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Unitary Embedding for Data Hiding with the SVD

Clifford Bergman and Jennifer Davidson

Department of Mathematics, Iowa State University, Ames Iowa, USA

ABSTRACT

Steganography is the study of data hiding for the purpose of covert communication. A secret message is inserted
into a cover file so that the very existence of the message is not apparent. Most current steganography algorithms
insert data in the spatial or transform domains; common transforms include the discrete cosine transform, the
discrete Fourier transform, and discrete wavelet transform. In this paper, we present a data-hiding algorithm
that exploits a decomposition representation of the data instead of a frequency-based transformation of the
data. The decomposition transform used is the singular value decomposition (SVD). The SVD of a matrix
A is a decomposition A = USV T in which S is a nonnegative diagonal matrix and U and V are orthogonal
matrices. We show how to use the orthogonal matrices in the SVD as a vessel in which to embed information.
Several challenges were presented in order to accomplish this, and we give effective solutions to these problems.
Preliminary results show that information-hiding using the SVD can be just as effective as using transform-based
techniques. Furthermore, different problems arise when using the SVD than using a transform-based technique.
We have applied the SVD to image data, but the technique can be formulated for other data types such as
audio and video.

Keywords: steganography, singular value decomposition, data hiding

1. INTRODUCTION

Information hiding techniques that are used today include cryptography, watermarking, and steganography.
Each area has a different objective when hiding data. Cryptography is the study of hiding message content by
encrypting or encoding the message bits in such a way that the message is unintelligible unless the key to decrypt
it is known. In cryptography, it is clear that a message is being transmitted; the goal of encryption is make
the unauthorized decryption of the message take unreasonable amounts of computer processing resources and
time. Watermarking of digital data is concerned with protecting the digital data itself for ownership purposes,
copy control, or other content protection purposes. In watermarking, a sequence of bits is inserted within the
data. While it may be known that a watermark has been inserted for copy protection purposes, the goal of
watermarking is to make removal of the inserted watermark bits impossible without additional information,
such as a key. Steganography is a type of covert communication where a secret message is hidden in a carrier or
cover message; the goal of steganography is to embed message bits so that the very existence of the message is
not detectable by an observer.

Research in data hiding has blossomed during the past decade, with commercial interests, and more recently,
government interests driving the field. Watermarking was initially perceived to be the answer to content
protection by the music and motion picture industries to blatant and numerous violations of copyrighted material
such as music and movies. The notion that embedding information directly into the data could help identify
violators was very simple and attractive. It is very easy to copy and transmit music on CDs and, as computers
and broadband connections became faster, movies on DVDs or movies recorded illegally using digital video
cameras. Thus, companies pursued the development of watermarking techniques that could somehow identify
the illegal actions that were taken on copyright material. However, to date, there have been no techniques
developed that meet the expectations of watermarking as desired by music and movie industries.1 In addition,
with the advent of the Digital Millennium Copyright Act of 1998,2 it became illegal not only to circumvent
anti-piracy measures built into most commercial software and many hardware devices, but to manufacture, sell,
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or distribute code-cracking devices that can be used to illegally copy software. Consequently, the music and
movie industries no longer rely on watermarking of copyrighted material to prove violation of the DMCA but
have been relying on other approaches such as locating possible violators through their internet providers.

Because more freeware is available for embedding secret messages (see http://stegoarchive.com), and
more bandwidth is available for sending image data efficiently, digital forensics personnel are interested in
analyzing image data that may contain secret messages. This area of steganography is called steganalysis.
Thus, one goal of designing a good embedding algorithm is to avoid detection by steganalytic techniques.

As a simple, but commonplace, example of steganography we describe the least significant bit embedding
(LSB) algorithm. For an image A, represent A as a collection of bit planes in descending order of importance
{An, An−1, . . . , A1, A0}, where Ak is the k-th bit plane. Let M = {b0, b1, . . . , bH−1} be the bit stream repre-
sentation of the message. Assuming that H is less than the number of pixels of A, we visit each site in A0,
the least significant bit location of each pixel value in image A, and replace the image bit with a message bit.
Since the LSB bit plane of an image closely resembles noise, manipulating the LSB location does not typically
change the visual appearance of the image. Extraction of the message is performed by simply visiting the LSB
locations in the image A and extracting the bits in the proper order, and reforming the message string M . For
more security, the bit stream M is typically encrypted and hence its distribution resembles a random sequence
of 0s and 1s.

Variations on the LSB method include using the lowest two, three, or even four bit planes to insert a message,
assuming that n is sufficiently large. The main drawback to this data hiding scheme is that it is very fragile, that
is, any distortion will change the message bits, and hence a third party can change the message bits without the
receiver noticing. In addition, steganalysis techniques such as pairs of values3 and the RS method4 can identify
not only the presence of a message embedded in this manner, but its location and length.

We focus on image data in this paper, although our method can be modified and applied to video and audio
data. There are several reasons why images are used for steganography. First, because of the high degree of
redundancy in image data, it is possible to embed a great deal of hidden information without visibly affecting
the cover image. Second, innocuous-looking images are commonplace throughout the internet and arouse little
suspicion. By contrast, under current bandwidth availability, video files posted on web sites take too long to
transfer effectively. Also, audio and video data are prone to be examined for copyright infringement. Third, the
sheer volume of image data available online makes it difficult to identify suspicious content. Thus, image data
is commonly used for data hiding.

We organize the rest of the paper follows: Section 2 describes some fundamental concepts and terminology
of data hiding; Section 3 reviews the singular value decomposition which is the main tool we use for our
embedding algorithm; Section 4 describes the basic embedding algorithm; Section 5 describes enhancements to
the algorithms and the extraction algorithm; Section 6 discusses experimental results applied to six image data;
and Section 7 presents the conclusions and future direction of the research.

2. BASIC PROPERTIES OF DATA HIDING

In this section, we define some concepts basic to data hiding. These properties apply to watermarking as well
as steganography.

A simple scenario for image steganography can be described as follows. Alice embeds a payload message
within a cover image, producing a stegoimage, and sends the stegoimage to Bob under the noses of an adversary
who recognizes only the innocent cover. Bob extracts the payload from the stegoimage. Alice would like to
ensure that her message gets to Bob safely, without the adversary either suspecting or destroying the payload.
Figure 1 displays the overall procedure in diagram form.

There are several properties important in the creation and evaluation of an effective stego-algorithm. These
include the following.
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Figure 1. Basic steps in stegonagraphic embedding

Capacity measures the amount of payload that can be embedded in a fixed size cover file. It is measured in
bits (of payload) per byte (of cover). For example, in the LSB embedding scheme, the sender chooses as
a cover image a grayscale, bit-mapped image, and replaces the least significant bit of each pixel with one
bit of payload. Assuming each pixel occupies 8 bits, this scheme has a capacity of 1 bit/byte.

Perceptibility describes the ability of a third party (not the intended recipient) to visually detect the presence
of hidden information in the stegoimage (or audibly, in the case of audio data). Note that we do not require
the third party to extract the information, just preceive its existence. We say that the steganography
embedding algorithm is imperceptible when used on a particular image if an innocent third party, interested
in the content of the cover image, is unaware of the existence of the payload. Essentially this requires that
the embedding process not degrade the visual quality of the cover image.

Detectability describes the probability that a determined adversary, who suspects steganography, will be
able to determine the existence of a payload, thus compromising the message’s security. In other words, a
stego algorithm provides low security if the payload is detectable in the stegoimage with a high probability.
Undetectability is obviously a much more difficult requirement to meet than is imperceptibility, but as the
use of steganography increases, so will the use of steganalysis. The concept of a safe bit-rate is related to
detectability of a stegoalgorithm. The safe bit-rate (SBR) is the maximum capacity of a stego algorithm,
when applied to a particular image, that is not detectable by steganalysis. The SBR is therefore dependent
not only on the algorithm used to embed the data, but the data itself as well as the steganalysis techniques
available to detect it. It is estimated by Fridrich and Goljan4 for example, that the safe bit-rate of LSB
embedding is 0.005 bits/pixel. It appears that the SBR for most stegoalgorithms will be much less than
the current capacities available by many embedding algorithms.

Robustness characterizes the ability of the payload to survive the embedding and extraction process, even in
the face of manipulations of the stegoimage such as filtering, cropping, rotating and compression.

Speed reflects the computational effort required to embed and extract the hidden data.

It is well-understood that there is always a tradeoff between capacity and visual imperceptibility, and capacity
and detectability. As described above, the LSB method has a very high capacity of 1 bit/pixel, but as is shown
by Westfeld and Pfitzmann,3 is extremely vulnerable to any kind of filtering as well as detectable by statistical
attacks. By contrast, there are no reliable methods for detecting the existence of payloads hidden using other
techniques. Fridrich, Goljan and Du5 have estimated that in order to attain a high degree of undetectability,
stego systems based on least significant bit methods must have a capacity bounded above by 0.005 bits/byte. For
this reason, we believe it is important to develop steganographic techniques that do not rely on least significant
bit manipulations. Our algorithm attempts to attain that goal.

3. REVIEW OF THE SINGULAR VALUE DECOMPOSITION

The singular value decomposition (SVD) of a matrix with real or complex entries is one of the fundamental tools
of numerical linear algebra. It has applications to regression analysis, data compression and numerical linear
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algebra among others. Because of its importance, there are a wealth of numerical tools available for computing
the SVD. In this section we summarize the definitions and properties of the SVD that we shall need. A full
development can be found in most linear algebra texts, for example Golub and Van Loan.6

Let A be an n × n matrix with real entries. Note that while we restrict our discussion to real-valued,
square matrices, the SVD applies more generally to complex-valued rectangular matrices. The singular value
decomposition of A is a representation

A = USV T (1)

in which U and V are n×n orthogonal matrices, and S is a diagonal matrix with nonnegative entries. Recall that
a matrix U is orthogonal if UT U = I. Put another way, U is orthogonal if its columns are pairwise orthogonal
unit vectors. As usual, UT denotes the transpose of the matrix U .

As a rule, it is the largest singular values that exert the most influence on the matrix A. In particular, when
A contains the greyscale values for an image, perturbations of the smaller singular values and their corresponding
singular vectors have no perceptible effect on the image. It is this mathematical principle that our embedding
technique is designed to exploit.

The diagonal entries of S in equation (1) are of the form
√

λ, where λ is an eigenvalue of the symmetric matrix
AAT . The corresponding eigenvectors form the columns of U . The diagonal entries of S are called the singular
values of A, while the columns of U and V are the left and right singular vectors. Note that the eigenvalues of
AAT are real and nonnegative. Consequently the singular values of A are also real and nonnegative.

The question of uniqueness in the decomposition (1) is of concern to us here. To that end we make the
following definition.

Definition 3.1.

1. A vector u = (u1, u2, . . . , un) is lexicographically positive if its first nonzero component is positive.

2. A singular value decomposition A = USV T is normal if the columns of U are lexicographically positive
and the diagonal entries of S are in non-increasing order.

Theorem 3.2. A matrix has a unique normal singular value decomposition if its singular values are pairwise
distinct and nonzero.

Proof. Since the singular values of A are pairwise distinct, the eigenvalues of the matrix B = AAT are
pairwise distinct as well. B is a symmetric matrix, hence the spectral theorem asserts that B has a basis of
eigenvectors. Combining these two facts, each eigenspace of B is one-dimensional. Thus, if we require the
eigenvectors to have unit length, there are exactly two choices for each eigenvector, u and −u, only one of which
is lexicographically positive. Since the eigenvectors of B form the columns of U , we have only one choice for
each column of U .

The requirement that the diagonal entries of S be decreasing imposes uniqueness on S and also on the order
of the columns of U . Hence U is unique. Since the singular values are nonzero, S is invertible. Finally, we
obtain V uniquely as AT US−1.

In our applications, the matrix A will have integer entries in the range {0, 1, . . . , 255} and dimension between
8 and 16. It seems quite difficult to determine the probability that such a matrix will fail to satisfy the
hypothesis of Theorem 3.2, however our experience suggests that this probability is exceedingly small. Thus we
will proceed under the assumption that all matrices have distinct, nonzero singular values and all singular value
decompositions are normal. Of course in practice, this means our computations have to be sufficiently accurate
that we can distinguish between distinct singular values.

3.1. Related work

We are not aware of other uses of the singular value decomposition in steganography. Liu and Tan7 proposes a
watermarking technique that utilizes the SVD.
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1. Compute the normal singular value decomposition, USV T , of A.

2. Transform U into U ′:

(a) Set certain components u′
ij = pk · |uij |

(b) Choose remaining components to ensure that U ′ is still orthogonal.

3. Compute A′ = U ′SV T .

4. Clip and round the entries in A′ to integers in the range 0. . . 255. The resulting
matrix, Ã will be a block of the stegoimage.

Figure 2. The basic embedding algorithm

4. THE BASIC EMBEDDING ALGORITHM

In this section we describe the procedure for embedding the payload into the cover image. There are prob-
lems with this algorithm, most notably in the error rate incurred during recovery. In Section 5 we discuss
enhancements to the basic procedure that reduce the error rate to an acceptable level.

4.1. Description of the algorithm
We denote by p1p2p3 . . . the payload that we wish to embed. Each payload bit pi is assumed to have a value in
{+1,−1}. (A conventional {0, 1}-bit b can be converted to a {+1,−1}-bit using either of the transformations
b �→ (−1)b or b �→ 2b − 1.) The cover image is assumed to be a rectangular array of pixel locations with values
in the range 0 . . . 255. All of our experiments were done with greyscale images, however, our approach could be
applied to color images either by utilizing the intensity byte in HSI images, or possibly by embedding bits into
each of the three color components of a cover image in RGB format.

The cover image is divided into a series of n × n blocks in some standard order. If the number of rows
or columns in the cover image is not a multiple of n, extra rows and columns can be ignored. Several bits of
payload will be embedded into each block.

Let A be a typical n × n block. Payload bits are embedded into A by a simple four-step process, given in
Figure 2. Step 2 requires further explanation. Recall that the visual quality of A is primarily determined by
its largest singular values and singular vectors. By assumption, those are the left-most values of S and the
left-most columns of U and V . Part of our strategy is to leave those columns untouched in order to achieve
imperceptibility in our method. The precise number of columns that we protect in this way is a parameter that
can be adjusted. We discuss the tradeoffs in this parameter below. We denote by m the number of columns of
U that will be left unchanged.

For simplicity in this discussion, let us take n = 8 and m = 2. In other words, we will be manipulating the
right-most 6 columns of each 8× 8 block. At the end of this section we shall give formulas for general values of
n and m. With n = 8, m = 2, we can embed 15 bits in each block of the cover image.

A schematic illustration of the matrix U is given in Figure 3. Note that it is divided into three regions.
The shaded region consists of those entries that are to be left unchanged. This consists of the two columns we
wish to protect as well as the first row. The first row is left unchanged because the definition of normal SVD
requires the top row of U to be all nonnegative. The upper triangular region contains the entries that will hold
the embedded bits. The bits are embedded according to the formula

u′
ij = pk · |uij |, i = 3 . . . 8; j = 2, . . . , 9 − i.

In this equation, k = 1
2 (i − 3)(14 − i) + (j − 1) simply counts from 1 to 15. The effect of this transformation is

that the triangular entries in U ′ differ only from the corresponding entries in U in their sign. The sign of the
entry in U ′ is the embedded bit.

SPIE-IS&T/ Vol. 5681     623
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Figure 3. The matrix U

We now use the remaining entries in the matrix (those in the lower trapezoid) to ensure that U ′ will be
orthogonal. Let U ′

i denote the ith column of the matrix U ′. Orthogonality requires that U ′
i · U ′

j = δij . We
proceed as follows. First choose u′

73 and u′
83 to satisfy the pair of equations

U ′
1 · U ′

3 = 0
U ′

2 · U ′
3 = 0.

This amounts to solving a homogeneous 2 × 2 system of linear equations. Then choose u′
64, u

′
74, u

′
84 to satisfy

the system
U ′

1 · U ′
4 = 0

U ′
2 · U ′

4 = 0
U ′

3 · U ′
4 = 0.

(2)

Continue this process to determine the lower entries in U ′
5, . . . , U

′
8. Note that determining each column requires

solving a simple system of linear equations. (In fact, these equations could be solved once symbolically, and
then the solution evaluated for each block of the image.) Finally, we finish the process by dividing each column
of U ′ by its Euclidean norm. That is, U ′

i ← U ′
i/|U ′

i |, i = 3, . . . , 8. The resulting matrix U ′ is orthogonal and its
columns will be lexicographically positive.

Step 3 of the basic algorithm simply multiplies together the new matrix U ′ with the original matrices S and
V T . This produces a matrix A′ from which the payload can be reliably recovered. From Theorem 3.2, A′ has
a unique normal SVD. Thus U ′ can be computed from A′ and the payload bits extracted from the triangular
region in U ′.

Unfortunately, the entries in A′ are not generally integers in the range 0 . . . 255, so additional processing is
necessary before A′ can be used as a block of the stegoimage. We have chosen the simplest processing scheme:
each entry is rounded and clipped to the range 0. . . 255. That is, if an entry x satisfies 0 ≤ x ≤ 255, it is rounded
to the nearest integer. If x < 0, then x is replaced by 0, and if x > 255, it is replaced by 255.

This strategy does indeed result in a valid image and furthermore, the perturbation caused by the embedding
process is imperceptible. However, we now a have a different problem: the extraction process gets many of the
payload bits wrong. The signs of the entries in the singular vectors are not particularly robust to the process
of rounding and clipping. It is this defect that the additional measures described in Section 5 are intended to
remedy.

Figure 5 shows an example of the basic embedding technique. On the left is a 512 × 512 pixel cover image
before embedding. On the right is the result of embedding 61,440 bits into the image. Any distortion caused
by the embedding is completely invisible. 77% of the embedded bits were retrieved correctly.
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1. Compute the SVD, Ũ S̃Ṽ T of Ã.

2. Extract payload bits from the signs of the entries in the triangular portion of
Ũ : pk = ũij/|ũij |.

Figure 4. The extraction algorithm

4.2. Further comments on the parameters

The details of the above discussion were based on the choice of n = 8 and m = 2. One can make other choices
for these parameters but the basic strategy remains the same. The top row and the first m columns of U are
left unchanged. Payload bits are embedded in an upper triangle consisting of 1 + 2 + · · · + (n − m − 1) =
1
2 (n−m− 1)(n−m) matrix entries. Then the values in the remaining lower trapezoid are determined to ensure
that U ′ is orthogonal.

The choices of n and m affect the capacity, the imperceptibility and the robustness of this process. The
capacity of the basic algorithm is easily seen to be

(n − m − 1)(n − m)
2n2

bits/pixel. (3)

The imperceptibility is directly related to the value of m. A higher value of m preserves more of the singular
values in the original image block, hence the stegoimage will very closely resemble the original cover image.
Curiously, the error rate is also directly dependent on the value of m. In other words, increasing m results in an
increased number of errors. At this time we do not have a satisfactory understanding of this phenomenon, but
the probable explanation is that as m is increased, a larger proportion of the bits are embedded in the right-most
columns of U , and these are the least robust to perturbation. A further discussion of these relationships together
with our experimental results is given in Section 6.

Let us remark that it is possible for this algorithm to fail. One possibility is that the hypotheses of Theo-
rem 3.2 will not hold. Another is that one of the systems of equations such as (2) may prove to be singular.
Should this occur, we can take advantage of the high degree of redundancy in the image and simply apply a
small random perturbation to the image block A. We have found that adding a small amount of white noise to
each component of A fixes the problem.

4.3. Encryption of the payload

We assume the payload is encrypted before embedding begins. There are several reasons for this. The most
obvious is that encryption provides additional protection for the content of the communication. However,

(a) Cover image before em-
bedding

(b) Stegoimage

Figure 5. Effect of embedding on cover image
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encryption is also necessary for undetectability. If unencrypted, the payload will generally have statistical
characteristics that could be exploited by a suspicious adversary who is looking for steganography. For example,
if the payload were ordinary ASCII characters, then every eighth bit would be a ‘0’. Since this is not a
characteristic one would expect in a typical image, the adversary could easily conclude that steganography was
in use.

Broadly speaking, ciphers fall into two categories: block ciphers and stream ciphers. In a block cipher, a
block of plaintext (typically 64 or 128 bits) is encrypted all at once, producing a block of ciphertext of the same
length. Familiar examples are DES and AES. A stream cipher, on the other hand, operates one bit at a time.
Usually a long pseudo-random bit stream, called a running key, is generated. This bit stream is added, bit by
bit, to the message to be encrypted. The receiver decrypts by subtracting the same pseudo-random bit stream
from the ciphertext. RC4 and SEAL (see Schneier8) are examples of stream ciphers. Also, any block cipher
operated in either output feedback mode or counter mode can be used as a stream cipher.

Although block ciphers are considered to be more secure than stream ciphers, a block cipher would be a poor
choice for this application. In a block cipher, even a one-bit error results in the corruption of the entire block at
decryption time. Since our scheme relies on error correcting codes to repair individual errors (see Section 5.3),
it is necessary to utilize a stream cipher for encryption.

5. ENHANCEMENTS TO THE BASIC ALGORITHM

The basic embedding algorithm described in Section 4 is promising in most respects: it has high capacity
and good imperceptibility properties. Unfortunately, it suffers from an unacceptably high rate of errors upon
retrieval of the payload. In this section we attempt to analyze the causes of those errors and propose remedies.

5.1. Spacing the singular values

If an eigenvalue of a square matrix has multiplicity 1, the corresponding eigenvector is uniquely determined,
except for its magnitude. This is the principle that was employed in Theorem 3.2. For eigenvalues of higher
multiplicity however, eigenvectors are much less constrained. They can range anywhere inside a k-dimensional
subspace, where k is the multiplicity of the eigenvalue.

It turns out that when two eigenvalues are distinct but close together, they behave approximately like a
single eigenvalue of multiplicity 2. As a result, small perturbations in the matrix can cause the corresponding
eigenvectors to vary wildly inside a 2-dimensional subspace. Or, as Golub and Van Loan put it,6 “eigenvectors
associated with nearby eigenvalues are ‘wobbly’”.

These considerations suggest that we will experience less volatility in the singular vectors, and consequently
obtain fewer errors, if the singular values are well-spaced. Of course the largest few singular values determine
the perceptual quality of the image, thus we wish to leave those values unchanged.

For this reason we add the following step to the basic embedding algorithm (Figure 2), between steps 1
and 2.

1a. Replace the last n−k diagonal entries of S, σk+1, σk+2, . . . , σn, with the values
σk − h, σk − 2h, . . . , σk − (n − k)h, where h = (σk − σn)/(n − k).

This perturbation seems to have very little effect on the visual quality of the image, at least when n is relatively
small.

After step 4 of the embedding algorithm, the singular values of Ã will no longer be quite uniform. However
they will probably be more uniform than in a typical image. It is possible that this characteristic could be
utilized by a steganalyst scanning for hidden data.
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5.2. Iteration of the basic embedding algorithm

Our second strategy for reducing errors is to simply iterate the basic embedding algorithm several times on each
block, embedding the same bits each time. That is, we begin with a block A and payload bits p = p1, . . . , pk.
We apply steps 1–4 (including step 1a) to A and p and obtain the output block Ã. We then apply the same
steps to Ã and p and obtain a new output block ˜̃A, etc.

Although we have no proof that this method will “converge”, empirical evidence indicates that iterating 5–10
times (especially in conjunction with our other techniques) results in a considerable reduction in the error-rate.
Notice that the extraction algorithm remains unchanged. Thus, while embedding is obviously slowed by a factor
equal to the number of iterations, extraction is unaffected.

Instead of iterating on each block a fixed number of times, one can use an adaptive approach. For each
block, embed the payload using the basic algorithm, then immediately extract the bits and count the number of
errors. If the errors exceed a set threshold, repeat the process until the threshold is met. One could, of course,
set the threshold to 0, but this may result in an unacceptably long (if not infinite) running time. However, as we
discuss in the next subsection, in conjunction with an error-correcting code, this strategy can be quite effective.

5.3. Use of an error-correcting code

The tools of coding theory are well-developed and well-suited to the task of preserving data-integrity under
noisy conditions. This model fits our problem very well. Through the use of an error-correcting code we can
reduce the received error-rate quite effectively.

For example, if we find that the basic embeddding algorithm results in an error rate of 0.10, we could employ
a coding scheme that is capable of correcting 10% of its bits. In this way we should be able to all but eliminate
errors upon extraction.

While it is not necessary to do so, there is some advantage in choosing a code with a word size that matches
the number of bits that can be embedded in a single block of the cover. The reason is that in the adaptive
iteration method discuseed in Section 5.2, the threshold can be chosen equal to the number of errors per word
corrected by the code, which should result in errorless retrieval. This suggests choosing codes with a word
length equal to one of the triangular numbers 15, 21, 28, etc. Good choices might be the BCH codes (15, 7, 5),
(15, 5, 7) and (21, 9, 8) all of which have reasonably good error-correcting capabilities and capacities. There are
numerous references on coding theory, such as Huffman and Pless.9

For example, let us assume we have chosen to employ the basic embedding algorithm with a block size of 8
and 2 columns protected. This choice of paramters allows us to embed 15 bits in each block of the cover image.
We decide to use the (15, 7, 5) code, which holds 7 bits of payload in each word and is capable of correcting 2
errors in each 15 bit word.

We proceed as follows. The payload is first coded according to the BCH code, and then encrypted using a
stream cipher. The resulting bit string is broken into words of length 15. Each word is then embedded into an
8× 8 block of the cover image using the basic embedding algorithm, repeating the embedding until the number
of errors in that block is at most 2. In this way, we can be confident that when the recipient extracts the string,
decrypts and decodes it, the decoding process should correct any errors that remain.

Note that employing an error-correcting code will decrease the capacity of the embedding algorithm by a
factor equal to the rate of the code. In our example above with n = 8 and m = 2, the original capacity was
0.23 and the code has a rate of 7/15. Thus we are able to embed .107 bits/pixel after error-correction.

It is important that a stream cipher be utilized, and that it be applied after the payload is error-coded. This
is because the error correcting code leaves a footprint (in the form of a well-defined redundancy among bits)
that would be easy for a steganalyst to detect. This footprint is concealed by the cipher.

A stream cipher will not interfere with the error correction for the following reason. Assume we are using
the (15, 7, 5) code. We begin with 7 bits of payload, p = p1p2 . . . p7. These seven bits are processed by the ECC,
producing a 15 bit code word c = c1 . . . c15. Next, 15 bits of running key, r = r1, r2, . . . , r15, are obtained from
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Columns Protected
block size 1 2 3 4

6 0.28 0.17 0.08 0.03
8 0.33 0.23 0.16 0.09
10 0.36 0.28 0.21 0.15
12 0.38 0.31 0.25 0.19
14 0.40 0.34 0.28 0.23

Figure 6. Capacity (bits/pixel) as a function of block size and number of columns protected

the stream cipher. We multiply the two bit strings (don’t forget that our bits are represented as ±1), obtaining
a 15-bit cipher-word s = c · r. It is s that is embedded into the cover image block.

Suppose that on extraction, we obtain a string ŝ in which two bits of s are corrupted. That is, ŝi = −si and
ŝj = −sj , for two indices i and j. Then ŝ is decrypted to obtain ĉ = ŝ · r. Note that ĉi = ŝi · ri = −si · ri = −ci

and similarly, ĉj = −cj . All other bits of c are retrieved intact. Finally, since ĉ contains only two errors, the
code is able to correctly compute the original payload p.

6. EXPERIMENTAL RESULTS

As we have explained, our scheme involves several parameters that must be fine-tuned in order to optimize
the combination of imperceptability, data capacity and robustness. In this section we describe some of the
experiments we have done in this regard and make some recommendations.

In this discussion, we have used several abbreviations. ‘Blocksize’ (bs) denotes the number of rows and
columns of the matrix used by the basic embedding algorithm. (This was denoted by the letter n in the
development in Section 4.) The ‘number of columns protected’ (cp) is the number of columns in each block left
unchanged by the embedding (m in Section 4). ‘Singular values protected’ (svp) denotes the number of singular
values left unchanged by the uniformization technique in Section 5.1 (denoted k in that section).

The relationship of the parameters to capacity is the easiest to describe. A formula for data capacity is given
in equation (3), where n denotes the block size and m the number of columns protected. Figure 6 shows some
typical combinations of the parameters.

Asymptotially, the capacity is 1
2

(
n−m

n

)2. Note that the quantity in parenthesis is the proportion of columns
left unprotected (and consequently available to hold data). Unfortunately, our experiments indicate that the
perceptability of the embedding process is also directly related to that same ratio.

A second parameter that affects visual image quality is the number of singular values protected. The
situation is similar to that of columns protected, but not as pronounced. (Increasing the number of singular
values protected does not affect capacity. It does, however, cause an increase in the error rate, see Figure 8.)
The number of singular values protected must be at least as large as the number of columns protected.

Based on our purely visual experiements we have settled on the following combinations as providing minimal
acceptable levels of imperceptability.

block size 8 8 10 10 12
cols. protected 2 3 4 5 5
sing. vals. protected 5 3 7 5 9
capacity 0.23 0.16 0.15 0.10 0.15

We did not consider larger block sizes for several reasons. Most importantly, the singular value decom-
position becomes more expensive as the block size increases, and round-off error becomes more of a problem.
Furthermore, our experience indicates that image quality degrades rather quickly with an increase in block size.

We now turn to the error rate. Our estimate of the error rate is computed by simply embedding a random
bit string, extracting it and counting the number of incorrect bits. The error rate is defined to be the quotient
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Figure 7. Error rate as a function of number of columns and number of singular values protected

of the number of bit errors by the total number of bits, and can be viewed as the probability that any given
bit will be recovered incorrectly. Our experiments were done using six sample images that display a variety of
typical image characteristics.

As Figure 7 indicates, the error rate increases as both the number of columns protected and number of
singular values protected increases. Thus it is necessary to strike a compromise between imperceptability
(which prefers more protected columns and singular values) and error rate (which prefers fewer).

It seems that an error rate of approximately 0.10 is unavoidable with the basic embedding strategy. For this
reason we have developed several techniques for reducing the errors. The first is iterating the data-embedding
step as explained in section 5.2. Figure 8 shows the effect of iteration on the error rate. Clearly, iteration can
greatly decrease the number of errors, although it will not eliminate them entirely. Note that the time required
to run the embedding algorithm is linear in the number of iterations performed.

The second strategy is the use of an error-correcting code as explained in Section 5.3. Figure 9 shows
the result of first embedding and then extracting a valuable payload from an innocent cover image. In our
experiments using a blocksize of 8 with 2 columns and 5 singular values protected, and using the BCH(15,7,5)
code, we acheive an error-rate of approximately 0.0006. We believe this will be satisfactory for all practical
purposes.

2 4 6 8 10 12

0.08

0.1

0.12

0.14

0.16

0.18

Figure 8. Error rate as a function of number of iterations

➠ ➠

Figure 9. Example of embedding and extraction of payload
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7. CONCLUSIONS

We have described a new method of hiding data in a graphic image file. By choosing parameters carefully, this
embedding is impreceptible to the casual observer and, especially if used with error correction, allows extraction
of the message with few errors. Even with error correction, the capacity of the method is approximately 0.1
bits/pixel, which compares very favorably to the safe bit rate of LSB methods as estimated by Fridrich and
Goljan.

There are several avenues of future research involving this method. We have not addressed the crucial
question of undetectability. We have argued that the use of a stream cipher will conceal the use of the error-
correcting code. However, in many ways, this method does resemble an LSB-type technique in that individual
message bits are inserted into the cover file. Is it possible to adapt either the PoV3 or RS4 attacks to detect
messages embedded via the SVD?

There are also questions of robustness to consider. As it stands, this method is not at all robust against
common image manipulations such as cropping, rotation or compression. Is it possible to modify our embedding
technique so that the message survives these manipulations?
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