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Abstract: This paper investigates the capacity problem of heterogeneous wireless networks in mobility
scenarios. A heterogeneous network model which consists of n normal nodes and m helping nodes
is proposed. Moreover, we propose a D-delay transmission strategy to ensure that every packet
can be delivered to its destination nodes with limited delay. Different from most existing network
schemes, our network model has a novel two-tier architecture. The existence of helping nodes greatly
improves the network capacity. Four types of mobile networks are studied in this paper: i.i.d. fast
mobility model and slow mobility model in two-dimensional space, i.i.d. fast mobility model and
slow mobility model in three-dimensional space. Using the virtual channel model, we present an
intuitive analysis of the capacity of two-dimensional mobile networks and three-dimensional mobile
networks, respectively. Given a delay constraint D, we derive the asymptotic expressions for the
capacity of the four types of mobile networks. Furthermore, the impact of D and m to the capacity of
the whole network is analyzed. Our findings provide great guidance for the future design of the next
generation of networks.
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1. Introduction

Network capacity is one of the key factors of wireless networks. The first study of network
capacity is carried out by Gupta and Kumar in [1]. They investigated the throughput capacity of a
wireless network where n nodes are randomly distributed, and find that the per-node throughput

capacity is Θ

˜d

W
n log n

¸

, where W is the highest transmission rate of each node. Their finding

implies that as the size of the network goes to infinity, the per-node throughput will decrease to zero.
Following this work, extensive studies have been conducted to achieve a tighter capacity bound [2–15].

Some researchers propose to add some base stations to help with long distance transmissions
in networks, which are called “hybrid networks” [16–21]. Compared with pure ad hoc networks, the
base stations are neither sources nor destinations, they work only as relay nodes. Liu et al. [16] studied
the capacity of networks where the base stations are regularly placed and the distribution of normal
nodes is independent and identically distributed (i.i.d.). They obtain the asymptotic expressions on
aggregate throughput capacity and maximize the capacity under different channel allocation schemes.
Kozat et al. [17] investigated the capacity bound of the networks where base stations and nodes are

both randomly deployed. They prove that the per-node throughput is Θ
ˆ

W
log n

˙

when the number of

nodes and the number of base stations have the same order. Zemlianov et al. [18] considered the case
that the nodes are randomly distributed and the base stations are arbitrarily placed. They proved that
the network capacity depends on the number of base stations. Zhang et al. [19] proposed a network
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model where delay constraint is considered and each node is equipped with directional antennas.
They also analyzed how the number of base stations and the beamwidth of directional antennas affect
the network capacity.

There are also some papers focusing on guaranteeing the QoS of some special scenarios over
hybrid wireless networks [22–24]. The distortion-aware concurrent multipath transfer (CMT-DA)
solution, delay stringent coded transmission (ASCOT) and goodput-aware load distribution (GALTON)
are proposed in these papers. By evaluating the performance through experiments, the authors prove
that the proposed models outperform existing transmission schemes.

A large volume of literature proves that adding base stations is an efficient way to improve the
network capacity. However, this has some disadvantages. First, to improve the throughput capacity
significantly, a large number of base stations should be set up, which is very expensive. Second, it
takes a lot of time to establish such a wired network. Third, in some practical cases such as battlefields
and rescue tasks, there is little time to set up base stations.

Therefore, compared with establishing base stations, deploying some powerful helping nodes is
an easy and efficient way to improve the network capacity. Networks which consist of normal nodes
and helping nodes are called “heterogeneous networks”. Though there are plenty of research studies
on heterogeneous networks [25–29], most of them focus on routing protocol design [22,23] and MAC
protocol design [27,28], instead of network capacity. One study focused on network capacity [29]
investigated the capacity of two types of networks: regular heterogeneous networks and random
heterogeneous networks.

In the literature mentioned above, the nodes are usually assumed to be stable. Some researchers
focus on the networks where the nodes are mobile. Grossglauser and Tse for the first time introduced
mobility to networks [30]. They proved that the network capacity reaches Θ(W) in mobile networks,
while the transmission delay will go to infinity in their network model. Inspired by this work, many
researchers have engaged in the study of the capacity of mobile networks [30–40]. Of all the mobility
models, the i.i.d. model is the simplest and the most commonly used one. Neely et al. [31] analyzed
the delay-throughput tradeoff of i.i.d. mobility networks. They prove that the throughput capacity is

Ω
ˆ

D
n

˙

, where n is the number of nodes and D is the transmission delay. The mobile network in [31]

is substantially a fast mobility model. In this model, the data transmissions and the node mobility are
assumed to be on the same time scale. Hence there exists only one-hop transmission in a time slot.
In [32], Toumpis and Goldsmith considered the case that the node mobility is much slower than the
data transmissions. In their network model, in single time slot, packets can be delivered by multi-hop

transmissions. They show that the delay-throughput tradeoff is Θ

˜

c

D
n

log n

¸

in their i.i.d. slow

mobility network model. Other researchers have also contributed a lot to the studies on the capacity of
i.i.d. mobility networks.

The random walk model is also an important mobility model. Grammal et al. [33] first introduced
the random walk model. Later on, the throughput capacities of per source-destination pair in fast
mobility networks [34] and slow mobility networks were investigated [35]. Besides i.i.d. mobility
model and random walk model, other mobility models such as Brownian model and hybrid random
walk model are also well studies [36,37].

However, most of the literature above focuses on the two-dimensional mobility model
or one-dimensional mobility model. In fact, as wireless technologies are rapidly developing,
wireless networks are extending from two-dimensional to three-dimensional space. Moreover, in
many scenarios, the network can be better modeled by a three-dimensional space instead of a
two-dimensional space. For instance, in modern battlefields, a large amount of wireless networks are
emerging which consist of lots of military units such as fleets, troops and aircrafts. Hence, we can
foresee that studies on three-dimensional networks will be of great significance.
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In previous studies, only a few researchers studied the capacity problems in three-dimensional
networks [41–43]. The three-dimensional arbitrary network model and three-dimensional random
network model are, for the first time, proposed in [41]. The authors calculated the transport
capacity and throughput capacity of the two types of models, respectively. Li et al. [42] proposed a
three-dimensional network model where the distributions of nodes are inhomogeneous. They obtained
the asymptotic expressions on the throughput capacity of their model. Cai et al. [43] considered the
three-dimensional networks with UWB technologies. They also obtained the throughput capacity.

In this paper, we consider heterogeneous networks with n normal nodes and m helping nodes.
In our network model, the helping nodes are more powerful than the normal nodes and just work
in routing and relaying. They are neither the source nodes nor the destination nodes. Moreover, we
adopt the delay constraint D in our routing strategy. Concretely, if the source can send the packets
to its destination within a time slot D, the packets will be transmitted in multi-hop fashion, which is
also called ad hoc transmission mode. If the transmission delay exceeds D time slots, the packets will
be delivered to the destination with the help of helping nodes, which is called helping transmission
mode. We adopt the i.i.d. mobility model in this paper. Moreover, we consider two time scales: fast
mobility and slow mobility. Besides, we also consider two cases, where all the nodes are distributed in
two-dimensional space and where all of them are distributed in three-dimensional space. We first give
an intuitive analysis under virtual channel systems. Then the asymptotic expressions are obtained by
strict proof. Based on the expressions, we consider the impact of m and D to the per-node throughput
capacity and have some interesting findings. Our main contributions can be summarized as follows:

(1) We propose a new heterogeneous mobile network model, which consists of n mobile normal
nodes and m stable helping nodes. The helping nodes are more powerful and they only work in
routing and relaying data. Compared with the traditional hybrid network model, setting up such
a backbone with helping nodes saves a lot of time and money.

(2) According to the time scales and space dimensions, we consider four types of network model:
two-dimensional i.i.d. fast mobility model, two-dimensional i.i.d. slow mobility model,
three-dimensional i.i.d. fast mobility model and three-dimensional i.i.d. slow mobility model.
We derive the capacities of the four types of mobility by both intuitive analysis and strict
mathematical proof.

(3) We analyze the asymptotic expressions on the network capacity. We find that the number of
helping nodes can affect the throughput capacity significantly. The network capacity can achieve
constant order if the number of helping nodes is large enough, and in this case the time delay can
be ensured. We also conclude that the delay constraint D affects the throughput capacity. If D is
not limited, the throughput can also stay constant order, while the time delay can not be ensured.

2. Definitions and Notations

The following definitions are presented for the convenience of proof and analysis:

2.1. Feasible Aggregate Throughput

If there is a spatial and temporal scheduling strategy that yields an aggregate throughput of T(n)
bits/sec in the networks, we say that the aggregate throughput of T(n) bits/sec is feasible.

2.2. Aggregate Throughput Capacity

If there exists a constant c1 < +8which satisfies the following inequality, we say that the aggregate
capacity is O(f (n)):

lim
nÑ`8

inf P pT pnq “ c1 f pnq is feasibleq ă 1
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and if there exist two constants 0 < c2 < c3 < +8which satisfy the following inequalities, we say that
the aggregate throughput capacity is Θ(f (n)):

lim
nÑ`8

inf P pT pnq “ c2 f pnq is feasibleq “ 1

lim
nÑ`8

inf P pT pnq “ c3 f pnq is feasibleq ă 1

2.3. Feasible Per-Node Throughput

If there is a spatial and temporal scheduling strategy that yields a per-node throughput of λ(n)
bits/sec on average, we say that the per-node throughput of λ(n) bits/sec is feasible.

2.4. Per-Node Throughput Capacity

If there exists a constant c4 < +8which satisfies the following inequality, we say that the per-node
throughput is O(g(n)):

lim
nÑ`8

inf P pλ pnq “ c4g pnq is feasibleq ă 1

and if there exist two constants 0 < c5 < c6 < +8which satisfy the following inequalities, we say that
the per-node throughput capacity is Θ(g(n)):

lim
nÑ`8

inf P pλ pnq “ c5g pnq is feasibleq “ 1

lim
nÑ`8

inf P pλ pnq “ c6g pnq is feasibleq ă 1

The following notations are listed throughout this paper. Given two functions f (n) and g(n):

(1) f (n) = O(g(n)) means that there exist positive c and m so that f (n) ď cg(n) holds for all n ě m;
(2) f (n) = Ω(g(n)) means that there exist positive c and m so that f (n) ě cg(n) holds for all n ě m,

which also means g(n) = O(f (n));
(3) f (n) = Θ(g(n)) means both f (n) = O(g(n)) and f (n) = Ω(g(n)) hold; f (n) = O(g(n));
(4) f (n) = o(g(n)) means lim f (n)/g(n) = 0.

The remaining notations are listed in Table 1.

Table 1. Notations.

Notation Definition

W The total bandwidth of the networks, which means the highest transmission rate of
each node.

W1 The bandwidth of ad hoc transmission mode.
W2 The bandwidth of uplink sub-channel in helping transmission mode.
W3 The bandwidth of downlink sub-channel in helping transmission mode.
n The number of ad hoc nodes in the networks.
m The number of helping nodes in the networks.
D The delay constraints.
∆ The guard zone size.
L1 The transmission radius of source nodes in virtual channel model.
L2 The transmission radius of relay nodes in virtual channel model.

Λ[T] The total number of bits successfully delivered to destination nodes in T time slots.
eB The node storing bit B.
LB The minimum distance between dB and eB.

λA(n) The per-node throughput contributed by ad hoc transmission mode.
λH(n) The per-node throughput contributed by helping transmission mode.
λ(n) The per-node throughput capacity of the network.
H(B) The number of hops of bit B in slow mobility model.
αh

B The transmission radius of bit B in its hth hop in slow mobility model.
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3. Network Model

3.1. Network Architecture

In our network model, there are n ad hoc nodes and m helping nodes. The ad hoc node spatial
distributions are i.i.d., while the helping nodes are regularly placed. Compared with ad hoc nodes, the
helping nodes are more powerful. They only serve as relay nodes in our network model, and work in
routing and transmission of data to other ad hoc nodes.

Our network model has a two-tier hierarchy, which is similar to a traditional hybrid network.
The difference is that the helping nodes in our network model communicate with each other over
wireless channel, whereas the base stations in hybrid networks are connected by a wired network.

In this paper we consider two cases: two-dimensional mobile networks and three-dimensional
mobile networks. In two-dimensional mobile networks, all the nodes are placed in a two-dimensional
square of unit area. In three-dimensional mobile networks, all the nodes are placed in a
three-dimensional cube of unit volume. Figures 1 and 2 show the two types of network
architecture, respectively.
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3.2. Communication Model

We adopt the protocol model in [1] as our communication model in this paper. Concretely, let
r denote the transmission range of ad hoc nodes, node Xj can receive the packets from node Xi if the
following conditions hold:

(1) Node Xj is under the coverage of node Xi, i.e.,
ˇ

ˇXi ´ Xj
ˇ

ˇ ď r

(2) For any other node Xk which is delivering packets over the same time slot,
ˇ

ˇXk ´ Xj
ˇ

ˇ ě p1` ∆q
ˇ

ˇXi ´ Xj
ˇ

ˇ

where ∆ defines the size of guard zone.

3.3. Transmission Strategy

Two transmission modes exist in our network model: helping transmission mode and ad hoc
transmission mode, as shown in Figure 3. In ad hoc transmission mode, packets are delivered from
source nodes to destination nodes in a multi-hop fashion, which are relayed by ad hoc nodes. In helping
transmission mode, packets are first delivered from their source nodes to the backbone network which
consists of helping nodes, and then they are transmitted from the helping nodes to their destinations.

In mobile networks, the transmission delay can not be ensured, hence a D-delay transmission
strategy is considered in this paper. Specifically, a packet will be transmitted by ad hoc transmission
mode if it can reach its destination node within D time slots. Otherwise, the packet will be transmitted
by helping transmission mode.

We divide the wireless channel into different sub-channels so that the packet can be carried with
different frequency bands. We assume that ad hoc nodes have a bandwidth of W. We assign W into W1,
W2 and W3, which denote the intra-cell, uplink and downlink sub-channels, respectively. Hence we

have
3
ř

i“1
Wi “ W. Since the amount of traffic carried over uplink sub-channels is the same with that

carried over downlink sub-channels, we have W2 = W3. Moreover, we assume that the helping nodes
have much higher bandwidth than the normal nodes, and the two types of nodes carry packets with
different frequency bands, which implies that there is no interference between them.
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3.4. Mobility Model

Two types of models are considered in this paper.

(1) Two-dimensional i.i.d. mobility model: Our two-dimensional mobility model is defined as follows:

(i) There are n mobile ad hoc nodes and m stable helping nodes distributed in a square of unit
are. In each time slot, the n ad hoc nodes are uniformly, randomly positioned in the square.

(ii) The node positions are independent of each other, and independent from time slot to time
slot, so the nodes are totally reshuffled in each time slot.

(iii) There are n source-destination pairs in the network. Each node is both a source node and
a destination node.

(2) Three-dimensional i.i.d. mobility model: Our three-dimensional mobility model is defined as follows:

(i) There are n mobile ad hoc nodes and m stable helping nodes distributed in a cube of unit
volume. In each time slot, the n ad hoc nodes are uniformly and randomly positioned in
the unit cube.

(ii) The rest is the same as the two-dimensional i.i.d. mobility model.

In this paper, we consider two time scales of mobility: fast mobility and slow mobility. They are
described as follows:

(1) Fast mobility: The mobility of nodes is at the same time scale of packet transmission, hence in one
time slot, only one-hop transmission is allowed. In this case, the transmission rate (bandwidth) is
independent of the number of nodes.

(2) Slow mobility: The mobility of nodes is much slower than the packet transmission, hence W = Ω(n).
In this case, the packet size should be W{h pnq to guarantee that h(n)-hop transmissions are
feasible in one time slot.

4. Main Results

In this section, we present the main results of this paper. In the study on capacity of
mobile networks, many mobility models are proposed to model the mobility of networks. In this
paper, we consider four mobility models: two-dimensional i.i.d. fast mobility network model,
two-dimensional i.i.d. slow mobility network model, three-dimensional fast mobility network model
and three-dimensional slow mobility network model. Our main results are summarized as follows:

(1) Two-dimensional i.i.d. fast mobility network model: it is shown that with a delay constraint D,

the capacity is λ pn, mq “ O

˜

c

D
n

¸

`Θ
ˆ?

mW2

n

˙

, where O

˜

c

D
n

¸

is the throughput capacity

contributed by ad hoc transmission mode and Θ
ˆ?

mW2

n

˙

is the capacity contributed by helping

transmission mode.
(2) Two-dimensional i.i.d. slow mobility network model: It is shown that with a delay constraint D,

the capacity is λ pn, mq “ O

˜

3

c

D
n

¸

`Θ
ˆ?

mW2

n

˙

, where O

˜

3

c

D
n

¸

is the throughput capacity

contributed by ad hoc transmission mode and Θ
ˆ?

mW2

n

˙

is the capacity contributed by helping

transmission mode.
(3) Three-dimensional i.i.d. fast mobility network model: It is shown that with a delay constraint D,

the capacity is λ pn, mq “ O

˜

3

c

D
n2

¸

` Θ

˜

3?m2W2

n

¸

, where O

˜

3

c

D
n2

¸

is the capacity
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contributed by ad hoc transmission mode and Θ

˜

3?m2W2

n

¸

is the capacity contributed by helping

transmission mode.
(4) Three-dimensional i.i.d. slow mobility network model: It is shown that with a delay constraint D,

the capacity is λ pn, mq “ O

˜

4

c

D
n2

¸

` Θ

˜

3?m2W2

n

¸

, where O

˜

4

c

D
n2

¸

is the capacity

contributed by ad hoc transmission mode and Θ

˜

3?m2W2

n

¸

is the capacity contributed by helping

transmission mode.

5. Intuitive Analysis

In [38], the authors proposed the virtual channel model. We adopt this idea to have some heuristic
arguments on ad hoc transmission mode. A virtual channel is a logic representation of a packet
transmission from source node to destination node. According to the virtual channel model, there are
two main constraints on the network capacity:

(1) Interference: In the process of packet transmissions, the near nodes interfere with each other,
which limit the throughput capacity.

(2) Mobility: Since source nodes, destination nodes and relay nodes are mobile all the time, the
packets are not ensured to reach their destination nodes before the delay deadline.

In a virtual channel mode, a packet is assumed to be transmitted from its source node to its
destination node by a two-hop transmission. First, it is delivered from the source node to the relay
node around the source. Then, it is delivered from the relay node to the destination node. Hence, in
ad hoc transmission mode, for a successful packet delivery, we consider three virtual channels, as
shown in Figure 4:

Reliable Broadcasting Channel: The source nodes transmit the packets to the relay nodes around it by
broadcasting channel;
Unreliable Relay Channel: The relay nodes move to the neighborhood of the destination;
Reliable Receiving Channel: The relay nodes deliver the packets to the destination nodes.
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All the packets delivered to the destinations by ad hoc transmission mode are via the three
virtual channels. Using the virtual channel model, we present the intuitions on the capacity of our
network model.

First the two-dimensional i.i.d. fast mobility model is considered:
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Reliable Broadcasting Channel: Let L1 denote the transmission radius of source node. Hence, the
source can cover an area of π(L1)2. For simplicity, we omit the guard zone ∆. Hence, there are at most

1

π pL1q
2 transmitting pairs in the network in a time slot. On average, every source node has P1 fraction

of time to broadcast, where:

P1 “
1

π pL1q
2 n

Therefore, for reliable broadcast channel, its throughput is:

W1

π pL1q
2 n

There exist π(L1)2 n mobile nodes in a disk with radius L on average. Hence, each broadcast can
transmit packets π(L1)2 n nodes as duplicate copies.

Unreliable Relay Channel: We assume that the transmission radius for relay nodes is L2. Since the
nodes are distributed in a square of unit area, we assume that L2 is far less than 1. For a duplicated
packet, the probability that it fail to reach the destination node within D time slots is:

P2 “
´

1´ π pL2q
2
¯D

As what analyzed above, a sent packet is delivered to πL2
2n relay node on average. Hence there

are πL2
2n duplicate copies. Therefore, within D time slots, the probability that there are no packets

fallen into the area covered by its destination node is:

P3 “
´

1´ π pL2q
2
¯πpL1q

2nD

Reliable Receiving Channel: Now we consider the packets delivered from relay nodes to destination
nodes. Since L2 is a common transmission radius which all the relay nodes use, the number of

transmitting relay-destination pairs in a time slot is no more than
1

π pL2q
2 . As the highest transmission

rate is W1 for relay nodes, the per-node reliable receiving channel can be expressed by

W1

π pL2q
2 n

As shown in Figure 5, for a source-destination pair in the virtual channel model, the maximum
throughput is:

λ “ max
L1,L2

min

#

W1

π pL1q
2 n

˜

1´
´

1´ π pL2q
2
¯πpL1q

2nD
¸

,
W1

π pL2q
2 n

+

Sensors 2016, 16, 425 10 of 31 

 

As what analyzed above, a sent packet is delivered to 2
2L n  relay node on average. Hence 

there are 2
2L n  duplicate copies. Therefore, within D time slots, the probability that there are no 

packets fallen into the area covered by its destination node is: 

    2
12

3 21
L nD

P L


   

Reliable Receiving Channel: Now we consider the packets delivered from relay nodes to 
destination nodes. Since 2L  is a common transmission radius which all the relay nodes use, the 

number of transmitting relay-destination pairs in a time slot is no more than 
 2

2

1
L

. As the 

highest transmission rate is 1W  for relay nodes, the per-node reliable receiving channel can be 
expressed by 

 
1

2
2

W

L n
 

As shown in Figure 5, for a source-destination pair in the virtual channel model, the maximum 
throughput is: 

 
    

 

2
1

1 2

21 1
22 2,

1 2

maxmin 1 1 ,
L nD

L L

W W
L

L n L n



 
 

   
    

   
 

 
1

2
1

W

L n

    212
21

L nD

L




    212
21

L nD

L




 
1

2
2

W

L n

 
1

2
2

W

L n
 

Figure 5. The virtual channel representation for the two-dimensional i.i.d. fast mobility network model. 

Next we consider the two-dimensional i.i.d. networks with slow mobility. In virtual channel 
systems, the relay channel and the receiving channel are the same with the analysis above. Hence 
we only need to consider the broadcasting channel. For each broadcasting channel, the throughput 
capacity is: 

1

1

W

L n
 

Hence, the virtual channel systems are as shown in Figure 6: 

1

1

W

L n

    212
21

L nD

L




    212
21

L nD

L




 
1

2
2

W

L n

 
1

2
2

W

L n
 

Figure 6. The virtual channel representation for the two-dimensional i.i.d. slow mobility network model. 

Figure 5. The virtual channel representation for the two-dimensional i.i.d. fast mobility network model.



Sensors 2016, 16, 425 10 of 30

Next we consider the two-dimensional i.i.d. networks with slow mobility. In virtual channel
systems, the relay channel and the receiving channel are the same with the analysis above. Hence we
only need to consider the broadcasting channel. For each broadcasting channel, the throughput
capacity is:

W1

πL1
?

n

Hence, the virtual channel systems are as shown in Figure 6:
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We can conclude that for a source-destination pair, the maximum throughput is:

λ “ max
L1,L2

min

#

W1

πL1
?

n

˜

1´
´

1´ π pL2q
2
¯πpL1q

2nD
¸

,
W1

π pL2q
2 n

+

Now we consider the three-dimensional i.i.d. fast mobility networks. Different from the analysis
above, all the nodes are distributed in a three-dimensional space in this network model. Hence, the
broadcasting channel is:

W1
4
3

π pL1q
3 n

The probability that there are no packets fallen into the area covered by its destination node
within D time slots is:

ˆ

1´
4
3

π pL2q
3
˙

4
3

πpL1q
3nD

The receiving channel is:
W1

4
3

π pL2q
3 n

Figure 7 shows the virtual channel model for three-dimensional i.i.d. fast mobility networks, and
the throughput capacity is:

λ “ max
L1,L2

min

$

’

&

’

%

W1
4
3

π pL1q
3 n

¨

˚

˝

1´
ˆ

1´
4
3

π pL2q
3
˙

4
3

πpL1q
3nD

˛

‹

‚

,
W1

4
3

π pL2q
3 n

,

/

.

/

-
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Next we turn to the three-dimensional i.i.d. slow mobility network model. The relay channel and
the receiving channel have been obtained in the analysis of three-dimensional fast mobility networks.
As described in [38], the broadcasting channel in three-dimensional slow mobility can be expressed by:

W1
4
3

πL1
3
?

n

As shown in Figure 8, we can obtain the throughput capacity:

λ “ max
L1,L2

min

$

’

&

’

%

W1
4
3

πL1
3
?

n

¨

˚

˝

1´
ˆ

1´
4
3

π pL2q
3
˙

4
3

πpL1q
3nD

˛

‹

‚

,
W1

4
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3 n

,
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6. Capacity of Heterogeneous Mobile Wireless Networks

In this section we calculate the capacity of the four types of mobile network model, respectively.
First we derive the capacity contributed by ad hoc transmission mode. Then we consider the capacity
contributed by helping transmission mode. To obtain the throughput contributed by ad hoc transmission
mode, we first assume that relaying is not allowed in the networks and calculate the number of packets
delivered directly from the source to the destination. On this basis, we derive the number of packets
delivered with the help of relay nodes. Summing up the two results, we can get the total number of
packets carried by ad hoc transmission mode. To obtain the throughput capacity contributed by helping
transmission mode, we should consider the network capacity of the backbone network, which has
regular topology architecture.
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6.1. Capacity of Two-Dimensional i.i.d. Fast Mobility Networks

We will first present some important inequalities firstly, which are shown in the following theorem:

Theorem 1. In two-dimensional mobile networks, we have the following inequalities:

ΛrTs ď nW1T (1)

|RrTs| ď nW1T (2)

ΛrTs
ÿ

B“1

∆2

16
pαBq

2
ď

W1T
π

(3)

Proof. For one node, the largest number of bits it can deliver in one time slot is W1 bits. Therefore,
in T time slots, all the nodes in the network can take at most nW1T bits, which are necessarily larger
than the packets successfully transmitted to the destination nodes from source nodes, as shown in
inequality Equation (1). It is also larger than the number of bits which are stored at relay nodes. Hence
we have equality Equation (2). ˝

Now we investigate the throughput capacity contributed by ad hoc transmission mode. First we
will analyze the number of bits directly transmitted to the source nodes without relaying in T time
slots, which is denoted by Λd[T]. We have the following theorem:

Theorem 2. In two-dimensional i.i.d fast mobility model, without considering relaying progress, we can bound
the number of bits directly delivered to destination nodes as:

E
”

ΛdrTs
ı

ď
8
?

2
∆

W1T
?

n

Proof. Consider inequality Equation (3), according to the Cauchy-Schwarz inequality, we have:

˜

ΛdrTs
ř

B“1
pαBq

¸2

ď

˜

ΛdrTs
ř

B“1
1

¸˜

ΛdrTs
ř

B“1
pαBq

2

¸

ď ΛdrTs
16WT
π∆2

which can be expressed by:

E

»

–

ΛdrTs
ÿ

B“1

αB

fi

fl ď E
„

b

ΛdrTs


˜

c

16WT
∆2π

¸

(4)

The inequality above gives a bound on the expected distance which the bits take. For two arbitrary
nodes Xi and Xj, let dist(Xi, Xj)(t) denote their distance in time slot t. Based on the assumption that the
mobility model are i.i.d, we have:

Pr
`

distpXi, Xjqptq ď L
˘

“ πL2

In T time slots, we have:

E

«

T
ÿ

t“1

˜

n´1
ÿ

i“1

1distpX1,Xi`1qptqďL

¸ff

“ TnπL2
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The network can carry at most W1 bits in single time slot, hence we can obtain:

ΛdrTs
ÿ

B“1

1αBďL ď W1

T
ÿ

t“1

n´1
ÿ

i“1

1distpXi ,Xi`1qptqďL

According to the inequalities above, we have:

E
”

ΛdrTs
ı

´ E

»

–

ΛdrTs
ÿ

B“1

1αBąL

fi

fl ď W1πnTL2 (5)

By Jensen’s inequality, combining inequality Equation (4) and inequality Equation (5), we can
obtain the following inequality:

c

E
“

ΛdrTs
‰ 16WT

∆2π
ě E

”

a

ΛdrTs
ı

˜

c

16WT
∆2π

¸

ě E

«

ΛdrTs
ř

B“1
αB

ff

ě E

«

ΛdrTs
ř

B“1
1αBąL

ff

L

ě

´

E
”

ΛdrTs
ı

´W1πnTL2
¯

L

where Jensen’s inequality is used in the first inequality.

Let L “

g

f

f

e

E
”

ΛdrTs
ı

2πW1nT
, we obtain:

c

16W1T
∆2π

E
“

ΛdrTs
‰

ě
1
2

E
”

ΛdrTs
ı

g

f

f

e

E
”

ΛdrTs
ı

2πW1nT

Simplify the inequality above, we can obtain E[Λd[T]]. ˝

Theorem 2 has given number of bits directly delivered to destination nodes. Now we consider the
scenario where packets can be relayed in the networks.

Theorem 3. In two-dimensional i.i.d fast mobility model, if packet relaying exists, the bound on the number of
bits transmitted to the destination number through relay nodes is:

E rΛrrTss ď
8
?

2
∆

W1T
?

nD

where D is delay constant.

Proof. In T time slots, let Λr[T] denote the number of bits which are transmitted from relay nodes
to destination nodes in T time slots, we have Λ[T] = Λr[T] + Λd[T]. According to Cauchy-Schwarz
inequality and inequality Equation (3), we obtain:

˜

ΛrrTs
ř

B“1
pαBq

¸2

ď

˜

ΛrrTs
ř

B“1
1

¸˜

ΛrrTs
ř

B“1
pαBq

2

¸

ď ΛrrTs
16WT
π∆2
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where Cauchy-Schwarz inequality is used in the first inequality. Hence we have:

E

»

–

ΛrrTs
ÿ

B“1

αB

fi

fl ď E
”

a

ΛrrTs
ı

˜

c

16WT
∆2π

¸

(6)

Consider bit B, let dB denote its destination node and eB denote the node storing bit B. We assume
that from time slot tB to time slot tB + D ´ 1, the minimum distance between dB and eB is LB. Then
we have:

LB “ min
tBďtďD`tB´1

distpdB, eBqptq

For an arbitrary bit B which is in the set R[T], we have:

Pr pLB ď Lq “ 1´
´

1´ πL2
¯D

According to Taylor’s formula, equality Equation (14) can be expressed as:

Pr pLB ď Lq “ πDL2 ` opπDL2q ď πDL2

Therefore, we obtain:

E

»

–

ÿ

BPRrTs

1LBďL

fi

fl ď nW1TπDL2 (7)

Obviously, we have:
ÿ

BPRrTs

1LBďL ě

ΛrrTs
ÿ

B“1

1αBďL (8)

Combining Equations (7) and (8), we have:

E

»

–

ΛrrTs
ÿ

B“1

1αBďL

fi

fl ď nW1TπDL2

Hence, we can obtain the following inequalities:

E

«

ΛrrTs
ř

B“1
αB

ff

ě E

«

ΛrrTs
ř

B“1
αB1αBąL

ff

ě E

«

ΛrrTs
ř

B“1
1αBąL

ff

L

ě

˜

E rΛrrTss ´ E

«

ΛrrTs
ř

B“1
1αBďL

ff¸

L

ě E rΛrrTss L´ nW1TπDL3

(9)

According to Jensen's inequality, combining inequality Equation (6) and inequality Equation (9),
we have:

E
”

a

ΛrrTs
ı

˜

c

16W1T
∆2π

¸

ě E

«

c

16W1T
∆2π

ΛrrTs

ff

ě E

«

ΛrrTs
ř

B“1
αB

ff

ě E rΛrrTss L´ nW1TπDL3

where Jensen’s inequality is used in the first inequality.
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Let L “
c

E rΛrrTss
2πW1nTD

, we can have E[Λr[T]]. ˝

Theorem 4. In two-dimensional i.i.d. fast mobility networks, the ad hoc transmission mode capacity is:

λA pnq “ O

˜

c

D
n

¸

Proof. Combining Theorems 2 and 3, we have:

E rΛrTss ď
8
?

2
∆

W1T
?

n
´

1`
?

D
¯

In the meaning of order, the throughput capacity contributed by relaying nodes plays a dominating

role compared with the throughput without relaying node. Thus, we have E
„

Λ rTs
n



ď O

˜?
nD
n

¸

. ˝

Now we consider the capacity contributed by the helping nodes. In two-dimensional network

model, the helping nodes are regularly placed and divide the area into
ˆ

1
?

m

˙

ˆ

ˆ

1
?

m

˙

equal-size

squares. In the transmissions of helping nodes, there are three phases: uplink phase, downlink phase
and HN-to-HN phase. In uplink phase, the source nodes deliver the packets to the nearest helping
nodes. In this case we call the helping nodes 'sources'. Then, the helping nodes transmit the packets
to the helping nodes that are in the same cells with the destination nodes. In this case we call the
helping nodes 'destinations'. Finally, the helping nodes deliver the packets to the destination nodes by
broadcasting. Theorem 5 gives the capacity contributed by the backbone network which consists of
helping nodes.

Theorem 5. In two-dimensional networks, the per-node throughput helping transmission mode contributes is:

λH pm, nq “ Θ
ˆ?

mW2

n

˙

Proof. Since the node distribution is i.i.d., each helping node is chosen as a source or a destination with
the same probability. We randomly choose the helping node on (p, q) as the source and the helping
node on (i, j) as the destination. In our network model, two neighbor helping nodes can communicate
directly, hence the minimum number of hops is h = |p ´ i| + |j ´ q|. Summing up all the possible h,
we have:

E rhs “ E r|p´ i|s ` E r|p´ i|s
“ 2E rE r|p´ i|ss

E[|p ´ i|] can be obtained by the following equation:

E r|p´ i|s “
1
?

m

˜

p´1
ř

i“1
pp´ iq `

?
m
ř

i“p
pi´ pq

¸

“
p2
?

m
´

ˆ

1
?

m
` 1

˙

p`
?

m` 1
2

(10)

We can get E[p2] by the following equation:

E
“

p2‰ “
12 ` 22 ` . . .`

`?
m
˘2

?
m

“

`?
m` 1

˘ `

2
?

m` 1
˘

6

(11)
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Since p is uniformly distributed in the interval r1,
?

ms, we obtain:

E rps “
1`

?
m

2
(12)

Substituting Equations (11) and (12) into Equation (10), we have:

E rhs “
?

m´
1
?

m
(13)

Since the bandwidth of uplink sub-channel is W2, for each helping node, it can carry at most W2

bits in each time slot. Thus, we have:
nλHhm ď mW2 (14)

where λH is the per-node throughput capacity of backbone helping node.
For an arbitrary helping node Yi, its interference region is a circle with radius (1 + ∆H)rH . Each

helping node occupies a region of
ˆ

1
?

m

˙2
in the unit area, hence the number of helping nodes

interfered by Yi is:

c7 “
π pp1` ∆Hq rHq

2

ˆ

1
?

m

˙2 « π p1` ∆Hq
2

Hence the number of nodes interfered by Yi is bounded by c8 = c7 ´ 1. It implies that there exists
a temporal and spatial scheduling strategy that every helping node can obtain at least one slot to
communicate in every (1 + c8) slots. Therefore, we have:

nλHhm ě
mW2T

2 p1` c8q
(15)

Combining Equations (14) and (15), we can obtain the per-node throughput capacity of backbone:

λH pmq “ Θ
ˆ?

mW2

n

˙

˝

Since the total throughput capacity is contributed by multi-hop mode and helping mode, we have
λ(n, m) = λA(n) + λH(m). According to Theorems 4 and 5, we can obtain Theorem 6 as follows:

Theorem 6. In two-dimensional i.i.d. fast mobility networks, under protocol model, the network capacity is:

λ pn, mq “ O

˜

c

D
n

¸

`Θ
ˆ?

mW2

n

˙

Proof. Combining Theorems 4 and 5, we can prove the theorem above. ˝

6.2. Capacity of Two-Dimensional i.i.d. Slow Mobility Networks

Similar to the fast mobility model, we can calculate the throughput capacity of slow mobility
model. First we present some important inequalities, as shown in Theorem 7:

Theorem 7. In two-dimensional i.i.d. slow mobility networks, we have the following inequalities:

ΛrTs
ÿ

B“1

HpBq
ÿ

h“1

1 ď nW1T (16)
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ΛrTs
ÿ

B“1

HpBq
ÿ

h“1

∆2

16

´

αh
B

¯2
ď

W1T
π

(17)

Proof. Similarly with the proof of Theorem 1, we can prove the theorem above. ˝

First we consider the case that all the packets are directly transmitted to the destination nodes
without relaying.

Theorem 8. In two-dimensional i.i.d. slow mobility networks, if relaying progress is not allowed, the number
of bits directly delivered to destination nodes is bounded as follows:

E
”

ΛdrTs
ı

ď
4 3
?

2
3?∆2

W1T 3
a

n2

Proof. According to Theorem 1 and the Cauchy-Schwarz inequality, we have:

˜

ΛrTs
ř

B“1

HpBq
ř

h“1
αh

B

¸2

ď

˜

ΛrTs
ř

B“1

HpBq
ř

h“1
1

¸˜

ΛrTs
ř

B“1

HpBq
ř

h“1

´

αh
B

¯2
¸

ď nW1T
ΛrTs
ř

B“1

HpBq
ř

h“1

´

αh
B

¯2

ď
16nW2

1 T2

∆2π

where the Cauchy-Schwarz inequality is used in the first inequality.

Since
HpBq
ř

h“1
αh

B ě LB, we have that:

ΛrTs
ÿ

B“1

LB ď
4
?

nW1T
∆
?

π
(18)

Similar to the analysis in Theorem 2, the following inequality can be obtained:

E
”

ΛdrTs
ı

´ E

»

–

ΛdrTs
ÿ

B“1

1LBąL

fi

fl ď W1πnTL2 (19)

Combining inequality Equation (18) and inequality Equation (19), we have:

4
?

nW1T
∆
?

π
ě E

«

ΛdrTs
ř

B“1
LB

ff

ě LE

«

ΛdrTs
ř

B“1
1LBąL

ff

ě L
´

E
”

ΛdrTs
ı

´W1πnTL2
¯

Let L “

g

f

f

e

E
”

ΛdrTs
ı

2πW1nT
, we can conclude that:

1
2

E
”

ΛdrTs
ı

g

f

f

e

E
”

ΛdrTs
ı

2πW1nT
ď

4
?

nW1T
∆
?

π
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Simplify the inequality above, we can obtain Theorem 8. ˝

Theorem 9. In two-dimensional i.i.d. slow mobility network model, if packet relaying is allowed, the bound on
the number of bits which are transmitted successfully from relay nodes to destination nodes is as follows:

E rΛrrTss ď
4 3
?

2
3?∆2

W1T 3
a

n2D

Proof. Similar to the steps in capacity analysis of network capacity of two-dimensional i.i.d. fast
mobility networks, we have:

E

»

–

ΛrrTs
ÿ

B“1

1LBďL

fi

fl ď nW1TπDL2

Therefore, we can obtain the following inequalities:

E

«

ΛrrTs
ř

B“1
LB

ff

ě E

«

ΛrrTs
ř

B“1
LB1LBąL

ff

ě E

«

ΛrrTs
ř

B“1
1LBąL

ff

L

ě

˜

E rΛrrTss ´ E

«

ΛrrTs
ř

B“1
1LBăL

ff¸

L

ě E rΛrrTss L´ nW1TπDL3

(20)

Combining inequality Equation (18) and inequality Equation (20), we have:

4
?

nW1T
∆
?

π
ě E rΛrrTss L´ nW1TπDL3

Let L “
c

E rΛrrTss
2πW1nTD

, we have Theorem 9. ˝

Theorem 10. In two-dimensional i.i.d. slow mobility networks, the throughput capacity contributed by ad hoc
transmission mode is:

λA pnq “ O

˜

3

c

D
n

¸

(21)

Proof. Combining Theorems 9 and 10, we have:

E rΛrTss ď
4 3
?

2
3?∆2

W1T 3
a

n2
´

1` 3?D
¯

Inequality Equation (21) then follows the proof of Theorem 4. ˝

Theorem 5 has given the throughput capacity contributed by backbone networks. Combining
the results of Theorems 5 and 10, we can obtain the network capacity of two-dimensional i.i.d. slow
mobility networks:

Theorem 11. In two-dimensional i.i.d. slow mobility networks, under protocol model, the capacity is:

λ pn, mq “ O

˜

3

c

D
n

¸

`Θ
ˆ?

mW2

n

˙

Proof. Combining Theorems 5 and 10, we can prove the theorem above. ˝
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6.3. Capacity of Three-Dimensional i.i.d. Fast Mobility Networks

Inequality Equation (1) and inequality Equation (2) which hold in two-dimensional networks are
also suitable for three-dimensional networks. However, in three-dimensional i.i.d fast mobility model,
we should modify inequality Equation (3) to analyze the network capacity of the networks.

Theorem 12. In three-dimensional i.i.d fast mobility model, we have:

ΛrTs
ÿ

B“1

∆3

24
pαBq

3
ď

W1T
π

(22)

Proof. The proof progress is similar with Theorem 1. ˝

Theorem 13. In three-dimensional i.i.d fast mobility model, we can obtain that the bounds on the number of
bits directly delivered to destination nodes by ad hoc transmission mode:

E
”

ΛdrTs
ı

ď
6 3
?

6
∆

3
b

W2
1 T2n

Proof. According to the Cauchy-Schwarz inequality, we can obtain the following inequality:

˜

ΛdrTs
ř

B“1
αB

¸3

ď

˜

ΛdrTs
ř

B“1
1

¸˜

ΛdrTs
ř

B“1
α3

B

¸

ď ΛdrTs
24W1T

π∆3

which implies:

E

»

–

ΛdrTs
ÿ

B“1

αB

fi

fl ď
3
b

ΛdrTs

˜

3

c

24W1T
π∆3

¸

(23)

Since the node distribution is i.i.d in a three-dimensional space, according to the knowledge of
Probability Theory, we have that:

Pr
`

distpXi, Xjqptq ď L
˘

“
4π

3
L3

According to the inequality above, we conclude that:

E

«

T
ÿ

t“1

˜

n´1
ÿ

i“1

1distpX1,Xi`1qptqďL

¸ff

“
4π

3
TnL3

In single time slot, each node can carry at most W1 bits. Hence we have:

ΛdrTs
ÿ

B“1

1αBďL ď W1

T
ÿ

t“1

n´1
ÿ

i“1

1distpXi ,Xi`1qptqďL

Taking expectation on the inequality above, we have:

E
”

ΛdrTs
ı

´ E

»

–

ΛdrTs
ÿ

B“1

1αBąL

fi

fl ď
4π

3
W1nTL3 (24)
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Combining inequality Equation (23) and inequality Equation (24), we have:

3

c

E
“

ΛdrTs
‰ 24WT

∆3π
ě E

”

3
a

ΛdrTs
ı

˜

3

c

24WT
∆3π

¸

ě E

«

ΛdrTs
ř

B“1
αB

ff

ě E

«

ΛdrTs
ř

B“1
1αBąL

ff

L

ě

ˆ

E
”

ΛdrTs
ı

´
4π

3
W1nTL3

˙

L

where Jensen’s inequality is used in the first inequality.

Let L “
3

g

f

f

e

E
”

ΛdrTs
ı

2πW1nT
, we have:

3

c

24W1T
∆3π

E
“

ΛdrTs
‰

ě
1
3

E
”

ΛdrTs
ı 3

g

f

f

e

E
”

ΛdrTs
ı

2πW1nT

Then Theorem 14 can be proved by simplifying the inequality above. ˝

Next we study the throughput contributed by ad hoc mode considering relaying progress.

Theorem 14. In three-dimensional i.i.d fast mobility networks, if relaying exists, we can obtain the bound on
the number of bits successfully delivered to the destination nodes through relay nodes as follows:

E rΛrrTss ď
6 3
?

6
∆

3
b

W2
1 T2Dn

where D is the delay constant.

Proof. According to the Cauchy-Schwarz inequality and inequality Equation (48), we have the
following inequalities:

˜

ΛrrTs
ř

B“1
αB

¸3

ď

˜

ΛrrTs
ř

B“1
1

¸˜

ΛrrTs
ř

B“1
α3

B

¸

ď ΛrrTs
24W1T

π∆3

which can be expressed by:

E

»

–

ΛrrTs
ÿ

B“1

αB

fi

fl ď
3
a

ΛrrTs

˜

3

c

24W1T
π∆3

¸

(25)

Consider bit B, in time [tB, D + tB ´ 1], let L1B denote the minimum distance between its relay
node eB and destination node dB, i.e.:

L1B “ min
tBďtďD`tB´1

distpdB, eBqptq

Since the node distribution is i.i.d in each time slot, we have:

Pr
`

L1B ď L
˘

“ 1´
ˆ

1´
4π

3
L3
˙D
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Using the Taylor formula, we can obtain the following inequality:

Pr
`

L1B ď L
˘

“
4π

3
DL3 ` op

4π

3
DL3q ď

4π

3
DL3

Then we can get the bound on the expectation of the number of bits which satisfy L1B ď L:

E

»

–

ÿ

BPRrTs

1L1BďL

fi

fl ď
4π

3
nW1TDL3

Since
ř

BPRrTs
1L1BďL ě

ΛrrTs
ř

B“1
1αBďL, we have:

E

»

–

ΛrrTs
ÿ

B“1

1αBďL

fi

fl ď
4π

3
nW1TDL3

Furthermore, we have:

E

«

ΛrrTs
ř

B“1
αB

ff

ě E

«

ΛrrTs
ř

B“1
αB1αBąL

ff

ě E

«

ΛrrTs
ř

B“1
1αBąL

ff

L

ě

˜

E rΛrrTss ´ E

«

ΛrrTs
ř

B“1
1αBďL

ff¸

L

ě E rΛrrTss L´
4π

3
nW1TDL4

(26)

Combining inequality Equation (25) and inequality Equation (26), we can obtain the
following inequalities:

E
”

a

ΛrrTs
ı

˜

c

24W1T
∆3π

¸

ě E

«

c

24W1T
∆3π

ΛrrTs

ff

ě E

«

ΛrrTs
ř

B“1
αB

ff

ě E rΛrrTss L´
4π

3
nW1TDL4

where Jensen’s inequality is used in the first inequality.

Let L “ 3

c

E rΛrrTss
2πW1nT

, we can prove Theorem 14. ˝

Combining Theorems 13 and 14, we can obtain the capacity contributed by ad hoc
transmission mode:

Theorem 15. In three-dimensional i.i.d. fast mobility networks, the ad hoc transmission mode capacity is:

λA pnq “ O

˜

3

c

D
n2

¸
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Proof. Based on Theorems 13 and 14, we have the total number of bits transmitted by ad hoc
transmission mode as follows:

E rΛrTss ď
6 3
?

6
∆

3
b

W2
1 T2n

´

3?D` 1
¯

According to the definition of order, we can obtain the capacity contributed by ad hoc
transmission mode:

E
„

Λ rTs
n



ď O

˜

3
?

nD
n

¸

Now we study the throughput capacity contributed by the helping nodes, which can be obtained
by the following theorem:

Theorem 16. In three-dimensional networks, the per-node throughput capacity contributed by the backbone
network is:

λH pmq “ Θ

˜

3?m2W2

n

¸

Proof. In three-dimensional backbone network, we randomly choose the helping node on (p, q, u) and
the helping node on (i, j, v) as source and destination respectively. Hence we have that the expectation
of the hops is E[h] = 3E[E[|p ´ i|]].

The rest of the proof is similar to the analysis of Theorem 5. ˝

Theorem 17. In three-dimensional i.i.d. fast mobility networks, under the protocol model, the capacity can be
expressed by:

λ pn, mq “ O

˜

3

c

D
n2

¸

`Θ

˜

3?m2W2

n

¸

Proof. Combining Theorems 15 and 16, we can prove the theorem above. ˝

6.4. Capacity of Three-Dimensional i.i.d. Slow Mobility Networks

Now we consider the three-dimensional i.i.d. slow mobility networks. Similar to the method used
in network capacity analysis of two-dimensional i.i.d. slow mobility networks, we first calculate the
bounds on the number of bits which are directly transmitted from source nodes to destination nodes
without packet relaying. Furthermore, we analyze the number of bits which are delivered successfully
from relay nodes to destination nodes.

Theorem 18. In three-dimensional i.i.d. slow mobility networks, without packet relaying, the number of bits
which are transmitted directly from source nodes to destination nodes satisfies:

E
”

ΛdrTs
ı

ď 6
ˆ

W1T
∆

˙

3
4 ?n

Proof. Inequality Equation (16) in Theorem 7 is suitable for the three-dimensional i.i.d. slow mobility
network. Besides, we have the following inequality which will be used in the following analysis:

ΛdrTs
ÿ

B“1

HpBq
ÿ

h“1

∆3

24

´

αh
B

¯3
ď

W1T
π

(27)
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Hence, we have:

˜

ΛdrTs
ř

B“1

HpBq
ř

h“1
αh

B

¸3

ď

˜

ΛdrTs
ř

B“1

HpBq
ř

h“1
1

¸˜

ΛdrTs
ř

B“1

HpBq
ř

h“1

´

αh
B

¯3
¸

ď nW1T
ΛdrTs
ř

B“1

HpBq
ř

h“1

´

αh
B

¯3

ď
24nW2

1 T2

∆3π

where the Cauchy-Schwarz inequality is used in the first inequality.

As
HpBq
ř

h“1
αh

B ě LB, we obtain:

ΛdrTs
ÿ

B“1

LB ď
3

d

24nW2T2

∆3π

Similar to the steps in Theorem 8, we have:

E
”

ΛdrTs
ı

´ E

»

–

ΛdrTs
ÿ

B“1

1LBąL

fi

fl ď
4π

3
nW1TL3

Therefore, we can conclude that:

3

c

24nW2T2

∆3π
ě E

«

ΛdrTs
ř

B“1
LB

ff

ě LE

«

ΛdrTs
ř

B“1
1LBąL

ff

ě L
ˆ

E
”

ΛdrTs
ı

´
4π

3
nW1TL3

˙

Let L “
3

g

f

f

e

E
”

ΛdrTs
ı

2πnW1T
, we have Theorem 18. ˝

Theorem 19. In three-dimensional i.i.d. slow mobility networks, if packet relaying is allowed, we have the
following inequality:

E rΛrrTss ď 6
ˆ

W1T
∆

˙

3
4 4
a

n2D

Proof. Similar to the proof process, we have:

E

»

–

ΛrrTs
ÿ

B“1

1LBďL

fi

fl ď
4π

3
nW1TDL3
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Hence, we have the following inequalities:

E

«

ΛrrTs
ř

B“1
LB

ff

ě E

«

ΛrrTs
ř

B“1
LB1LBąL

ff

ě E

«

ΛrrTs
ř

B“1
1LBąL

ff

L

ě

˜

E rΛrrTss ´ E

«

ΛrrTs
ř

B“1
1LBďL

ff¸

L

ě E rΛrrTss L´
4π

3
nW1TπDL4

Based on the argument of Theorem 1, we have:

ΛrrTs
ÿ

B“1

LB ď
3

d

24nW2T2

∆3π

Hence, we have:

3

d

24nW2T2

∆3π
ě E rΛrrTss L´

4π

3
nW1TπDL4

Let L “ 3

c

E rΛrrTss
2πnW1T

, we have:

E rΛrrTss ď 6
ˆ

W1T
∆

˙

3
4 4
a

n2D

Theorem 20. In three-dimensional i.i.d. slow mobility networks, the capacity contributed by ad hoc transmission
mode is:

λA pnq “ O

˜

4

c

D
n2

¸

Proof. Similar to the proof of Theorem 4, we have:

E rΛrTss ď 6
ˆ

W1T
∆

˙

3
4 ?n

´

4?D` 1
¯

Hence we have E
„

Λ rTs
n



ď O

˜

4?n2D
n

¸

. ˝

Theorem 16 implies that in three-dimensional networks, the capacity contributed by
helping transmission mode is Θ

´

3?m2W2

¯

, hence we can obtain the throughput capacity of the
whole networks:

Theorem 21. In three-dimensional i.i.d slow mobility networks, under the protocol model, the capacity is:

λ pn, mq “ O

˜

4

c

D
n2

¸

`Θ

˜

3?m2W2

n

¸

Proof. Combining Theorems 16 and 20, we can prove the theorem above. ˝
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We have obtained the capacities of the four types of heterogeneous mobile networks in this section.
By analyzing these capacity expressions, we will get some interesting conclusions. The analysis is
presented in the following section.

7. Capacity Analysis

In the Section above we have obtained the throughput capacity of the four types of mobile
networks. In this section we analyze the impact of some important parameters such as n, D and m to
the network capacity. Firstly we list the capacity contributed by ad hoc transmission mode as follows:

in two-dimensional i.i.d. fast mobility model, we have λApnq “ O

˜

c

D
n

¸

; in two-dimensional

i.i.d. slow mobility model, we have λApnq “ O

˜

3

c

D
n

¸

; in three-dimensional i.i.d. fast mobility

model, we have λApnq “ O

˜

3

c

D
n2

¸

; and in three-dimensional i.i.d. slow mobility model, we have

λApnq “ O

˜

4

c

D
n2

¸

. Figure 9 shows λA(n) of the four types of networks.
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three-dimensional i.i.d. slow mobility model. 
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have much higher capacity than the slow mobility networks, especially in the case that the number 
of mobile nodes is small. The reason is that in fast mobility networks, the source nodes have more 
opportunities to communicate with the destination nodes directly. If the number of mobile nodes is 
small, the fast mobility is one of the most important factors which influence the network capacity. 
As n goes to infinity, the number of mobile nodes offers many opportunities for source nodes to 
meet destination nodes, even in slow mobility networks. Hence, if the number of mobile nodes is 
large enough, the capacities of the four types of networks are similar. 

Figure 9. (a) λA of two-dimensional i.i.d. fast mobility model; (b) λA of three-dimensional i.i.d. fast
mobility model; (c) λA of two-dimensional i.i.d. slow mobility model; (d) λA of three-dimensional i.i.d.
slow mobility model.

The relationship of λA(n) and n is shown in Figure 10. We find that fast mobility networks have
much higher capacity than the slow mobility networks, especially in the case that the number of mobile
nodes is small. The reason is that in fast mobility networks, the source nodes have more opportunities
to communicate with the destination nodes directly. If the number of mobile nodes is small, the fast
mobility is one of the most important factors which influence the network capacity. As n goes to
infinity, the number of mobile nodes offers many opportunities for source nodes to meet destination
nodes, even in slow mobility networks. Hence, if the number of mobile nodes is large enough, the
capacities of the four types of networks are similar.
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Figure 10. Relationship of λA(n) and the number of normal nodes.

Let D = Ω(n2), we have λA = Θ(1). In this case, the four types of mobile networks have the same
capacity, which is Θ(1). It means that in delay tolerant networks, the network capacity can achieve
constant order, and the price is that the delay will go to infinity. Of course, the delay constraint D is
approximated in the analysis above. Concretely, in two-dimensional mobile network model, D = Ω(n);
in three-dimensional mobile network model, D = Ω(n2). However, since n is assumed to be large
enough, D is not limited in both the two cases.

Let D = O(n), we have λA = 0. In this case, the capacity will decrease to zero as n goes to infinity.
Concretely, in two-dimensional mobile network model, D = O(n); in three-dimensional network model,
D = O(n2). It implies that if the delay is assumed to be very small, the number of bits transmitted by ad
hoc transmission mode is very little. Our analysis is shown in Figure 11.
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Figure 11. (a) The relationship of λA and D in two-dimensional network model; (b) The relationship
λA of and D in three-dimensional network model.

When D falls in between O(n) and Ω(n), there is a positive correlation between λA and the delay
constraint. Theorems 5 and 16 offer the throughput capacity of backbone networks. Figure 12 shows
the relationship of throughput capacity and the number of helping nodes.
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. In this condition the network capacity can achieve constant order. Specially, if

m = Ω(n), most of packets can be delivered to the destination nodes with the help of backbone network.
It implies that if the number of helping nodes is large enough, network capacity can stay constant
order, and the delay can be limited, too. Similarly, if m = o(n), most of the packets will be transmitted by
ad hoc transmission mode. It means that if the number of helping nodes is small, though the capacity is
also constant order, the delay can not be ensured.

If the delay is limited (D = Ω(n)), the network capacity is Θ
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. In this condition, most of

the packets will be transmitted by helping transmission mode. The number of helping nodes is the
determining factor of the throughput capacity.
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We can reach similar conclusions to two-dimensional mobile networks. According the analysis
above, we can conclude that the number of helping nodes in the network is a key factor which affects
the throughput capacity. If the number of helping nodes is large enough, the capacity can stay constant
with the help of the backbone network. In this case, the time delay can be ensured. If the number
of helping node is small, most of the packets have to be delivered in multi-hop fashion. In this case,
though the throughput capacity can achieve constant order too, the delay will go to infinity. The delay
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constraint D is also an important factor on the network capacity. If D is not limited, the capacity
contributed by ad hoc transmission mode can achieve Θ(1), which means that the network capacity of
the whole network can achieve a constant order. If D is constrained, the capacity contributed by ad hoc
mode is almost zero and most of packets have to be delivered by helping transmission mode.

8. Conclusions

In this paper we propose a new heterogeneous mobile network architecture, which is composed
of normal nodes and more powerful helping nodes. Four types of mobile network model are
investigated: two-dimensional i.i.d. fast mobility model, two-dimensional i.i.d. slow mobility model,
three-dimensional i.i.d. fast mobility model and three-dimensional i.i.d. slow mobility model. First we
provide a brief description of our network model. We analyze the throughput capacity of the four types
of network model intuitively by virtual channel systems. Then we obtain the network capacity by strict

mathematical proof respectively. We find that the throughput capacity is O

˜
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in two-dimensional i.i.d. fast mobility model, O
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in three-dimensional i.i.d. slow mobility model. Finally we analyze the

asymptotic expressions we obtained. We consider two extreme cases: D is not limited and D is limited,
where D is the delay constraint. We find that if D is not limited, the capacity contributed by ad hoc
transmission mode can achieve constant order, while the price is that the delay will go to infinity. If D
is limited, the capacity contributed by ad hoc transmission mode will decrease to zero. Hence there is a
positive correlation between the throughput capacity and D. We also find that the number of helping
nodes in the network is an important factor on the network capacity greatly. If the number of helping
nodes is large enough, most of packets can be transmitted by helping transmission mode. In this
condition the network capacity can achieve constant order without a long time delay. If the number of
helping nodes is small, most of packets have to be transmitted by helping transmission mode, and the
time delay can not be ensured.
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