efforts in signal processing techniques that can be applied
to the spectrum scanning problem. For example, in [6],
[7], the authors presented methods for detecting a desired
signal contained within interference. Similarly, detection of
unknown signals in noise without prior knowledge of au-
thorized users was studied in [8], [9]. As another example,
in [5], the authors proposed a method to detect anomalous
transmission by making use of radio propagation charac-
teristics. In [10], the authors investigated what impact on
spectrum scanning can have information about the over-
arching application that a spectrum thief might try to run,
while, in [11], a stationary bandwidth scanning strategy in
a discounted repeated game was suggested.

However, these pieces of work tend to not examine
the important “interplay” between the two participants
inherent in the problem– the Invader, who is smart and
will attempt to use the spectrum in a manner to minimize
the chance of being detected and fined, while also striving
to maximize the benefit he/she receives from illicit usage
of this spectrum; and the Scanner, who must be smart
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and employ a strategy that strategically maximizes the
chance of detecting and fining the smart Invader, with
minimal cost. This challenge is made more difficult by
the complexity of the underlying scanning problem itself:
there will be large swaths of bandwidth to scan, and
the system costs (e.g., analog-to-digital conversion, and
the computation associated with running signal classifiers)
associated with scanning very wide bandwidth makes it
impossible to scan the full range of spectrum in a single
instance. Consequently, it is important to understand the
strategic dynamics that exist between the Scanner and
the Invader, while also taking into account the underlying
costs and benefits that exist for each participant as well
as information or its lack on the technical characteris-
tics of the Invader and his object to intrude into the
bandwidth. This paper1 focuses on finding the optimal
scanning strategy by selecting the scanned (and, simi-
larly, the invaded) bandwidth that should be employed
in spectrum scanning and examining how incorporating
information or the lack of information about the technical
characteristics of the Invader and his object can improve
the scanning strategy. In order to solve this problem we
will apply a Bayesian approach. Note that Bayesian ap-
proaches have been widely employed in dealing with differ-
ent problems in networks, for example, intrusion detection
[13], [14], [15], scanning bandwidth [10] and transmission
under incomplete information [16], [17], [18], [19], [20],
[21]. Finally note that the optimal scanning problem also
relates the problem of designing security systems. Note
that an extensive literature exists on the construction and
modeling of different aspects of such security systems for
communication and network security [22], [23], [24], [25],
[26], [27], [13], [28], [29], security in wireless networks [30],
[31] and cyber-security [32], [14], [16]. In [33], the readers
can find a structured and comprehensive survey of the
research contributions that analyze and solve security and
privacy problems in computer networks via game-theoretic
approaches.

The organization of this paper is as follows: in Section
II, we first define the problem by formulating two games,
which will be solved sequentially in terms of payoff and
cost functions. In the first game, the Scanner looks for
the maxmin scanning algorithm, if parameters (widths
of used bandwidths) of scanning and intrusion are fixed
and known. In the second game each player, using the
first game’s result, which supplies detection probability,
looks for the optimal values of these parameters. To gain
insight into the problem, in Section IV-A, we outline a
linearized model for detection probability and arrive at the
corresponding best response strategies for each player in
Section IV-B. We then explicitly obtain the equilibrium
strategies, in Section IV-C and Section IV-D, for cases
involving complete and incomplete knowledge of the In-

1The authors note that a shortened version of this research was
presented at Crowncom 2013 [12], and this paper extends the idea
presented at Crowncom.

vader’s technical characteristics (radio’s capabilities). In
Section V, numerical illustrations are supplied. Finally,
in Section VI, discussions and conclusions are supplied,
and, in Appendix, the proofs of the announced results are
offered to close the paper.

II. Formulation of the scanning problem
In this section, we set up our problem formulation. Our

formulation of the spectrum scanning problem involves
two players: the Scanner and the Invader. The Scanner,
who is always present in the system, scans a part of the
band of frequencies that are to be monitored, in order to
prevent illegal usage by a potential Invader of the primary
(Scanner) network’s ownership of this band. We assume
that the amount of bandwidth that needs to be scanned
is much larger than is possible using a single scan by the
Scanner, and hence the Scanner faces a dilemma: the more
bandwidth that is scanned, the higher the probability of
detecting the Invader, but at the expense of increasing the
cost of the RF scanning system.

We assume that if the Scanner scans a particular fre-
quency band IS and the Invader uses the band II then
the invasion will be detected with certainty if IS ∩ II 6= ∅,
and it will not be detected otherwise. Without loss of
generality, we can assume that the size of the protected
frequency band is normalized to 1. The Invader wants
to use spectrum undetected for some illicit purpose. We
consider two scenarios: (a) The reward for the Invader is
related to the width of the frequency band he uses if he
is undetected. If he is detected he will be fined. Thus, the
Invader faces a dilemma: the more bandwidth he tries to
use yields a larger payoff if he is not detected but also
it increases the probability of being detected and thus to
be fined, (b) The reward for the Invader is unknown to
the Scanner: he only knows whether it is related to the
width of the frequency band the Invader uses, or not. We
formulate this problem as two games, which will be solved
separately in the following two subsections.

A. Formulation of the first game - the scanning algorithm
In the first game, where we look for a maxmin scanning

algorithm, the Scanner selects the band BS = [tS , tS+x] ⊆
[0, 1] with a fixed upper bound of frequency width x
to scan i.e. tS ≤ 1 − x. The Invader selects the band
BI = [tI , tI + y] ⊆ [0, 1] with a fixed upper bound
frequency width y to intrude, i.e., tI ≤ 1 − y. Thus,
BS and BI are pure strategies for the Scanner and the
Invader. The Scanner’s payoff v(BS , BI) is 1 if the Invader
is detected (i.e. [tS , tS+x]∩[tI , tI+y] 6= ∅) and his payoff is
zero otherwise. The goal of the Scanner is to maximize his
payoff, while the Invader wants to minimize it. Thus, the
Scanner and the Invader play a zero-sum game. The saddle
point (equilibrium) of the game is a couple of strategies
(BS∗, BI∗) such that for each couple of strategies (BS , BI)
the following inequalities hold [34]:

v(BS , BI∗) ≤ v := v(BS∗, BI∗) ≤ v(BS∗, BI),



where v is the value of the game. It is clear that the
game does not have a saddle point in the pure strategy
if x + y < 1. To find the saddle point we have to
extend the game by mixed strategies, where we assign a
probability distribution over pure strategies. Then instead
of the payoff v we have its expected value. The game has
a saddle point in mixed strategies, and let P (x, y) be the
value of the game. Then P (x, y) is the maximal detection
probability of the Invader under worst conditions.

B. Formulation of the second game - the optimal parame-
ters of the scanning algorithm

In the second game the rivals knowing their equilib-
rium strategies from the first game as well as detection
probability P (x, y), want to find the equilibrium frequency
widths x and y. We here consider three sub-scenarios: (a)
the Invader’s type is known: namely, it is known how
the reward for the Invader is related to the width of
the frequency band he uses if he is undetected, (b) the
technical characteristics of the Invader are known: namely,
it is known which frequency band is available for him to
use, (c) the Invader’s type is unknown: instead, there is
only a chance that the Invader reward is related to the
width in use. Otherwise, it is not related. Different types
of rewards can be motivated by using different types of
applications (say, file-download or streaming video).

1) Invader reward is related to the bandwidth used: A
strategy for the Scanner is to scan a width of frequency
of size x ∈ [a, b], and a strategy for the Invader is to
employ a width of frequency of size y ∈ [a, c], where
c ≤ b < 1/2. Thus, we assume that the Invader’s technical
characteristics (e.g., radio’s capabilities) are not better
than the Scanner’s ones.

If the Scanner and the Invader use the strategies x and
y, then the payoff to the Invader is the expected reward
(which is a function U(y) of bandwidth y illegally used by
the Invader) minus intrusion expenses (which is a function
CI(y) of bandwidth y) and expected fine F to pay, i.e.,

vI(x, y) = (1− P (x, y))U(y)− FP (x, y)− CI(y). (1)

The Scanner wants to detect intrusion taking into ac-
count scanning the expenses and damage caused by the
illegal use of the bandwidth by the Invader. For detection,
he is rewarded by a fine F imposed on the Invader.
Thus, the payoff to the Scanner is the difference between
the expected reward for detection, and the damage from
intrusion into the bandwidth (which is a function V (y)
of bandwidth y illegally used by the Invader) with the
scanning expenses (which is a function CS(x) of scanned
bandwidth x),

vS(x, y) = FP (x, y)− V (y)(1− P (x, y))− CS(x). (2)

Note that introducing transmission costs in such a for-
mulation is common for CDMA [31], [35] and ALOHA
networks ([36], [37]).

2) Incomplete information of the Invader’s reward and
technical characteristics: In this section we assume that
the Invader’s reward is defined by the reason he intruded
into the bandwidth illegally for, and we consider two such
reasons:

(a) With probability 1− q0 for the Invader it is just
important to work in the network without being
detected. Thus, if he is not detected his reward
is U which does not depend on the width of
bandwidth employed for the intrusion. Then, of
course, to minimize the probability of detection
he will employ the minimal bandwidth allowed,
thus, his strategy is y = a.

(b) With probability q0 for the Invader the band-
width he uses is important. Thus, his reward is
the same as in Section II-B1. We assume that his
technical characteristics can be different, the In-
vader knows his characteristics, but the Scanner
does not know them. Under Invader’s technical
characteristics we assume an upper bound on
the spectrum width he can employ. The Scanner
knows only this upper bound on bandwidth as
c with a conditional probability q(c) ≥ 0 for
c ∈ [a, b], i.e.,

∫ b
a
q(c) dc = 1.

To deal with this situation we are going to apply a
Bayesian approach, namely, we introduce type c ∈ [a, b]
for the Invader related to the corresponding upper bounds
(thus, we here deal with a continuum of Invader’s types).
The Invader knows his type, while the Scanner knows only
its distribution. Denote by y(c) ∈ [a, c] the strategy of the
Invader of type c. Then his payoff is given as follows:

vcI(x,y(c)) = (1− P (x,y(c)))U(y(c))
− FP (x,y(c))− CI(y(c)).

(3)

The payoff to the Scanner is the expected payoff taking
into account the type of Invader:

vES (x,y) = (1− q0)vS(x, a) + q0

∫ b

a

q(c)vS(x,y(c)) dc (4)

with vS(x,y(c)) given by Eq. (2).
Here we look for Bayesian equilibrium [34], i.e., for

such couple of strategies (x∗,y∗) that for any (x,y) the
following inequalities hold:

vES (x,y∗) ≤ vES (x∗,y∗),
vcI(x∗,y(c)) ≤ vcI(x∗,y∗(c)), c ∈ supp(q),

(5)

with supp(q) = {c ∈ [a, b] : q(c) > 0}.
We assume that the Scanner and the Invader know (as in

the case with complete information) the parameters F , CI ,
CS , V , U , a, b as well as the probabilities q(c) (c ∈ [a, b])
and q0.

III. Equilibrium strategies for the first game
In the following theorem we give the equilibrium strate-

gies for the first game (thus, maxmin scanning algorithm)
for fixed bound width of the rivals.



Theorem 1: In the first game with fixed width to scan
x and to invade y, the rivals employ a uniform tiling
behavior. Namely,

(a) Let 1− (x+ y)M ≤ y with

M = b1/(x+ y)c , (6)

where bξc is the greatest integer less or equal to ξ. Then
the Scanner and the Invader will, with equal probability
1/M , employ a band of the set A−S and A−I correspond-
ingly.

(b) Let 1 − (x + y)M > y. Then the Scanner and the
Invader will, with equal probability 1/(M + 1), employ a
band of the set A+S and A+I correspondingly, where

A−S = {[k(x+ y)− x, k(x+ y)], k = 1, ...,M},
A−I = {[k(x+ y)− y − ε(M + 1− k), k(x+ y)− ε(M − k)],

k = 1, ...,M}, 0 < ε < x/M,

A+S = A−S ∪ [1− x, 1],
A+I = {[(k − 1)(x+ y + ε), (k − 1)(x+ y + ε) + y],

k = 1, ...,M} ∪ [1− y, 1], 0 < ε <
1− y −M(x+ y)

M − 1 .

The value of the game (detection probability) P (x, y) is
given as follows:

P (x, y) =
{

1/M, 1− (x+ y)M ≤ y,
1/(M + 1), 1− (x+ y)M > y.

(7)

IV. Equilibrium strategy for the second game
In this section, which is split into five subsections,

we find the equilibrium strategies for the second game
explicitly. First, in Subsection IV-A we linearize our model
to get an explicit solution, then in Subsection IV-B the
best response strategies are given, and they are employed
in Subsections IV-C and IV-D to construct equilibrium
strategies for known and unknown Invader’s technical
characteristics correspondingly.

A. Linearized model
In order to get an insight into the problem, we consider

a situation where the detection’s probability P (x, y) for
x, y ∈ [a, b] is approximated by a linear function as follows:

P (x, y) = x+ y. (8)

Thus, Eq. (7) and Eq. (8) coincide for x + y = 1/n, n =
2, 3, ... We assume that the scanning and intrusion cost as
well as the Invader’s and Scanner’s utilities are linear in
the bandwidth involved, i.e., CS(x) = CSx, CI(y) = CIy,
U(y) = Uy, V (y) = V y where CS , CI , U, V > 0. Then the
payoffs to the Invader and the Scanner, if they use strate-
gies x ∈ [a, b] and y ∈ [a, c] (y(c) ∈ [a, c]) respectively,
become:

(i) For the known Invader’s reward:

vI(x, y) = U(1− x− y)y − F (x+ y)− CIy,
vS(x, y) = F (x+ y)− V y(1− x− y)− CSx,

(ii) For the unknown Invader’s reward and technical
characteristics:

vcI(x,y(c)) = U(1− x− y(c))y(c)
− F (x+ y(c))− CIy(c), for c ∈ supp(q),

vES (x,y) = q0

∫ b

a

[
F (x+ y(ξ))

− V y(ξ)(1− x− y(ξ))
]
q(ξ) dξ

+ (1− q0)
(
F (x+ a)− V a(1− x− a)

)
− CSx.

Note that linearized payoffs have found extensive usage
for a wide array of problems in wireless networks [36], [38],
[39], [40], [41]. Of course, such an approach simplifies the
original problem and only gives an approximated solution.
Meanwhile, it can also be very useful: sometimes it allows
one to obtain a solution explicitly, and allows one to
look inside of the structure of the solution as well as the
correlation between parameters of the system.

B. The best response strategies

In this section, we give the best response strategies
for the Scanner and the Invader when the Invader’s
reward and technical characteristics are unknown, i.e.,
such strategies that BRE

S (y) = arg maxx vES (x,y) and
BRc

I(x) = arg maxy(c) v
c
I(x,y(c)).

Theorem 2: In the second step of the considered game
with unknown Invader’s reward and technical characteris-
tics the Scanner and the Invader have the best response
strategies BRE

S (y) and BRc
I(x) given as follows:

BRE
S (y) =


a, ȳ < Rq0 ,

any from [a, b], ȳ = Rq0 ,

b, ȳ > Rq0 ,

(9)

BRc
I(x) =


c, c ≤ L(x),
L(x), a < L(x) < c,

a, L(x) ≤ a
(10)

with

L(x) = T − x
2 ,

T = U − F − CI
U

,

R = CS − F
V

,

Rq0 = CS − F − (1− q0)V a
q0V

= R− a(1− q0)
q0

(11)

and

ȳ =
∫ b

a

q(ξ)y(ξ) dξ.



C. Equilibrium strategies: the unknown Invader’s reward
and technical characteristics

The equilibrium for the game exists since the payoff to
the Scanner is linear in x and the payoff to the Invader of
type c is concave in y(c). The equilibrium can be found
by Eq. (5) as a couple of strategies (x,y) which are the
best response to each other, i.e., x = BRE

S (y) and y(c) =
BRc

I(x), c ∈ [a, b] and such a solution always exists and is
unique as shown in the following theorem.

Theorem 3: The considered second game with unknown
Invader’s reward and technical characteristics has unique
Bayesian equilibrium (x,y), and it is given as follows:

x =


b, Rq0 ≤ BRI(b),
BR−1

I (Rq0 ) , BRI(b) < Rq0 < BRI(a),
a, BRI(a) ≤ Rq0 ,

y(c) =


BRc

I(b), Rq0 ≤ BRI(b),
BRc

I

(
BR−1

I (Rq0 )
)
, BRI(b) < Rq0 < BRI(a),

BRc
I(a), BRI(a) ≤ Rq0 ,

(12)

where c ∈ supp(q) with

BRI(x) =
∫ b

a

q(ξ)BRξ
I(x) dξ (13)

and BR−1
I (x) is inverse function to BRI(x), i.e.,

BR−1
I

(
BRI(x)

)
= x.

D. Equilibrium strategies: the known Invader’s technical
characteristics and unknown reward

The equilibrium for the second game with complete
information about the technical characteristics of the In-
vader and unknown reward can be presented explicitly as
follows:

Theorem 4: Let the Invader’s technical characteristics
be known but his reward can be unknown. This second
game has unique Nash equilibrium, and it is given by
Table I.

Note that the Scanner’s and Invader’s equilibrium
strategies can have sudden jumps (discontinuities) as one
continuously varies the fine F and probability q0 that the
Invader’s reward related bandwidth used. It is caused by
the fact that Rq0 depends on these parameters, while L
depends only on F . For example, (i1)-(i6) implies that the
Invader’s equilibrium strategy can jump while probability
q0 varies, and (i2) and (i6) yield about the possibility of
such a jump by fine F . The possibility of jumps for the
Scanner’s equilibrium strategy follows from (i2) and (i5).

V. Numerical illustrations
As a numerical illustration of the scenario with complete

information on the Invader’s technical characteristics, we
consider U = V = 1, a = 0.01, b = 0.3, CS = 0.4,
CI = 0.1 and q is the uniform distribution in [a0, b0] =
[a+(b−a)/10, b] = [0.039, 0.3]. Figure 1 demonstrates the
Scanner’s equilibrium strategy and payoff as functions of

the fine F ∈ [0.1, 0.4] and the probability q0 ∈ [0.01, 0.99]
that the Invader’s reward related to bandwidth used.
Increasing fine F and probability q0 makes the Scanner
employ a larger band and impacts the Scanner’s payoff in a
multi-directional way, namely, it increases F and decreases
q0. This is caused by the fact that the Invader, who wants
to minimize his detection probability, causes less damage
to the network than the one who benefits from using a
larger bandwidth.

Figures 2 and 3 illustrate the Invader’s equilibrium
strategy and payoff if his reward is related to the band-
width used for c = a0 and c = b0 respectively. Figure 4
demonstrates corresponding detection probabilities. The
Invader of type c = a0 employs a constant strategy y(c) =
a0 independent of the fine F and probability q0. The
Invader’s payoff and detection probability vary in opposite
directions while fine F and probability q0 are increasing,
namely, the Invader’s payoff is decreasing, while the de-
tection probability is increasing, since it also makes the
Scanner to employ a larger bandwidth. What is interesting
is that the Invader’s payoff experiences a sudden drop and
the detection probability experiences a sudden jump due
to the Scanner’s behaviour, who alters his strategy by a
sudden jump at threshold values. For the Invader with
a reward un-related to the bandwidth used, the payoff
and detection behave similarly but with some shift since
such an Invader also employs a constant strategy y = a
(Figure 5). The Invader of type c = b0 uses a strategy
depending on fine F and probability q0. Increasing fine F
and probability q0 makes the Invader employ a smaller
bandwidth and reduces his payoff. What is interesting
that his detection probability is not monotonous by fine F
and probability q0 and increasing fine F and probability
q0 could even reduce the detection probability. It can
be explained that at the threshold values of fine F and
probability q0 the Scanner already gets the upper band,
while the Invader still does not get to the lower band,
and further increasing of the fine and probability leads to
continuous decreasing of the detection probability due to
the smaller bandwidth employed by the Invader.

VI. Discussion
In this paper, we suggest a simple model for designing

a maxmin scanning algorithm for detection of an Invader
with incomplete information about the Invader’s reward
and technical characteristics and we find the optimal pa-
rameters (width of bandwidth to scan) for this algorithm.
We have shown that this optimal width essentially depends
on the network’s and agent’s characteristics and under
some conditions a small variation of network parameters
and fine could lead to jump changes in the optimal
strategies, as well as in the payoffs of the rivals. This
mixture between continuous and discontinuous behavior
of the Invader under the influence of fine implies that the
network provider has to carefully make a value judgement:
some threshold values of fine could have a huge impact on



Case Condition Condition x y PR PU

i1 Rq0 < a L(b) < a b a a+ b 2a
i2 Rq0 < a a ≤ L(b) ≤ c b L(b) b+ L(b) b+ a
i3 Rq0 < a c < L(b) b c b+ c b+ a
i4 c < Rq0 L(a) < a a a 2a 2a
i5 c < Rq0 a ≤ L(a) ≤ c a L(a) a+ L(a) 2a
i6 c < Rq0 c < L(a) a c a+ c 2a
i7 a ≤ Rq0 ≤ c L(b) ≤ Rq0 ≤ L(a) L−1 (Rq0 ) Rq0 L−1 (Rq0 ) +Rq0 L−1 (Rq0 ) + a
i8 a ≤ Rq0 ≤ c L(a) ≤ a a a 2a 2a
i9 a ≤ Rq0 ≤ c a < L(a) < Rq0 a L(a) a+ L(a) 2a
i10 a ≤ Rq0 ≤ c c < L(b) b c b+ c b+ a
i11 a ≤ Rq0 ≤ c Rq0 < L(b) < c b L(b) b+ L(b) b+ a

TABLE I
The equilibrium strategies (x, y) with L−1(Rq0 ) = T − 2(CS − F − (1 − q0)V )/(q0V ) and PR and PU are detection probabilities

of the Invader with reward related and un-related to the bandwidth used.

Fig. 1. Equilibrium strategy x (upper) and payoff (bottom) to the
Scanner.

Fig. 2. Equilibrium strategy y (upper) and payoff (bottom) to the
Invader for c = a0.



Fig. 3. Equilibrium strategy y (upper) and payoff (bottom) to the
Invader for c = b0.

the Invader, while in the other situations a small increase
will have a minimal impact on the strategies used. A
goal for our future investigation is to investigate the non-
linearized detection probability. Also, we intend to extend
our model to the case of multi-step scanning algorithms
with learning.

VII. Appendix

A. Proof of Theorem 1

Suppose that the Invader uses a band BI with width
y and the Scanner with equal probability employ a band
from the set A−S (A+S) for 1 − (x + y)M ≤ y (for 1 −
(x + y)M > y). The intervals composing A−S and A+S
are separated from each other by at most y. So, at least
one band from A−S for 1− (x + y)M ≤ y and from A+S
for 1 − (x + y)M > y intersects with BI . So, detection
probability is greater or equal to 1/M for 1−(x+y)M ≤ y

Fig. 4. Detection probability of the Invader with c = a0 (upper)
and c = b0 (bottom).

and it is is greater or equal to 1/(M+1) for 1−(x+y)M >
y.

Suppose that the Scanner uses a band BS with width
x and the Invader with equal probability employ a band
from the set A−I (A+I) for 1 − (x + y)M ≤ y (for 1 −
(x + y)M > y). The intervals composing A−I and A+I
are separated from each other by more that x. So, at most
one band from A−I for 1 − (x + y)M ≤ y and from A+I
for 1 − (x + y)M > y intersects with BS . So, detection
probability is less or equal to 1/M for 1 − (x + y)M ≤ y
and it is is less or equal to 1/(M +1) for 1− (x+y)M > y
and the result follows.



Fig. 5. Payoff (upper) and detection probability (bottom) of the
Invader with reward un-related to the bandwidth used.

Appendix
Note that

vES (x,y) =
(
F − CS + q0V ȳ + (1− q0)V a

)
x

+ q0

[
(F − V )ȳ + V

∫ b

a

y2(ξ)q(ξ) dξ
]

+ (1− q0)(F − V + V a)a.

So, for a fixed y the payoff vES (x,y) is linear on x. Thus,
BRE

S (y) = arg maxx vES (x,y) is defined by sign of F −
CS + q0V ȳ + (1− q0)V a as it is given by (9).

Note that, the Invader’s payoff has the following form:

vcI(x,y(c)) = (U(1− x)− F − CI)y(c)− Uy2(c)− xF.

So, for a fixed x the payoff vcI(x,y(c)) is a concave
quadratic polynomial on y(c) getting its absolute max-
imum at y(c) = (U(1 − x) − F − CI)/(2U). Thus, the

maximum of vcI(x,y(c)) by y(c) within [a, c] is reached
either on its bounds y(c) = a and y(c) = c or at
y(c) = (U(1 − x) − F − CI)/(2U) if it belongs to [a, c]
as it is given by (10).

A. Proof of Theorem 3
First note that (x,y) is a Nash equilibrium if and

only if it is a solution of equations x = BRE
S (y) and

y(c) = BRc
I(x), c ∈ [a, b] with BRE

S (y) and BRc
I(x) given

by Theorem 2.
By (11) we have that (9) in equilibrium point is equiv-

alent to

x =


a, BRI(x) < Rq0 ,

any from [a, b], BRI(x) = Rq0 ,

b, BRI(x) > Rq0

(14)

with BRI(x) given by (13).
Note that BRI(x) is non-increasing on x. Thus, if

BRI(a) < Rq0 , then BRI(x) < Rq0 for any x and (14)
yields that x has to be equal to a. If BRI(b) > Rq0 ,
then BRI(x) > Rq0 for any x and (14) yields that x
has to be equal to b. If BRI(b) ≤ Rq0 ≤ BRI(a) then
x = BR−1

I (Rq0) and the result follows.

B. Proof of Theorem 4
For the situation with complete information of the

Invader’s technical characteristics the best response strate-
gies turn into

BRS(y) =


a, y < Rq0 ,

any from [a, b], y = Rq0 ,

b, y > Rq0 ,

(15)

BRI(x) =


a, L(x) ≤ a,
L(x), a < L(x) < c,

c, c ≤ L(x)

=


a, x ≤ T − 2c,
L(x), T − 2c < x < T − 2a,
c, T − 2a ≤ x.

(16)

Thus, the equilibrium can be described as an intersec-
tion of the best response curves (Figure 6). Such intersec-
tion always exists.

Let a > Rq0 . By (15), BRS(y) ≡ b. This, jointly with
(16), implies (i1)-(i3).

Let Rq0 > c. By (15), BRS(y) ≡ a. Then, (16) implies
(i4)-(i6).

Let a ≤ Rq0 ≤ c. First note L(x) is linear decreasing
function from L(a) for x = a to L(b) for x = b.

(a) Let L(b) ≤ Rq0 ≤ L(a). Then the equation
L(x) = Rq0 has the unique root within [a, b].
Thus, (15) and (16) yield (i7).



Fig. 6. The Nash equilibrium as an intersection of the best response
curves

(b) Let L(a) ≤ Rq0 . Then, L(x) < Rq0 for x ∈ (a, b].
So, by (16), BRI(x) < c for x ∈ [a, b]. Besides, by
the assumption, the equation L(x) = Rq0 does
not has root in [a, b]. Thus, by (15), BRS(y) ≡ a.
So, (16) implies (i8) and (i9).

(c) Let Rq0 < L(b). Then L(x) > Rq0 for x ∈ [a, b).
Thus, by (16), BRI(x) > a for x ∈ [a, b]. Besides,
by the assumption, the equation L(x) = Rq0 does
not has root in [a, b]. So, by (15), BRS(y) = b,
and, (16) implies (i10) and (i11).
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