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Motivated by applications in modelling quantum systemsgsioalgebraic techniques, we introduce
a fibred coalgebraic logic. Our approach extends the comraipredicate lifting semantics with ad-
ditional modalities relating conditions on different fibré\s this fibred setting will typically involve
multiple signature functors, the logic incorporates a wlais of modalities enabling the construction
of new modalities using various composition operations. éend the semantics of coalgebraic
logic to this setting, and prove that this extension respleehavioural equivalence.

We show how properties of the semantics of modalities aregpved under composition opera-
tions, and then apply the calculational aspect of our logiigrbduce an expressive set of modalities
for reasoning about quantum systems, building these madalip from simpler components. We
then demonstrate how these modalities can describe somaasthquantum protocols. The novel
features of our logic are shown to allow for a uniform deddwip of unitary evolution, and support
local reasoning such as “Alice’s qubit satisfies conditpdras is common when discussing quantum
protocols.

1 Introduction

In [1] a coalgebraic model of quantum systems was constiugsing a novel fibrational structure to
introduce “enough contravariance” to represent the ingobnbhysical symmetries of a quantum system.
The paper then raised the question of what a suitable “fibmatijebraic logic” would look like, and that
is the question we address in this paper.

In the first half of the paper we propose an extension of coadge logic based upon predicate
liftings [12,114] (see also the excellent introduction| [[1@&hich provides a convenient setting in which
to produce practical modal logics in a lightweight mannerewNypes of modalities are introduced
that allow explicit reasoning between different fibres, anthposition operations are provided to build
modalities from simpler components. In the second half efgaper we exploit the calculational aspects
of our logic to construct modalities suitable for reasonatmput quantum protocols. The new features
of our logic provide mechanisms for describing importaattfees such as unitary evolution, restriction
to subsystems and local measurements. Finally, we ilkestreese features by applying them to two
standard quantum protocols.

Fibred constructions involving coalgebras are also camsitl in [7] and|[6], in order to capture
parameterization of signature functors. The question oédilzoalgebraic logic using predicate liftings is
explored in the later paper, but primarily from the perspeatf the relationship to the logical structure of
institutions [3] and this question is further pursued_in][1fh contrast to the work in this paper, the logic
discussed in these papers is exactly a conventional caaigdbgic in each fibre, and the relationship
between the fibres does not appear directly in the syntaxedbtiic. In [9] a pseudo coalgebraic setting
was introduced for modelling quantum systems, in order t@ld@ the representation result of [1] in a
simpler and more easily motivated setting. A coalgebragiclavas discussed in this setting, supporting
a single signature functor and modalities induced by itana&isomorphisms.
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2 Fibred Coalgebraic Logic

Each fibre of our modal logic will correspond to a differergrsture functor. A fibred signature will
describe a basic set of modalities that are available on fdaeh

Definition 2.1 (Modal Signature) A modal signature A is a set of modality symbols, each with an
associated cardinal referred to as the arity of the modality

Definition 2.2 (Fibred Modal Signature)A fibred modal signature ® is a small monoidal categofy®
and for each objedh in ¥® an associated modal signatukE. For each pair of objectd, B with A+ B
we require that\® NAg = 0.

Given the basic set of modalities provided by the fibred meaaiature, additional modalities can
be constructed via various composition operations.

Definition 2.3 (Modality Expressions)Let ® be a fibred modal signature. We inductively define a typed
language ofmodality expressions with conjunctions bounded by a maximum cardinakty
We have one introduction rule:
O € AR with arity a

O, :AY - A
We can apply logical operations to modality expressions:

O:AT - A

“O:AY = A

O0<cardl) < k and(); : A — Afor eachi € |
/\i€| O| . AC{ — A
We have 2 rules for constructing new modality expressionsdogposition:

O1:A" A (02:B=B (O:B*—=B f € ¢®(AB)
02<O1: (B®A)T = (BRA) Of:A? 5 A

The formulae applicable on each fibre are described by mindattion, allowing the application of
appropriate modality expressions as modalities:

Definition 2.4 (Syntax and Typing) For a fibred modal signatu® we now define a language of typed
formulae. We writep : A for formula ¢ is of typeA, in which case we will refer tgp as anA-formula.

Our language is defined inductively by the following rulésytng with the typing rules for standard
logical connectives foA an object ing®:

TA- A $:A ¢ :Aforeachi €l and 0< cardl) < k
—9:A A(@i)ier : A
We have two application rules for the different types of nitids:

¢:B fe¢®AB) ¢i:Aforeacnica (O:AT—A
fo:A O($i)iea 1 A
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Modalities of the formf for f a #® morphism will be referred to aadaptation modalities These
modalities permit lifting of subformulae from different fis in a suitable manner.

We will write % for the formulae with conjunctions of cardinality at mesand Z®(A) for the
A-formulae with conjunctions of cardinality at mast
Remark2.5. The categonjSet Sef of endofunctors orset and natural transformations between them
can be given the structure of a strict monoidal categoryy thi¢ tensor given by functor composition.
Definition 2.6. We will write 2 : SePP — Setfor the contravariant powerset functor. Define natural
transformation-: 2= 2 on components as:

x(U) :=X\U (1)
For each set define natural transformatiofy : 2' = 2 on components as:
A(Kier) =% 2
X iel

The semantics for our logic are described by providing actire identifying types with signature
functors, and the morphisms between types as suitableah&tansformations. The tensor product then
corresponds to the composition of signature functors.

Definition 2.7 (Structure) For a given fibred modal signature, a ®-structure Sis a strict monoidal
functor [-]5: ¥® — [Set Sef, and for each objecA in ¥’® and modality(J, in A® of arity a an
associated natural transformatififi, 5 : 2% = 20 [A]S, referred to as aredicate lifting of arity a.
Remark2.8. For a given fibred monoidal signatusie the categorys’® will often be a monoidal subcat-
egory of[Set Set, with the functor[—] : ¥® — [Set Sef given by the inclusion. In later sections we
will often identify the two when this is assumed to be the case

Definition 2.9 (Modality Expression SemanticsThe semantics of modality expressions are given by
suitable predicate liftings. Lab be a fibred modal signature asch ®-structure. Assume that is a
cardinal,A, B are objects of6®, 0, € AR, f : B — Ais a¢® morphism,O : A% — A, for eachi € |
Oi:AY — Aand()’ : B— B. The semantics for modality expressions are given indelstias follows:

[Oa] = [O,]° (3)
[0l := (~*[A]%) = [O] (4)
[ACI] == (A+[AI% o ([Oi] i €1) (5)
icl
[0 = (2x[f]%<[O] (6)
[O'<O] = (IOT*[A1%[O] (7)

Aboveo andx denote vertical and horizontal composition of naturaldfarmations respectively.
Definition 2.10 (Semantics ofA-formulae) Let ® be a fibred modal signature ai®la ®-structure.
Assumeq is a cardinal A is an object ofe®, (O : A" — Ais a modality expression, arfd: A— B ae®
morphism. The semantics for a formya A, is given inductively foffA]-coalgebrg X, y) as follows:

[TA)x.y =X (8)
[[_‘(bﬂx,yzzx\[[(bﬂx,y 9)
[[/\(‘pi)ieIHXy = ﬂ[[¢iﬂx7y (10)
iel
[[O(‘pi)ieaﬂXy:: Vilo[[OﬂX(([[qbiﬂXy)iea) (11)

[folxy = [[¢]]x,[[f]]§oy (12)
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Remark2.11 The obvious relationships hold between logical operatmmsnodality expressions and
logical operations on formulae. Also the logical operasioommute appropriately with adaption modal-
ities. We will not need these properties for our exampleshealetails are omitted.

We now define a translation that will produce an equivalennfda with adaptation modalities re-
moved. This will allow use to reduce questions in the extdrsyamtax to questions in the well understood
setting of coalgebraic logic with predicate liftings.

Definition 2.12 (Translation) For a given fibred modal signature, for f : A— B in ©®, define the
syntax translatiorts as follows:

1 (TB:B):=TA:A (13)
Ti(—¢ :B):=—T1(¢) : A (14)
Tt (/\(@i)icr 1 B) := A\ (Tr($1))icr - A (15)
(O ($i)ica : B) = O (t1(#1))ica : A (16)
Ti(f'9 1 B) i=Tro(9) A (17)

Proposition 2.13. For a given fibred modal signatu® and ®-structure, for f: A— B in €®:

[®]x 1150y = [Te()]x.y (18)
Theorem 2.14. The semantics of fibred coalgebraic logic respects behaai@quivalence.

Proof. By settingf to the identity in proposition 2.13 we get:

[@]xy=[12(®)]x.y (19)
So the semantics of fibred coalgebraic logic is equivaletitdsemantics of suitable formulae in standard
coalgebraic logic with predicate liftings, and this redpdaehavioural equivalence. O

Example 2.15(Simple combination of modality expressionsjor a unary functof : Set— Set and
arbitrary se#, for eacha € Awe have an obvious evaluation natural transformagién F (—)A = F(—).

Now for signature functor” (the powerset functor), giving Kripke frames as coalgehitss seman-
tics of the usuall modality is given by the following predicate lifting:

[Cx V) = 2(U) (20)

If we consider the signature functaP(—)” for (unbounded) labelled transition systems, the usial
modality can be constructed as the modality expressi¥h

2.1 Semantics of Modality Expressions

In this section we consider some properties of predicatieadé such as monotonicity, continuity and
being a separating set, and how this is preserved under siitme composition operations described in
sectior 2. We restrict our attention to unary predicatentis to simplify the presentation.

Lemma 2.16. Let® be a fibred modal signature and S b&astructure. Let):A— Aand()':B— B
be modality expressions. Ther]@] and [()’] are monotone (continuous) thé¢q)’ < (O] is monotone
(continuous).
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Lemma 2.17. Let ® be a fibred modal signature and Sdastructure. LetO) : A— A be a modality
expression and B — A a#’® morphism. Then {fO] is monotone (continuous) thé@) '] is monotone
(continuous).

We now consider how expressive sets of predicate liftingspaeserved under various operations.
Results of this type are known and described. in [10]. We pl@giome results here for completeness and
in a form suitable for application in later examples.

Expressivity can be lifted to products and exponentialmfeofixed domain.

Lemma 2.18. Let @ be a fibred modal signature and Stastructure. Let(A;)ic be a family of objects
in €®. AssumdA]® = ic [A]S and that there exist® morphismg(7t : A — A)ic; such that[ ]S is
the corresponding projection natural transformation. Fach ic | let ([Oi;])jes be a separating set
of predicate liftings fof AJS. Then the predicate lifting§[O]%])ic1,jes are separating fofA]S.

Lemma 2.19. Let ® be a fibred modal signature and Stastructure. Let AB be an objects ifg'® with
[B] = [AJA. Also let(eV? : B — A)aca be ©® morphisms such thgev?] is the corresponding evaluation
natural transformation as defined in example 2.15. ([[€};] )ic| be a separating set of predicate liftings
for [A]S. Then the predicate lifting§] O] )ici aca are separating forffB]S.

In general if we have separating sets of predicate liftimydvo endofunctors, they do not combine
(in any way) to give a separating set for the composite funcibis is easily seen as, for example, the
functor 2, has a separating set of liftings, but no separating setsefast?,, o &,,. (See parts of (1)
and (5) of example 23 in_[14]). We examine a simple common tizesewe will require later, in which
the behaviour is much better. The following notions will tseful:

Definition 2.20. Let T : Set— Setbe an endofunctor. Consider a set of predicate liftifys .

e The liftings are said teeparate by singletonsf for an arbitrary setX, andx,y € T(X), it is
sufficient to consider the image of singleton sets undeAthe separate andy.

e The liftings are said to benutually surjective on singletonsif for an arbitrary seX and each
t € TX the singleton seft} is in im(Ay ) for someA'.

Lemma 2.21. For endofunctor T: Set— Set any mutually surjective on singletons set of predicate
liftings is a separating set.

Lemma 2.22. Let® be a fibred modal signature and Stastructure. Let AB objects in6™®, ([OF])iel
a set of predicate liftings ofB] that are mutually surjective on singletons, a(rﬂ@l-A]}) jcJ @ separating
set of predicate liftings offA] that separate by singletons. Then the liftid&)% < OF])ic1 jes are
separating forfA® BJS.

3 Quantum Applications

We now consider a suitable signature functor for modellingrqum systems. In|[1] a signature functor
describing a “question and answer system” for projectivasueements was used. We instead introduce
a new functor based upon distributions of measurement mgsdor different physical quantities. When
reasoning about quantum protocols it is common to consiéasorements in a suitable basis, rather than
projective measurements, and this signature functor ntakg@hysical quantities and distribution over
measurement outcomes explicit.
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3.1 Constructing a Fibred Logic for Quantum Systems

As an extended example, we construct an expressive set ddlitiesl for reasoning about quantum
systems using simple components from well understood anges as labelled transition systems and
probabilistic logics. An alternative modular approachtie tonstruction of coalgebraic logics is pre-
sented inl[2], based on a notion of syntax constructors.ePrason of properties of modalities, such as
expressivity, under operations including compositiomdoicts and coproducts is analyzed.in [10], and is
probably closer in spirit to the approach of this sectionnilproofs are omitted throughout this section
for space reasons, all conclusions are based upon the citimpasised ideas in sectién 2.1 and standard
results, mainly from[14].

Definition 3.1. Let D : Set— Setdenote the finite distribution functor, defined on objectfodews:
D(X) :={f: X —[0,1] | f has finite support anBycx f(x) = 1} (21)
and on morphisms:
D(f: X = Y)(@eDX)(YEY) = Zuex.t(x=yd(X) (22)
Lemma 3.2. The finite distribution functor D isv-accessible.

Now we introduce our two basic building block modalitiesifravhich all others will be constructed.

Lemma 3.3. For the finite distribution functor D, for each @ [0,1] there is a unary predicate lifting
[Eqy] : 2= 20D given by:

[[Eqpﬂx(U) :={d | Zyeud(u) = p} (23)
These modalities separate by singletons.

Lemma 3.4. For a label sez, ando € Z, define the unary predicate liftinfNext;] : 2= 20 (X x (—))
as follows:
[Nextz](U) :={(o,u) JlueU} (24)
These liftings are monotone and mutually surjective onlstogs.
Now we lift to distributions over eigenvalues.
Lemma 3.5. For p € [0,1] and r € R define predicate liftindEq,, ] : 2= D(R x (—)) as the composite
[Ed, <Next]. This lifting is given explicitly by:

[EdpIx(U) :={d | Zucud(r,u) = p} (25)

These liftings are separating.
Definition 3.6. For finite dimensional Hilbert spacg” with dimensionn, let <7, denote the set of self
adjoint operators. Define thaistribution based quantum signature functor QY as follows:

QR :==D(R x (=) (26)
There is an obviougluantum coalgebrafor this signature, mapping pure states to distributionsr ov
measurement outcomes and subsequent states.
Lemma 3.7. For a finite dimensional Hilbert space with dimension n, tinector q;' is accessible.

Now we can lift to distributions for each self adjoint operafphysical quantity), giving a set of
liftings for our quantum signature functQg:
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Lemma 3.8. For finite dimensional Hilbert space?’ with dimension n, for g [0,1], r € R andA € 4,
define unary predicate liftingEq, i : 2= 20 Q! as follows:

[Edp, 4 = [ERS] (27)
Where eff is as defined in example Z2]15. These liftings are given etpliny:
[Eqy, alx(U) == {f | Zueu f(A)(r,u) = p} (28)

and are separating.

Theorem 3.9. For finite dimensional Hilbert spacgZ with dimension n, any coalgebraic logic with
at least modalities with semantics given by the predicdtiadis in lemma 318 is expressive if we allow
conjunctions of sufficient cardinality.

Proof. By lemmal3.Y and propositidn_3.8 the claim follows immediatey applying theorem 14 of
[14]. O

Although the unary predicate liftings based on equalitigergin lemmd_3.8 are very straightforward
and separating, they are not monotone. It is easy to followilai steps to those above to construct a
monotone set of modalities, based on lower bounds on thereeprobabilities rather than equalities.
This can be done for example by taking conjunctions of egullised modalities above the required
threshold. This gives an expressive logic using monotondatites with semantics similar to those of
probabilistic modal logics [8, 5]. For reasons of spaces thiection is not pursued further here as the
equality based predicate liftings are sufficient for therquen protocols we will address.

In reality, although we have good expressivity results lfer liftings above, they are not particularly
natural for the needs of describing quantum protocols. deeasoning about these protocols, we would
like our modalities to better match the actions that arequaréd during their implementation. We now
introduce some additional more “practical” modalities.

Definition 3.10. By noting that the natural transformations. 1 = 2 and—: 2 =- 2 are predicate lifting
for the identity functor, we can define 0-ary modality:

P:=Eq,p<T (29)

Intuitively, in the quantum model, this describes “a prtjgemeasuremerit is certain to have a positive
outcome”. We can also define unary modality:

Cr,A = E%JA <= (30)

with the reading “it is certain that after getting measuretmeitcome when measuring physical quantity
A, ¢ will hold”.

Definition 3.11. Using similar tools to those above, we can combine our unasglatities to provide
a possibilistic polyadic modality, describing how subsatjustates relate to possible measurement out-
comes:

Alrp—= (=), e, fn = (—)) (31)

Informally this has semantics “after measuriﬁgif outcomer; occurs then thé" postcondition will
hold.”
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3.2 Basic Quantum Operations

We first consider how some of the features of our fibred coastieltogic can be applied to describe
notions commonly considered when analyzing quantum systaTd protocols.

Example 3. 12(Un|tary Evolution) For an arbltrary Hilbert spacg?” we consider the quantum signature
functor. A unitaryJ on.»# induces a functio®® — UPU T giving a natural transformatior@d = QY by
precomposition. These give adaptation modalities in oueditcoalgebraic logic, which in the case of
the quantum coalgebra encode unitary (Heisenberg typd)iteno of the system. In this approach the
unitary evolution is encodedniformly across each coalgebra without extending the signaturediunc
We will write U ¢ for “after applying unitary transformatiod, ¢ holds”.

Example 3.13(Restriction to SubsystemsYVe consider a 2 qubit quantum system, with corresponding
Hilbert space @ 3. We then fix a basis and define a linear m@gp — |i), and then define natural
transformations Alice Q?1 = Qg by precomposition with the inverse image of this linear mdgnis
natural transformation induces adaptation modalitiesunlogic such that we can read Aligeas “if

we restrict our attention to Alice’s qubig holds.” Note that we have not needed to explicitly introduce
mixed states to handle restriction to subsystems as thiscisded in the measurements selected by the
Alice natural transformation.

Example 3.14(Local Measurements)If we consider a single qubit system, tméﬂ predicate lifting
given in definition[3.I0 describes certainty of projectiveasuremenP. The natural transformation
Alice defined in examplE 313 then gives modaf/i°® giving certainty of measuremeftlocally on
Alice’s qubit in a 2 qubit composite system.

3.3 Quantum Teleportation

Definition 3.15. We will write |3¢,i for the projection operator corresponding to tfieBell state.

We consider the standard example of the quantum telegmrtptbtocol|[4]. This is a 3 qubit protocol
that can be informally described as follows:

Initially Alice has a qubit in (arbitrary) staté and she also shares half of a two qubit
pair in the Bell state (the channel) with Bob. After a Bell isameasurement on both of

Alice’s qubits, if Bob applies a suitable correcting unjtadependent on the outcome of the
measurement, he can be certain his qubit is now in gtate

We can formalize this in our logic as the following formula:

Iﬁq,;-\lice A ﬁl%lhannel N Agghh(rl — BobU; |5¢, (32)
r» — BobU, |5¢, (33)
r3 — BobUs |5¢, (34)
4 — Bob0,Py) (35)

As our modality is built from a conjunction of smaller modigls, we can adopt a more “post selection”
style perspective and decompose our teleportation prbimtcovarious possible measurement outcomes.
Here we consider formulae capturing each ofithe{1..4} measurement outcomes separately:

|5¢AIice A I:A,&,Ilhannelz> CrB:Ef;e” (BobU; |f>¢) (36)
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3.4 Entanglement Swapping

Definition 3.16. To simplify notation for multi-qubit systems we will now vt [i,j] for the restrict to
bitsi and j, rather than define a proliferation of named subsystems asigtlice, Channel etc. as in the
previous protocol and examples.

We now consider the 4 gqubit entanglement swapping protddi| jnformally this protocol can be
summarized as:

Initially qubits 1 and 2, and qubits 3 and 4 are in the BellestaAfter a measurement on
qubits 2 and 3 in the Bell basis and applying suitable cokectnitaries, dependent on the
measurement outcome, we can be certain to leave qubits 1 and dubits 2 and 3 in the
Bell state.

This can be encoded in our modal logic for ihe 1..4 measurement outcomes as formulae of the form:

Bl ABRY = P (1,4 0By, A[2,3 05 By,) (37)

ri,Agell

4 Conclusions and Future Work

We have presented a fibred coalgebraic logic and shown tmaspiects behavioural equivalence. A
distribution based signature functor for modelling finitendnsional quantum systems was introduced
and the calculational aspects of our logic were exploitedatastruct suitable modalities for reasoning
about quantum protocols. It was shown that expressivityheflogic could be lifted via the composi-
tion operations from modalities for simpler and well undeessl signature functors. The fibred aspects
of our logic were exploited to capture key components of tuancomputation, including a uniform
description of unitary evolution, restriction to local sybtems and encoding of local measurements on
composite systems.

The current work primarily concerns semantics. Proof teeomaspects, particularly their suitability
for analysis of quantum protocols, will be pursued in laterky The logic presented here seems to po-
tentially be a special case of a general construction thdtdme applied to a suitable class of institutions
[3], this should be investigated further. Connections ®ekisting automated tools in coalgebraic logic,
and their application to analyzing quantum protocols sthaildo be pursued.
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