
Journal of Computer and System Sciences 65, 295–331 (2002)
doi:10.1006/jcss.2002.1848

1

AnAlgorithm for HandlingMany Relational Calculus
Queries Efficiently1

Dan E. Willard

Department of Computer Science, University at Albany - SUNY, Albany, New York 12222

E-mail: dew@cs.albany.edu

Received November 30, 1999; revised February 27, 2001

This article classifies a group of complicated relational calculus queries

whose search algorithms run in time OðI Logd I þ UÞ and space OðIÞ, where I

and U are the sizes of the input and output, and d is a constant depending on

the query (which is usually, but not always, equal to zero or one). Our

algorithm will not entail any preprocessing of the data. # 2002 Elsevier Science (USA)
1. INTRODUCTION

During the last 20 years the cost of computer memory has dropped by a factor of

10,000. This change seems to suggest that certain algorithms from Computational

Geometry about multi-dimensional retrieval may possibly carry different implica-

tions today for database design than they did in the 1970s and 1980s.

This distinction arises because most of Computational Geometry’s range query

algorithms [3–6, 12–15, 18, 19, 21, 22, 34, 35, 37–39, 42–44, 56, 59, 61–64, 68, 69, 71]

used a main memory model of the computer, where they sought to optimize only

CPU time and completely ignored disk-access costs. In the past, these algorithms

would not have been very meaningful in a database setting, where performance

depended mostly on the costs of disk accesses. However, in a context where

computer memory sizes have now grown by a factor of 10,000 during the last 20

years, the picture seems to have changed. We will show how these geometric

algorithms naturally interface with the database literature about acyclic queries [1, 2,

8, 9, 25, 26, 49, 52, 55, 70, 72].

Our previous JCSS paper [67] also addressed this topic. It displayed an efficient

algorithm for doing relational algebra selection and join operations, where the joins

were required to have only two relations as input, and they computed the subset of
Research partially supported by NSF under Grant CCR 99-02726.

295 0022-0000/02 $35.00

2002 Elsevier Science (USA)
All rights reserved.

DAN WILLARD296
the cross-product set that satisfied an arbitrary join-selection condition. Our goal in

the present article is to explore how far one can generalize these results to

substantially more complicated relational calculus queries that have k relations as

input for arbitrary k.

It will turn out that we cannot handle efficiently all relational calculus queries with

k variables. The recent article by Papadimitriou and Yannakakis [49] demonstrates

that if the common conjecture of NP-completeness theory are correct, then the most

general forms of relational calculus queries remain intractable. On the other hand,

Papadimitriou and Yannakakis did note that acyclic relational database queries are

different, and they have a potential to be efficient. We share this perspective and

hope our article will reinforce it.

This article will suggest a method for processing acyclic relational calculus queries,

where at a crucial juncture, the mainline algorithm (defined in Section 5) will make a

series of subroutine-calls to one of the E-8 algorithms from our prior JCSS article

[67]. It will essentially ask these subroutines to do the hard part of the work. Because

Sections 2.1 and 3 of the present article will summarize in sufficient detail our

previous work [67], the reader can appreciate the further ideas now presented here

without having examined our earlier paper.

Throughout our discussion, q will denote a relational calculus query whose input

has a cardinality of I and produces an output of cardinality U . Let us say that q

has quasi-linear complexity with exponent d if the query can be performed in

OðI Logd I þ UÞ worst-case hashing time and using OðI þ UÞ worst-case space.

(Worst-case hashing time is defined as a measure of cost that is worst-case in every

respect except that it assumes average luck when hashing. It will be henceforth

denoted as WH-Time.) All our algorithms will have a quasi-linear performance

complexity. Their methodology will essentially be a hybridization of acyclic

relational database theory [2, 8, 9, 25, 26, 49, 52, 55, 70, 72] with the search

methods from range query theory [3–6, 12–15, 18, 19, 21, 22, 34, 35, 37–39, 42–44,

56, 59, 61–64, 66, 68, 69, 71], as Sections 2 and 3 shall explain.

Vardi [57, 58] has defined two different methods for measuring search costs, called

Data Complexity and Combined Complexity. The former views a query as a fixed

constant and measures its runtime as a function of its input size I and its output size

U (as we do). The latter does not view the query as a fixed constant. It measures

runtime in terms of I ; U and the query’s length, denoted as L. Papadimitriou and

Yannakakis [49] have noted that as approximations of reality both methods contain

a degree of reasonableness. In particular, Data Complexity estimations of costs are

reasonable when either the query is moderately small or its runtime parameter does

not run fully out of control as L grows.

Our ‘‘quasi-linear’’ measurements of OðI Logd I þ UÞ WH-time and OðI þ UÞ
space are obviously done in the ‘‘data-complexity’’ model of costs, since they contain

no ‘‘L’’ terms. It turns out that both the values of d and the coefficient inside the

O-notation are hidden quantities depending on L. In an extreme worst-case setting,

our costs will certainly be problematic in the Combined-Complexity model of cost.

Certainly, we wish neither to minimize this point nor encourage the reader to

overlook it. What makes our algorithms firstly tempting, however, is that the

absolute worst-case occurs only rarely in most realistic practical settings (i.e., most

ALGORITHM FOR RELATIONAL CALCULUS QUERIES 297
queries will have a sufficiently small value of L for its influence on the runtime

coefficient to be adequately small.) Moreover, it will turn out that a very broad class

of relational database queries will fit into our RCS language (formally defined in the

next section). Our main theorems will imply that for this very broad language, every

query operation is ‘‘quasi-linear’’ executable.

2. GENERAL FRAMEWORK

This section will introduce our main notation and apply it to state our principal

theorems. It will also review the literature on acyclic databases and explain its

relationship to these theorems.

2.1. Properties of E-8 Enactments

Throughout this paper, X and Y will denote two sets of tuples, and x and y will

denote two tuple variables ranging over these respective sets. The lower case

symbols, %xx and %yy, will denote particular tuples in X and Y . Let A1ðxÞ;A2ðxÞ;A3ðxÞ . . .
denote attributes of the tuple x. Define an equality atom to be a predicate of the form

A1ðxÞ ¼ A2ðyÞ, and an order atom to be a predicate of the form A1ðxÞ > A2ðyÞ. Our

final theorem will be stronger if it also includes two further types of atoms. In that

regard, define a subsection L to be a list of tuples. Also, define a tabular section T to

be a list of ordered pairs. Then a list atom is defined to be a predicate of the form

x 2 L or y 2 L, and tabular atom is defined as a predicate of the form ðx; yÞ 2 T .

Using our terminology from [67], a predicate will be called an E-8 Enactment iff it

consists of equality, order, list and tabular atoms combined in arbitrary manner by

AND, OR and NOT connectives. Two examples are given below:

e1ðx; yÞ ¼ fððx; yÞ 2 T1 _ ðx; yÞ 2 T2Þ ^ A1ðxÞ > B1ðyÞ ^ A2ðxÞ > B2ðyÞ ^ x 2 Lg; ð1Þ

e2ðx; yÞ ¼ f½A1ðxÞ5B1ðyÞ ^ A2ðxÞ > B1ðyÞ ^ A3ðxÞ ¼ B3ðyÞ� _ :A4ðxÞ ¼ B4ðyÞg: ð2Þ

The symbol dðeÞ, called an enactment degree, will denote the number of distinct

y-attributes in e’s order atoms. Also, we will sometimes employ the symbol d * ðeÞ
defined below:

1. d * ðeÞ ¼ dðeÞ 1 when dðeÞ52.

2. d * ðeÞ ¼ dðeÞ when dðeÞ41.

For instance, Eqs. (1) and (2) will have dðe1Þ ¼ 2; d * ðe1Þ ¼ 1 and d * ðe2Þ ¼
dðe2Þ ¼ 1. Also, we will use the following notation:

1. Nx and Ny will denote the cardinalities of the sets X and Y .

2. Nt will denote the cardinality of the tabular sections employed by the

enactment predicate e. For example in Eq. (1), Nt will denote the combined

cardinality of the two tabular sections T1 and T2.

3. REPORTðe;X ;Y Þ will denote the set of tuples ð %xx; %yyÞ from the cross-product

set X � Y satisfying eð %xx; %yyÞ. Also, Ne will denote cardinality of REPORTðe;X ;Y Þ.

DAN WILLARD298
4. Let f ð*Þ denote some function that maps elements of Y into a semigroup.

Then Ff
eð %xxÞ will denote the

P
f ð %yyÞ over those elements %yy 2 Y satisfying eð %xx; %yyÞ. Also,

Ff
e ð*Þ will denote an array that stores an aggregate quantity Ff

eð %xxÞ for each ð %xx 2 X Þ.

5. We will omit the exponent f from the notation ‘‘Ff
eð %xxÞ’’ in the special

degenerate case where f ðyÞ ¼ 1 for all y-elements. (In this case, the array F can be

thought of as the result of a ‘‘COUNT’’ operation.)

To develop four procedures for processing enactment predicates, our prior article

employed mostly some of Computational Geometry’s range query theory

algorithms. Two of its four algorithms, called the Reporting and Aggregate Joins,

were generalizations mostly of the prior work of Bentley [4], Edelsbrunner and

Overmars [19] and Willard [59, 61]. We will also use them often in the present article.

So long as the reader understands the definitions and runtime characteristics of these

procedures (listed immediately below), he will not need to be familiar further with

their algorithmic details:

(A) The Reporting Join will be a procedure that will construct the set

REPORTðe;X ;Y Þ in no more than OððNx þ NyÞ Logd * ðeÞ Ny þ Nt þ NeÞ WH-time

and using no more than OðNx þ Ny þ Nt þ NeÞ memory space.

(B) Given as input a 4-tuple ðe; f ;X ;Y Þ, the Aggregate Join, will be a

procedure that will construct the array Ff
e (*) in a WH-time never exceeding

OððNx þ NyÞ LogdðeÞ Ny þ NtÞ and using a memory space never exceeding

OðNx þ Ny þ NtÞ.

The main distinction between the costs of procedures (A) and (B) is that Ne only

influences A’s costs. (This distinction is important because Ne ¼ Nx � Ny in many

applications.) Both these procedures will assume their input sets, X and Y , have had

absolutely no preprocessing. Thus, any type of index, used to construct their final

outputs, will be built in the midst of their computations.

Finally, we wish to close our summary of Willard’s [67] Reporting and Aggregate

Join procedures by noting that these algorithms are more efficient because their

memory space sizes do not contain an ‘‘ðNx þ NyÞ Logd * ðeÞ Ny’’ quantity similar to

their runtime magnitudes. The omission of this ðNx þ NyÞLogd * ðeÞ Ny quantity

should be credited to the special memory-savings techniques developed by Bentley

for doing aggregations with his ECDF algorithm [4], and by Edelsbrunner–

Overmars [19] for their comparable memory space conservation for batch-reporting

tasks.

It should also be mentioned that the formal exponents, dðeÞ and d * ðeÞ, mentioned

in Items (A) and (B) are very conservative estimates. For many but not all enactments

e, our join algorithms from [67] will actually produce quasi-linear times with

exponents d that are lower than these cautious estimates. Typically, but not always,

d will equal zero or one.

2.2. New Results

We will explore how to generalize Willard’s [67]. Reporting and Aggregation

algorithms for the case where more than two variables are present. In particular, let

ALGORITHM FOR RELATIONAL CALCULUS QUERIES 299
the capital letter symbols R1 R2 . . . Rk denote k sets of records. Let Qi ðri 2 RiÞ
denote an existential or universal quantifier for a variable ri spanning a relation Ri.

Let eðr1; r2; . . . ; rkÞ denote a predicate consisting of several equality order, tabular

and list atoms concatenated in arbitrary manner by AND, OR and NOT

connectives. In this notation, a relational calculus ‘‘Find’’ query is denoted as

fFINDðr1r2 . . . rpÞ 2 R1 � R2 � � � � � Rp

Qpþ1ðrpþ1 2 Rpþ1ÞQpþ2ðrpþ2 2 Rpþ2Þ . . .Qkðrk 2 RkÞ : eðr1r2 . . . rkÞg: ð3Þ

Let q denote the query above. Say its variable ri precedes the variable rj iff the

quantifier or FIND-clause defining ri lies to the left of rj ’s definition in Eq. (3).

Define this query’s relational graph GðqÞ to have a directed edge from rj to ri iff these

two variables are the binary constituents of some equality, order or tabular atom and

if ri precedes rj . Say the relational calculus query q satisfies the RCS condition iff its

graph is a tree or forest with all paths leading to the roots.

Our main goal in the present article will be to present an algorithm that guarantees

that every such ‘‘RCS FIND’’ query q runs in OðI Logd I þ UÞ WH-time and uses

OðI þ UÞ space, where I denotes the cardinality of the input and U denotes the

cardinality of the output (see the footnote2 for I ’s formal definition). Moreover, our

‘‘quasi-linear’’ algorithm for obtaining this result will rely on a decomposition method

that breaks the k-variable RCS query into a series of subroutine calls to the E-8

Reporting Join and Aggregation procedures of [67].

There is also one corollary to our main formalism that will broaden its main domain

of the applicability significantly. Let the symbol ‘‘�’’ denote an Oð1Þ time aggregation

operator that admits an inverse operator (such as Addition, non-zero Multiplication

or Count). Define a Relational Calculus Aggregation Query to be a database search

whose output is the same as the output of the following 2-step process:

1. First, find the subset of X � Y that satisfies the RCS query below:

fFINDðx; yÞ 2 X � Y Q1ðr1 2 R1ÞQ2ðr2 2 R2Þ . . .

Qkðrk 2 RkÞ : eðx; y; r1; r2; . . . rkÞg: ð4Þ

2. Next, for each %xx 2 X , calculate a quantity Aggð %xxÞ, which is defined to be the

sum of the f ð %yyÞ-values (under aggregation operator ‘‘�’’) for those y-records where

the ordered pair ð %xx; %yyÞ is one of Eq. (4)’s output elements. Output the set of ordered

pairs ð %xx;Aggð %xxÞÞ, where %xx 2 X .

This search process will be called an RCS Aggregation Query when query (4)

satisfies the RCS graph property. The notational symbol ‘‘ListAggf ’’ (below) will

formally indicate presence of an RCS-aggregation query:

fListAggf ðx; yÞ 2 X � Y Q1ðr1 2 R1Þ Q2ðr2 2 R2Þ . . .

Qkðrk 2 RkÞ: eðx; y; r1; r2; . . . rkÞg: ð5Þ

2The ‘‘input size’’ I designates the sum of the cardinalities of all the relations Ri that are input, together

with the cardinalities of inputed tabular sections Ti , associated with the tabular atoms used in the query q.

DAN WILLARD300
If one were to execute the RCS aggregation query in the exact chronological 2-step

manner, implied by the description above, then its performance would be governed

by OðI Logd I þ JÞ WH-time and OðI þ JÞ space, where I denotes the cardinality of

the input and J denotes the cardinality of Eq. (4)’s output. However, Section 5.3 will

show that there is a better way to perform this task that instead runs in OðI Logd IÞ
WH-time and uses OðIÞ space.

Section 5.3’s algorithm is interesting because there has been an extensive

discussion about database aggregation in the recent literature about OLAP queries

[10, 16, 17, 24, 28–32, 40, 41, 45, 50, 51, 73, 76]. The virtue of Section 5.3’s algorithm

is that it requires no preprocessing of the data prior to the start of the algorithm, and

it can compute the desired aggregation table in an efficient manner for extremely

complicated relational calculus-like queries.

2.3. Review of Literature on Acyclic Database Schemes

This section will explain how the notion of an RCS query, with its graph-like

query properties, is closely related to the literature on acyclic databases [1, 2, 8, 9, 20,

25, 26, 49, 52, 55, 70, 72]. Our work concerning the RCS language, sketched in

rudimentary forms in [59, 60, 65], brings added perspective to the theory of acyclic

databases. It demonstrates that all queries in the RCS language lend themselves to a

form of acyclic optimization.

The notion of an acyclic database scheme is a broadly encompassing concept that

has a large number of very elegant applications, many of which are unrelated to our

particular purposes. A detailed description of some of the uses of acyclic database

schemes has been provided by Beeri et al. [2]. Their Theorem 3.4 establishes a 12-

way equivalence between different database conditions that explains, among other

facts, how several different articles were converging in the late 1970s and early 1980s

from various perspectives upon an idea that in some respects they had numerous

equivalent representations and properties. Some formal aspects of the acyclicity

concept are related to the notions of a lossless join and database join-dependency

conditions, which are commonly cited in the database textbooks to reduce

redundancy and improve database expressibility. Other aspects are related to

database optimization problems. This latter feature is closely connected to our

interest in RCS optimization.

The best way to summarize this connection is to let r1; r2; r3 and r4 denote four

database relations whose attribute sets are respectively ðA;BÞ; ðB;CÞ; ðC;DÞ, and

ðD;AÞ. Let t denote a 4-tuple whose attributes have names A through D, and let

PABðtÞ denote an ordered pair that has identical values on its AB attributes as t. In

this notation, the ‘‘Natural Join’’ r1tr2tr3tr4 is defined as the set of tuples t

where PABðtÞ; PBCðtÞ; PCDðtÞ and PDAðtÞ belong to the respective relations of

r1; r2; r3, and r4. Beeri et al. [1, 2] have used the term ‘‘cyclic’’ to characterize this

join-query, but they would call the join-query r1tr2tr3 ‘‘acyclic.’’ They use this

terminology because:

1. If one thinks roughly of each relation ri as representing the edge of a graph

then there is a natural cycle inherent in r1tr2tr3tr4, by starting at ‘‘A’’,

following the edge r1 to B, and then proceeding, respectively, to the further nodes of

ALGORITHM FOR RELATIONAL CALCULUS QUERIES 301
‘‘C’’, ‘‘D’’ and ‘‘A’’ by following the respective edges of r2; r3 and r4. The presence of

this ‘‘ABCDA’’ cycle is the basic reason that [1, 2] would characterize this join-query

as ‘‘cyclic’’.

2. Since the query r1tr2tr3 contains no r4 edge (and thus contains no

analog of the ‘‘ABCDA’’ cycle), Beeri et al. [1, 2] refer to it as ‘‘acyclic.’’

From the standpoint of what is relevant to our research, the critical aspect of the

theory of acyclicity is that it implies that all acyclic natural joins (roughly similar to

join-query (2)) can be executed efficiently by decomposing them into efficiently

operating modular parts. On the other hand, Beeri et al. [2] prove that there is no

analog of this result for cyclic queries, because their Theorem 3.4 implies that there

would then be no available access to the type of semi-join-like database full-reducer

operations, that have been used very successfully by Bernstein and Chiu [8],

Bernstein and Goodman [9], and Yu et al. [72].

The preceding paragraph’s overview of acyclic join queries had deliberately

omitted many details because we were trying to focus only on those aspects of the

literature that are relevant to RCS database optimization problems. For instance

Beeri et al.’s [2] formal definition of an acyclic join is substantially more complicated

than what is evident from the previous paragraph’s examples because it uses hyper-

graphs and hyper-edges in its definition of acyclicity rather than ordinary graphs

and edges.

In essence, join-acyclicity is applicable to our research as a device for modularly

decomposing a larger k-variable relational calculus query satisfying the RCS

condition into some smaller efficient 2-variable E-8 enactment components.

Much of the focus of our study of acyclic optimization is, however, different from

the emphasis of the research of say Bernstein and Goodman [9], Yannakakis [70] and

Yu et al. [72]. This is because we examine a relational calculus rather than relational

algebra language. Several topics studied by Yannakakis [70], such as testing database

dependencies, inferring other dependencies, connecting these concepts to Lien’s

notion of a loop-free Bachman scheme [36] and Zaniolo’s notion of a simply

connected scheme [74], etc., are quite important but not directly related to our main

objectives in the present paper: therefore, we refer the reader directly to

Yannakakis’s paper for more about them. Of interest to us is the fact that

Yannakakis’s algorithm [70] and the related work of Bernstein and Goodman [9] and

Yu et al. [72] can compute a relational algebra projection from the intermediate

result begotten from an acyclic-join operation. Since the relational projection

operation is similar to an existential quantifier in the relational calculus language,

this facet of these algorithms is roughly analogous to a special form of Eq. (3)’s RCS

query where all its quantifiers Qi are existential quantifiers and its atoms within its

body expression eðr1r2 . . . rkÞ are composed of, say, a conjunction of equality atoms.

Moreover, it is evident that one can further generalize these algebraic algorithms to

more complicated eðr1r2 . . . rkÞ that are comprised of, say, an arbitrary combination

of equality and list atoms linked together in an arbitrary manner by the AND and

OR connective symbols.

Our work concerning RCS extends the theory of acyclic databases by showing

how the quasi-linear search complexities generalize to the full RCS language, with its

DAN WILLARD302
relational calculus features. These features permit Eq. (3)’s body expressions

eðr1r2 . . . rkÞ to be comprised of an arbitrary combinations of equality, list, tabular

and order atoms}linked together in an arbitrary manner by the AND, OR and

NOT connective symbols. Also, RCS allows the quantifier Q to be any one of an

existential, universal or generalized quantifier (where the latter ‘‘generalized notion’’

will be defined in Remark 4.2). Moreover, the RCS operation of ‘‘ListAgg’’

facilitates the speed of many aggregation queries in an OLAP environment.

3. FOUR EXAMPLES OF E-8 ENACTMENT PROCEDURES

This section will give four examples summarizing Willard’s [67] algorithm for

processing E-8 enactments. Because we intend [67] to be the main source about this

subject, these examples will not be fully informative. Moreover, it is ‘‘technically’’

unnecessary for the reader to examine this section because Sections 4–6 treat the E-8

reporting and aggregate join algorithms as essentially Black Boxes, whose

performance complexities are adequately summarized by Items (A) and (B) of

Section 2.1. No additional information about the E-8 procedures is ‘‘strictly’’ needed

in Sections 4–6. Thus, it is reasonable for a reader to either to skip this section

entirely, or to examine our four examples with meticulous care.

Notation Employed in our Examples: For a fixed set of tuples Y and a fixed E-8

enactment eðx; yÞ, the symbol DeðY Þ will denote an on-line data structure, which given

an input %xx is capable of finding the subset of tuples %yy 2 Y satisfying eð %xx; %yyÞ. This set of

tuples will be denoted as Yeð %xxÞ. Also, for a function f ð*Þ that maps the elements of Y

into an abelian group, the symbol Ff
eð %xxÞ will denote the

P
f ð %yyÞ for those elements

%yy 2 Y satisfying eð %xx; %yyÞ. An on-line data structure that allows one to calculate Ff
e ð %xxÞ

in poly-logarithmic time will be typically denoted as Df
eðY Þ.

Although the main purpose of our discussion will be to illustrate examples of the

E-8 Reporting and Aggregate Join Procedures, we will sometimes veer from this

topic and discuss on-line poly-logarithmic search processes, as well. We do so in

those cases where the off-line procedure is essentially the same as the on-line search

algorithm. In such cases, it is natural to discuss both topics together.

Example 3.1. We used the term E-3 Enactment in [67] to refer to the subset of E-

8 enactments whose only atoms are equality atoms (connected in an arbitrary

manner by the AND, OR and NOT connective symbols). Two examples of E-3

enactments are given below:

eðx; yÞ ¼dffA1ðxÞ ¼ B1ðyÞ _ A2ðxÞ ¼ B2ðyÞg; ð6Þ

e* ðx; yÞ ¼dffA1ðxÞ ¼ B1ðyÞ ^ A2ðxÞ=B2ðyÞg: ð7Þ

Let YB1;B2;...Bk
ðc1; c2; . . . ckÞ denotes the subset of Y satisfying

B1ðyÞ ¼ c1 ^ B2ðyÞ ¼ c2 ^ . . .BkðyÞ ¼ ck: ð8Þ

Also, I
f
B1;B2;...Bk

ðc1; c2; . . . ckÞ denotes the
P

f ð %yyÞ for the %yy 2 Y satisfying (8).

ALGORITHM FOR RELATIONAL CALCULUS QUERIES 303
Let H
f
B1;B2;...Bk

denote a hash file that allows one to find I
f
B1;B2;...;Bk

ðc1; c2; . . . ; ckÞ’s
value in Oð1Þ time, and let Ny denote the cardinality of Y . Section 5 of [67] proved

that every E-3 enactment eðx; yÞ can be associated with an OðNyÞ space dynamic data

structure, called Df
e ðY Þ, that allows us to calculate in Oð1Þ time the value of Ff

e ð %xxÞ.
For instance, Df

eðY Þ will equal the union of the hash indices H
f
B1
; H

f
B2

and H
f
B1;B2

when e corresponds to Eq. (6)’s E-3 enactment. One can calculate the value of Ff
e ð %xxÞ

by doing three Oð1Þ time searches into these hash indices and then using the

following equation to derive the answer:

Ff
eð %xxÞ ¼ I

f
B1
ðA1ð %xxÞÞ þ I

f
B2
ðA2ð %xxÞÞ I

f
B1;B2

ðA1ð %xxÞ;A2ð %xxÞÞ: ð9Þ

In the example of Eq. (7), D
f
e * ðY Þ will equal the union of the two aggregate hash

indices H
f
B1

and H
f
B1;B2

. Its analogous arithmetic computation will be

Ff
e * ð %xxÞ ¼ I

f
B1
ðA1ð %xxÞÞ I

f
B1;B2

ðA1ð %xxÞ;A2ð %xxÞÞ: ð10Þ

Section 5 of [67] formally proves that this methodology generalizes to all E-3 on-

line queries. It also indicates that an analogous Aggregation Join algorithm3 will

consume OðNx þ NyÞ WH-time, and it will use OðNx þ NyÞ space for any E-3

enactment.

Example 3.2. One reason why the preceding example was interesting is that its

OðNx þ NyÞ WH-time is quite evidently an attractive complexity for doing an

aggregate join for a main-memory resident data structure. Another reason for

presenting Example 3.1 is that it will enable us to discuss the crucial distinctions

between the Aggregate and Reporting Join problems.

In particular, a very curious facet of the E-3 Reporting Join is that it is logically

correct but extremely inefficient to extend Example 3.1’s methodology to Reporting

Joins. For instance, consider a reporting algorithm that is the same as Example 3.1’s

aggregation procedure except that it replaces the operations of aggregate-addition

and aggregate-subtraction with set-union and set-subtraction. Using the notation

from Example 3.1, the analogs of Eqs. (9) and (10) for calculating the values of Yeð %xxÞ
and Ye * ð %xxÞ would then be

Yeð %xxÞ ¼ YB1
ðA1ð %xxÞÞ [YB2

ðA2ð %xxÞÞ; ð11Þ

Ye * ð %xxÞ ¼ YB1
ðA1ð %xxÞÞ YB1;B2

ðA1ð %xxÞ;A2ð %xxÞÞ: ð12Þ

It is clear that (11) and (12) provide a correct construction of the Yeð %xxÞ and Ye * ð %xxÞ
sets. However, the efficiency of these procedures is more problematic.

The difficulty is essentially due to the fact that the addition and subtraction of

aggregate quantities can be done in Oð1Þ time under most models of computation,

but the operations of set-union and set-subtraction are much more expensive. For

3It is easy to illustrate our Aggregate Join algorithm for the example of the two queries e and e* . It will

simply first build the needed aggregate hash indices for Df
e ðY Þ and D

f
e * ðY Þ in OðNyÞ time and then make

OðNxÞ separate queries into these freshly built data structures (using respectively (formulae (9) and (10)).

The total cost of these Aggregate Joins is thus OðNx þ NyÞ WH-time and OðNx þ NyÞ space.

DAN WILLARD304
example, let j; m and n denote the cardinalities of the sets Ye * ð %xxÞ; YB1
ðA1ð %xxÞÞ and

YB1;B2
ðA1ð %xxÞ;A2ð %xxÞÞ from Eq. (12). The set subtraction operation appearing in this

equation clearly consumes time Oð1 þ m þ nÞ when it is implemented in a standard

manner. It turns out that a more efficient on-line dynamic algorithm will be capable

of searching an OðNyÞ space index structure to construct the Ye * ð %xxÞ set in Oð1 þ jÞ
WH-time.

The latter time is obviously optimal because it is clearly impossible to achieve a

worst-case time for computing Ye * ð %xxÞ below an Oð1 þ jÞ magnitude when the output

consists of j tuples. It is also clearly much more efficient than the previous

paragraph’s Oð1 þ m þ nÞ time because one can easily construct examples where say

j ¼ 1, mcj and say n ¼ m 1.

Moreover, what will makes our two examples especially interesting is that their

Oð1 þ jÞ WH-times will generalize for all on-line E-3 reporting queries.

Some notation will be needed to explain how we can handle E-3 reporting queries

efficiently. Let the symbol Y ðB1-c1B2-c2...Bi-Bi

P1-d1P2-d2...Pk-dk
Þ denote the set of y 2 Y satisfying the

condition:

B1ðyÞ ¼ c1 ^ B2ðyÞ ¼ c2 ^ . . .BiðyÞ

¼ ci ^ P1ðyÞ=d1 ^ P2ðyÞ=d2 ^ . . .PiðyÞ=dk: ð13Þ

Subsets of Y of the form ‘‘Y ðB1-c1B2-c2...Bi-Bi

P1-d1P2-d2...Pk-dk
Þ’’ will be called y-sublists. The

symbols Y1;Y2;Y3 . . . will denote such y-sublists. (The empty set symbol ‘‘f’’ will

appear in the numerator or denominator of the y-sublist notation when this relevant

portion of the y-condition is empty.)

Let us first consider an admittedly impractical but ‘‘idealistic’’ data structure,

called DðY Þ, that stores within itself every possible y-sublist that contains at least one

tuple. Such a data structure can obviously trivially answer every on-line E-3

reporting query in Oð1 þ jÞ time (where j is the size of the output). For instance,

Eqs. (14) and (15) illustrate how this formalism can trivially construct the answer to

the on-line reporting queries of Ye * ð %xxÞ and Yeð %xxÞ:

Ye * ðxÞ ¼ Y
B1-A1ðxÞ
B2-A2ðxÞ

� �
; ð14Þ

YeðxÞ ¼ Y
B1-A1ðxÞ
B2-A2ðxÞ

� �
[Y

B2-A2ðxÞ
f

� �
: ð15Þ

The difficulty with using this ‘‘idealistic’’ data structure DðY Þ is that it clearly uses an

unrealisticly large amount of memory space to store every possible non-empty

y-sublist. Our ability in [67] to reduce the memory space to a more desirable OðNyÞ
size while retaining the ‘‘idealistic’’ retrieval time rested on using a type of Factor-2

relaxation method.

In particular, let Ny again denote the cardinality of Y , and let eðx; yÞ again denote

an E-3 enactment. Section 6 of [67] showed that when such values for Y and e are

specified in advance, it is possible to construct a corresponding OðNyÞ space data

structure, called DeðY Þ, which assured that every possible on-line Yeð %xxÞ query would

run in an Oð1 þ jÞ time. Moreover, the coefficient associated with the O-notation’s

ALGORITHM FOR RELATIONAL CALCULUS QUERIES 305
j-term will exceed the coefficient of the ‘‘idealistic’’ search time by no more than a

factor of 2.

The intuitive idea behind DeðY Þ’s data structure was to avoid the temptation to

store every possible distinct y-sublist. Instead, we stored only a select tiny fraction of

all the available y-sublists, called say Z, subject to the following three constraints:

1. For each query element %xx, there will exist a finite number L of pairwise

disjoint y-sublists Y1;Y2; . . .YL in Z such that Yeð %xxÞ is a subset of the union of these

lists, and such that the sum of the cardinalities of these lists will be never more than

twice the cardinality of Yeð %xxÞ. (This latter fact assures that the cost to construct Yeð %xxÞ
will exceed by no more than roughly a factor of 2 the comparable cost of searching

the idealized data structure DðY Þ.)

2. The particular value of L (above) will be no greater than some constant Ke,

whose value depends only on the E-8 predicate e. (Typically, Ke’s value will be

moderately small.)

3. The data structure DeðY Þ will use no more than OðNyÞ space. (Since each

y-sublist Yi uses a memory space proportional to its cardinality, this constraint

imposes a severe restriction on both the number and the sizes of the y-sublists that

are allowed in our data structure.)

Section 6 of our article [67] gave a combinatorial proof showing that for every E-3

enactment predicate e, it is possible to build a resulting data structure DeðY Þ that

meets the preceding constraints. Moreover, it provided this data structure with a

hash-searching scheme that allowed us to find the needed y-sublists in Oð1Þ WH-time

and which supported Oð1Þ insert and delete operations.

As an on-line dynamic data structure, the pragmatic implications of Willard’s [67]

proposal for E-3 search queries are unclear because a separate data structure could

possibly be needed for each separate E-3 enactment (in the worst case). However,

this methodology is tempting to employ at least when one is doing E-3 Reporting

Joins. This is because we can use a ‘‘Build-and-Throw-Away’’ strategy for the

reporting join. Thus starting initially with raw unprocessed data, Willard’s [67]

reporting join algorithm can first build the needed data structure, then do a lengthy

sequence of OðNxÞ queries into it, and finally throw away the data structure at the

end of computation. This method is reasonably cost-effective for doing reporting

join operations because it consumes OðNx þ Ny þ NeÞ WH-time, where Ne is the

cardinality of the output, and Nx and Ny are the cardinalities of X and Y .

Example 3.3. This example will illustrate how Section 9 of [67] processes tabular

atoms. Let eðx; yÞ denote an E-8 enactment, and define epðx; yÞ to be an enactment

formed by replacing each of e’s tabular atoms with the Boolean constant of FALSE

(and then algebraically simplifying the result). The enactment ep is called a p-

reduction of e. Following equations illustrate an example:

eðx; yÞ ¼df f½A1ðxÞ ¼ B1ðyÞ ^ :ðx; yÞ 2 T1� _ A2ðxÞ ¼ B2ðyÞ_;

½A3ðxÞ ¼ B3ðyÞ ^ ðx; yÞ 2 T2Þ�g; ð16Þ

DAN WILLARD306
epðx; yÞ ¼df fðA1ðxÞ ¼ B1ðyÞ _ A2ðxÞ ¼ B2ðyÞg: ð17Þ

Also, let ADDðX ;Y ; eÞ and SUBTRACTðX ;Y ; eÞ denote the subsets of X � Y

satisfying the conditions ‘‘eðx; yÞ ^ :epðx; yÞ’’ and ‘‘epðx; yÞ ^ :eðx; yÞ’’, respectively.

Our algorithm for doing E-8 joins in [67] was essentially a 2-part procedure that

first performed the relevant join operation on the p-reduced enactment ep and then

incrementally corrected the answer by walking down the ADDðX ;Y ; eÞ and

SUBTRACTðX ;Y ; eÞ subsets. For the example of doing Eq. (16)’s aggregate join,

this procedure would consist of the following two steps:

1. First, use Example 3.1’s algorithm for calculating ep’s aggregate-join.

2. Let the array FðxÞ store this result. Increment Fð %xxÞ by an amount f ð %yyÞ for

each ð %xx; %yyÞ in the set ADDðX ;Y ; eÞ, and decrement it by f ð %yyÞ for each ð %xx; %yyÞ in

SUBTRACTðX ; y; eÞ. At the end of this computation, FðxÞ will store the answer to

e’s aggregate join.

This aggregate join will clearly consume OðNx þ Ny þ NtÞ WH-time, since

its Step 1 was shown by Example 3.1 to use OðNx þ NyÞ WH-time, and its Step 2

needs OðNtÞ WH-time to walk down the tabular sections (of size OðNtÞ) for

accordingly adjusting the result. A similar computational cost, where the E-8

enactment requires OðNtÞ more time than its p-reduced counterpart, generalizes to all

other E-8 queries for both the cases of an aggregate and reporting join (see Section 9

of [67]).

It is important to explain exactly why the preceding time complexity is interesting.

Its complexity is no better than the asymptotic cost of a trivial exhaustive search in

the degenerate case when Nt ffi Nx � Ny. However, it is far better than an exhaustive

search when Nt{Nx � Ny. The point is that the latter inequality characterizes the

cardinality of the tabular sections in many database examples. For instance, consider

an insurance company’s database that lists the family members that are anticipated

to drive a particular car. This relationship is neither many-to-one, nor one-to-many,

but yet if, say 106, denotes the order of magnitude of the number of cars and drivers

then the relevant number of ordered pairs will clearly possess an Oð106Þ rather than

Oð1012Þ magnitude. And an analogous sparse tabular relationship will also

characterize a database listing adult guardians of a child, residents living in a

house, and many more similar examples.

Thus, one reason why our article [67] gave a very formal and complete description

of our algorithm for processing tabular atoms is that we anticipated that this

construct should be very useful in many database applications (especially when it is

hybridized via an E-8 enactment with our other range-query optimization features).

A second equally nice feature of the tabular-atom construct will be explained by

Example 4.3 (in the next chapter).

Example 3.4. Define a y-range term to be an expression of the form

A1ðxÞ5B* ðyÞ5A2ðxÞ: ð18Þ

ALGORITHM FOR RELATIONAL CALCULUS QUERIES 307
Define an orthogonal range query to be a conjunction of several range terms, similar

to say:

A1ðxÞ5B1ðyÞ5A2ðxÞ ^ A3ðxÞ5B2ðyÞ5A4ðxÞ: ð19Þ

Bentley [4] introduced a 2-part data structure for answering 2-dimensional

orthogonal range queries, called a 2-fold tree, and Lueker and Willard [37, 69]

developed a more elaborate dynamic version of this data structure. Its first part,

called the base, was essentially a binary tree, of height OðLog NyÞ, whose leaves are

the elements of Y arranged in the order of increasing B1ðyÞ value. Henceforth,

YSETðvÞ will denote the subset of Y descending from the tree node v. The 2-fold tree

will assign each node v a pointer to an auxiliary data structure AUXðvÞ, consisting of

an alternate tree-representation of YSETðvÞ, where these records are instead

arranged in the order of increasing B2ðyÞ value. The 2-fold tree can thus be thought

of as a tree indexing a forest of trees that occupy OðNy Log NyÞ space.

Suppose that we are given a query element %xx asking to find the
P

f ðyÞ for those

y-records satisfying (19). The 2-fold tree suggests a natural divide-and-conquer

algorithm for answering this query. It is described below:

1. Define a node v to be critical with respect to (19) if every %yy 2 YSETðvÞ
satisfies A1ð %xxÞ5B1ð %yyÞ5A2ð %xxÞ and v’s parent does not meet this criterion. Use a

binary search to find the OðLog NyÞ or fewer critical nodes.

2. For each critical node vi, search its AUXðviÞ field in OðLog NyÞ time to find

the
P

f ð %yyÞ for those %yy 2 YSETðvÞ satisfying A3ð %xxÞ5B2ð %yyÞ5A4ð %xxÞ. Let SðviÞ denote

this subtotal, and let C denote the set of all critical nodes found by Step 1. Then the

answer to Eq. (19)’s aggregation query is begotten by calculating the
P

SðvÞ for

those v 2 C.

It is clear that the preceding algorithm can perform a 2-dimensional on-line

orthogonal range query request in OðLog2 NyÞ worst-case time, and that its natural

d-dimensional generalization consists of a data structure using OðNy Logd1 NyÞ
space and having an OðLogd NyÞ search time.

Lueker and Willard [37, 69] had developed a dynamic version of the d-fold tree

structure with an OðLogd NyÞ worst-case time for insertions and deletions. Fredman

[21] established a lower bound showing that this result was time-optimal for dynamic

aggregate queries over a semi-group operator. However, the subsequent literature

has shown that there exists many more elaborate and detailed generalizations of the

d-fold trees that can provide improvements from other perspectives. For instance, we

developed a memory compressed version of the Lueker and Willard aggregation

data-structures in [63] and a faster version for most types of static on-line queries in

[61]. The latter is seemingly very pragmatic: it is based on interconnecting the

auxiliary fields of the 2-fold trees with a network of pointers, so that (without

increasing the memory space) one can save an OðLog NyÞ factor of time by avoiding

costly repetitions of a similar binary search into several neighboring auxiliary fields.

(This method was called the down-pointer technique by us [61], and Chazelle and

Guibas [15] later developed a more general form of it, called Fractional Cascading,

that applied to a variety of problems in Computational Geometry.) There are many

DAN WILLARD308
other useful results in the literature on orthogonal queries, and there is no space in

this abbreviated section to survey the full literature.

Of special interest to us is that d-fold trees (and their sundry generalizations) can

have their memory spaces compressed to an OðNyÞ size when one is doing an

aggregate or reporting join. This is because one can then treat the AuxðvÞ fields as

representing virtual rather than actual data structures. That is, a full d-fold tree is

never built when doing a Join because its memory size is excessively large. Instead

when given as input two initial sets X and Y , whose elements are say %xx1; %xx2; . . . %xxn

and %yy1; %yy2; . . . %yym, the strategy is to build only a tiny fraction of the AUX fields at one

time and to have all elements %xxi 2 X that need to query a particular AUXðvÞ field to

do so during the precise short interim period of time when it is built. (For the

example of a 2-fold tree, the implementing algorithm will essentially walk through

the tree’s base section, build the AUX ðvÞ fields at only one level of the tree at a time,

run all the needed queries %xx1; %xx2; . . . %xxn against these AUXðvÞ fields during the interim

period when they are available, and then use the prior memory space to construct the

AUXðvÞ fields for the next tree level.)

This type of strategy was first employed by Bentley [4] for the case of ECDF

calculation, and Edelsbrunner and Overmars [19] used it for a batched sequence of

on-line reporting orthogonal range queries. Our paper [67] showed how its space-

saving technique can apply to the reporting and aggregation variants of E-8 join

queries (by essentially hybridizing the methodologies of the four examples given in

this section with the OðLog NyÞ savings in time and memory compression methods,

mentioned in the last two paragraphs).

We stated at the beginning of this section that we would not seek to fully describe

our algorithms for doing E-8 Reporting and Aggregation Joins because that topic

was already discussed by us in [67]. Rather our objective was to give an intuitive

summary of Willard’s [67] algorithms through four examples. The reader does not

need to know more about Willard’s [67] algorithm to follow the remainder of this

paper, so long as he treats the E-8 algorithms as essentially ’’Black Boxes’’, whose

time and space complexities are summarized by Items (A) and (B) of Section 2.1.

4. NOTATION AND EXAMPLES OF RCS SEARCHES

Our algorithm for decomposing a general RCS query into an efficient block of

executing E-8 enactment operations will appear in the next section. The two goals of

this section are to provide some useful examples and to introduce notation that will

be used in the next section.

Lemma 4.1. Consider the two ‘‘binary’’ relational queries operations below:

fFINDðxÞ 2 X 9y 2 Y : eðx; yÞg; ð20Þ

fFINDðxÞ 2 X 8y 2 Y : eðx; yÞg: ð21Þ

The E-8 enactment formalism of [67] provides a method for answering these queries

using OððNx þ NyÞLogd * ðeÞ Ny þ NtÞ WH-time and OðNx þ Ny þ NtÞ space.

ALGORITHM FOR RELATIONAL CALCULUS QUERIES 309
Proof. In a context where the article [67] supplies us with a library of subroutines

for executing every E-8 aggregate join algorithm efficiently, the added formalism

needed by Lemma 4.1 is basically trivial. Lemma 4.1’s procedure will begin by asking

[67]’s aggregate join algorithm to construct the array FeðxÞ, which indicates how many

%yy 2 Y satisfy eðx; %yyÞ. We will then output those elements %xx 2 X satisfying

Feð %xxÞ51 when seeking to find the x-elements satisfying Eq. (20)’s existential

quantifier. An analogous algorithm will process Eq. (21) by outputting those %xx 2 X

satisfying Feð %xxÞ ¼ CardinalityðY Þ. Both universal and existential quantifiers can thus

be processed in the claimed quasi-linear time under the E-8 Aggregation formalism.]

Remark 4.1. We anticipate that Lemma 4.1’s operating exponent should equal

zero or one in most settings where it is typically used.4

Remark 4.2. Let QðyÞ denote any function that returns a Boolean value as a

function of the number of elements y 2 Y satisfying a specified enactment condition

eðx; yÞ. This includes the possibility of a MAJORITYðyÞ quantifier which returns the

value TRUE when over half the tuples y 2 Y satisfy eðx; yÞ, an EVENðyÞ quantifier

which tests to see if an even number of elements y 2 Y satisfy this condition, a

‘‘2-existence quantifier’’ which tests to see if at least two distinct elements y 2 Y

satisfy eðx; yÞ, etc. We can thus think of each quantifier Q as a mapping of an ‘‘E-8

enactment array’’ Ff
e ð %xxÞ onto an array of Boolean values. We will use the term

Generalized Quantifier to refer to such a mapping. Lemma 4.1 obviously generalizes

to the case where we replace its existential and universal quantifiers with such

‘‘Generalized Quantifiers’’. We will use this generalization throughout the rest of this

paper. Thus, we will permit our k-variable RCS queries to include generalized

quantifiers, in addition to universal and existential quantifiers.

Definition 4.1. We will use the term Binary Procedure to refer to an algorithm

that finds the set of elements %xx 2 X satisfying a query, similar to the tests for

universal and existential quantifier conditions (given in Lemma 4.1) or its

generalization for ‘‘Generalized Quantifiers’’ (given in Remark 4.2). Each such

binary algorithm can be thought of as outputting a ‘‘subsection’’ list L enumerating

those particular elements %xx 2 X satisfying the quantifier concerned. A QL-Listing

Procedure will be defined to be an algorithm that produces some finite collection of

such lists L1;L2; . . .Lj using essentially Lemma 4.1’s quasi-linear procedure. We will

say that an initial relational calculus query q is QL-reduced to a second relational

calculus query q* iff

1. the FIND-clauses for q and q* produce identical outputs and

2. the query q* contains distinctly fewer quantifiers than does the query q.

Henceforth, condition 1 (above) will be called output-equivalence.
4The formal definition of d * ðeÞ had appeared in Section 2.1. One reason Lemma 4.1’s operating

exponent will usually (not always) equal zero or one is that d * ðeÞ was simply defined so that d * ðeÞ ¼
dðeÞ 1 whenever dðeÞ52. A further reason why this component is usually quite small was explained by

Section 2.1’s last paragraph.

DAN WILLARD310
Example 4.1. The intuitive reason Definition 4.1 allows two queries to be

‘‘output-equivalent’’ despite the fact that one uses fewer quantifiers is due to the use

of list atoms. For instance, let e1; e2 and e3 denote three enactment predicates, and

consider the query below:

fFINDðx; y; zÞ 2 X � Y � Z 8w 2 W : e1ðx; yÞ ^ e2ðy; zÞ ^ e3ðz;wÞg: ð22Þ

Let L* denote the ‘‘subsection’’ list, itemizing those elements %zz 2 Z satisfying

L* ¼ fFINDðzÞ 2 Z8w 2 W : e3ðz;wÞg: ð23Þ

The set of ordered pairs satisfying (22) is clearly the same as the set:

fFINDðx; y; zÞ 2 X � Y � Z : e1ðx; yÞ ^ e2ðy; zÞ ^ z 2 L* g: ð24Þ

Thus Eq. (24) is an example of a QL-reduction of Eq. (22).

Example 4.2. Let us now continue the preceding example and ask how to find

the set of tuple records satisfying query (22). Since (24) is a QL-reduction of (22), one

correct but extremely inefficient procedure for resolving this query is the following

3-step procedure:

1. First, use an enactment join to find those ð %xx; %yyÞ satisfying e1ð %xx; %yyÞ.

2. Next, use an enactment join to find the ð %yy; %zzÞ satisfying e2ð %yy; %zzÞ ^ %zz 2 L* .

(This step is permissible because if ‘‘e2ðy; zÞ’’ is an E-8 enactment then by definition,

the slightly more complicated predicate ‘‘e2ðy; zÞ ^ z 2 L* ’’ is obviously also an E-8

enactment. This fact implies that one of Willard’s [67] ‘‘Reporting Join Algorithms’’

can find the set of ordered pairs ðy; zÞ satisfying this predicate.)

3. Let G and H denote the two sets constructed by steps 1 and 2. Then the

answer to query (24) is the ‘‘natural join’’ of these two sets, i.e. it is the set of ordered

triples ð %xx; %yy; %zzÞ satisfying ð %xx; %yyÞ 2 G and ð %yy; %zzÞ 2 H.

An interesting facet is that the procedure (above) is correct but not efficient enough

to satisfy the quasi-linear cost criteria. To illustrate the difficulty, let us consider an

example where:

1. The sets W ; X ; Y , and Z each have cardinality equal to N.

2. The two sets G and H each have cardinality equal to N2=2.

3. The final output from query (22) is nevertheless empty.

Then in this case, the ‘‘input size’’ I ¼ 4N, the ‘‘output size’’ U ¼ 0, and the

preceding algorithm is certainly NOT quasi-linear efficient because its first two steps

will require OðN2Þ time to construct very large intermediate sets of size N2=2. (This

amount of time is obviously too large to be a ‘‘quasi-linear’’ function of our input

and output sizes of I and U .)

The curious facet is we can indeed process (22) in quasi-linear WH-time if we use a

more subtle form of QL-reduction procedure. This more elaborate procedure will

differ from the example above by making three (rather than one) subroutine calls to

binary procedures for producing intermediate lists that will assist in producing the

ALGORITHM FOR RELATIONAL CALCULUS QUERIES 311
final output. One of these lists, L* , is the same as the list we used in Step 2 of the

preceding algorithm. (It was defined by (23).) The other two lists produced by the

QL-reduction stage of our algorithm, L1 and L2, are new. They are defined below by

(25) and (26). (Note that the expression ‘‘e2ðy; zÞ ^ z 2 L* ’’ in (26) is an E-8

enactment simply because e2ðy; zÞ was. Hence, Lemma 4,1’s procedure can construct

the two lists below.)

L1 ¼ fFINDðyÞ 2 Y 9x 2 X : e1ðx; yÞg; ð25Þ

L2 ¼ fFINDðyÞ 2 Y 9z 2 Z : ½e2ðy; zÞ ^ z 2 L* �g: ð26Þ

From the definitions of L* ; L1 and L2, it is immediate that query (22) has an

output identical to the set of elements satisfying query (27). (In Definition 4.1’s

terminology, this is the same as simply saying that query (27) is a ‘‘QL-reduction’’

of (22).)

fFINDðx; y; zÞ 2 X � Y � ZÞ:

½e1ðx; yÞ ^ y 2 L2� ^ ½e2ðy; zÞ ^ y 2 L1 ^ z 2 L* �g: ð27Þ

Using the fact that (27) is a ‘‘QL-Reduction’’ of (22), we can use (27) as an alternate

method for finding the records satisfying (22). This procedure appears below:

1. First, apply Willard’s [67] E-8 Reporting-Join algorithm to produce the

subset G * of X � Y that satisfies the first of (27)’s two square bracket expressions.

2. Next, apply an E-8 Reporting-Join Enactment algorithm to produce the

subset H * of Y � Z that satisfies (27)’s second square bracket expression.

3. Finally, answer query (27) by taking the natural join of G * and H * .

It is easy to prove that unlike G and H, the sets G * and H * both satisfy the

inequalities Cardinality ðG * Þ4U and Cardinality ðH * Þ4U . These inequalities imply

that our second algorithm always runs in quasi-linear WH-time, unlike the first

algorithm. This is because the QL-reductions needed to produce the three lists L* ;

L1 and L2 have an OðI Logd IÞ cost (for some fixed constant d), and the additional

costs for steps 1–3 are, respectively, OðI Logd I þ CardinalityðG * ÞÞ; OðI Logd I þ
CardinalityðH * ÞÞ and OðI Logd I þ UÞ. In this context, the inequalities Cardinality

ðG * Þ4U and Cardinality ðH * Þ4U imply that the sum of all the preceding time-

costs is OðI Logd I þ UÞ.
A question that naturally arises is whether or not the preceding example about the

usefulness of QL-reductions always generalizes? In other words, is it true that every

RCS query can have a similar quasi-linear complexity-cost, if one uses some form of

procedure, using QL-reductions, to simplify them? Theorem 5.3 in the next section

will give an affirmative answer to this question.

Example 4.3. Finally, we will present an example that explains why tabular

atoms were included in the RCS and E-8 formalisms. Let T denote a subset of the

cross product set R1 � R2. For each r1 2 R1 and r2 2 R2, let A* ðr1Þ and A* ðr2Þ denote

an attribute-field that contains an unique value for each tuple ri. (Such attributes are

DAN WILLARD312
called primary keys in database terminology [55].) Let R3 be a third relation

such that ðr1; r2Þ 2 T exactly when there exists a corresponding r3 2 R3 with A1ðr3Þ ¼
A* ðr1Þ and A2ðr3Þ ¼ A* ðr2Þ. The introduction of such a third relation R3 makes

tabular atoms semantically unnecessary, since the atom ‘‘ðr1; r2Þ 2 T ’’ is equivalent to

the phrase

f9 r3 2 R3 : A1ðr3Þ ¼ A* ðr1Þ ^ A2ðr3Þ ¼ A * ðr2Þg: ð28Þ

For example, consider the queries q1 and q2 (in Eqs. (29) and (30)). Since they

produce the same output, it is reasonable for a reader to inquire why the tabular

atoms is needed? After all, the query q1 can specify the same set of tuples as q2

without the burden of this added notation:

q1 ¼ fFINDðr1; r2Þ 2 R1 � R2 9r3 2 R3:

A1ðr3Þ ¼ A* ðr1Þ ^ A2ðr3Þ ¼ A* ðr2Þ ^ A4ðr1Þ > A5ðr2Þg; ð29Þ

q2 ¼ fFIND ðr1; r2Þ 2 R1 � R2 : ðr1; r2Þ 2 T ^ A4ðr1Þ > A5ðr2Þg: ð30Þ

The answer to this question rests on comparing the relational graphs of q2

and q1. The graph of q2 is a tree, but q1’s graph is not.5 Formally, this means that q2

satisfies Section 2.2’s definition of the ‘‘RCS-requirement,’’ but the ‘‘output-

equivalent’’ q1 technically does not. The point is that Tabular Atoms are a formalism

for signaling the fact that some relational calculus queries, such as q1, can be

processed in quasi-linear time despite the fact that their graphs technically do not

satisfy the RCS-graph requirement. (This is because q1 is ‘‘output-equivalent’’ to an

‘‘RCS’’ query q2.)

We will return to Tabular atoms in Section 6.2. It will explain that this construct is

also useful in modeling the ‘‘many-to-one’’, ‘‘one-to-one’’ and other sparse

representations of a database set [55].

Overall Perspective. One obvious partial drawback to all the results mentioned in

this section (and elsewhere in this article) is that all our declared runtimes

are obviously at least linear in the size of the database, in that they are asymptotes

of the form: ‘‘OðI Logd I þ UÞ’’. Several of our prior articles, most notably [23, 59,

61, 67–69], did illustrate search algorithms with sublinear times with magnitudes

‘‘OðLogd I þ UÞ’’ or better, that were available when one had access to some

preprocessed index data structure. There are two reasons that we do not discuss

this topic here. The first is simply that in [67] we already summarized our

contributions to this subject. The second is that a search algorithm which requires

access to a precomputed index data structure is obviously a very mixed blessing

because of the extremely non-trivial overhead that is often required to maintain these

indices.

Thus, there naturally arises a question about ‘‘What types of complicated database

queries can run in OðI Logd I þ UÞ time when all types of precomputed index data
5The graph of q1 is not a tree because it has arcs from r3 to r1; r3 to r2, and r2 to r1. The graph of q2 is a

tree because its sole arc is from r2 to r1.

ALGORITHM FOR RELATIONAL CALCULUS QUERIES 313
structures are made unavailable?’’ Our study of RCS optimization is intended to

provide a partial answer to this question.

5. RCS OPTIMIZATION METHODOLOGY

The previous sections used the notation below to denote a relational query:

fFINDðr1r2 . . . rpÞ 2 R1 � R2 � � � � � Rp

Qpþ1ðrpþ1 2 Rpþ1ÞQpþ2ðrpþ2 2 Rpþ2Þ . . .Qkðrk 2 RkÞ : eðr1r2 . . . rkÞg: ð31Þ

In this section, we will use a more abbreviated notation where the capital letter Ri is

always omitted (i.e. it will be implicitly assumed that ri 2 Ri). Thus the following

equation will be an abbreviation for (31):

fFINDðr1r2 . . . rpÞQpþ1ðrpþ1ÞQpþ2ðrpþ2Þ . . .QkðrkÞ : eðr1r2 . . . rkÞg: ð32Þ

5.1. QL-Reductions

The formal definition of a QL-reduction was given in Definition 4.1. The two main

theorems that we will need about QL-reductions are listed below:

Theorem 5.1. For each 04j05j, every RCS query with j quantifiers can be

QL-reduced to a query with j0 quantifiers. The WH-time needed to perform this

QL-reduction is OðI Logd IÞ for a constant d that depends on the particular

query.

Theorem 5.2. Every RCS query q whose FIND-clause has only one or two

variables can be executed in time OðU þ I Logd IÞ and space OðU þ IÞ for some

constant d that depends on q.

We will need one preliminary lemma to help prove Theorems 5.1 and 5.2.

Lemma 5.1. For each j > 0, every RCS query with j quantifiers can be QL-reduced

to a query with j 1 quantifiers.

Proof. Let Eq. (33) denote the initial RCS query:

fðFIND ðr1r2 . . . riÞQiþ1ðriþ1Þ . . .QiþjðriþjÞ : eðr1r2 . . . riþjÞg: ð33Þ

Let rf denote the parent of riþj in the relational graph of Eq. (33) (if riþj has a

parent), and let rf ¼ r1 otherwise. Let eA
1 eA

2 . . . eA
k and eB

1 eB
2 . . . eB

k denote a series of

predicates such that:

(i) None of the atomic formula in eA
1 eA

2 . . . eA
k will employ the variable riþj.

Also, these formulae are ‘‘disjoint’’. For each tuple ð%rr1; %rr2 . . . %rriþj1Þ 2
R1 � R2 � . . .Riþj1, this means that there is no more than one predicate eA

n where

DAN WILLARD314
eA
n ð%rr1; %rr2 . . . %rriþj1Þ’s Boolean value equals TRUE.

(ii) Only the variables riþj and rf appear in the atoms of eB
1 eB

2 . . . eB
k .

(iii) These predicates satisfy the condition

eðr1; . . . ; riþjÞ ¼ f½eA
1 ðr1; r2 . . . riþj1Þ ^ eB

1 ðrf ; riþjÞ�

_ � � � _ ½eA
k ðr1; r2 . . . riþj1Þ ^ eB

k ðrf ; riþjÞ�g: ð34Þ

Let Lm denote the subset of Rf produced by the following binary query:

Lm ¼ fFIND ðrf Þ QiþjðriþjÞ : eB
mðrf ; riþjÞg: ð35Þ

It is then evident that a QL-reduction which removes one of the quantifiers from (33)

but produces an equivalent output is

FIND ðr1 . . . riÞQiþ1ðriþ1Þ . . .Qiþj1ðriþj1Þ:

fðeA
1 ^ rj 2 L1Þ _ � � � _ ðeA

k ^ rf 2 LkÞg:] (36)

We will now apply Lemma 5.1 to prove Theorems 5.1 and 5.2. Both these proofs

are direct consequences of Lemma 5.1, and they are given below:

Proof of Theorem 5.1. Immediate, because if we simply apply Lemma 5.1’s

algorithm inductively for j j0 iterations then the result will be to QL-reduce the

original RCS query into an alternate form with j j0 quantifiers removed.]

Remark 5.1. The above 1-sentence proof of Theorem 5.1 is obviously the

simplest possible justification for this theorem. However, it is far from the best

method for implementing the QL-reductions in a pragmatic environment. Its

disadvantage is that each iteration of Lemma 5.1’s algorithm will cause the

coefficient associated with the QL-reduction procedure’s OðI Logd IÞ time-asymptote

to increase by at least some constant factor. For many RCS queries q, there will be

available more sophisticated methods to execute the QL-reductions so that the

constant factor hidden in the O-notation’s asymptote OðI Logd IÞ can be better

controlled. This is one example of many topics that were omitted from this paper

because our intention is to provide only an intuitive and theoretical feel for the RCS

theory.

Proof of Theorem 5.2. Let k denote the number of variables appearing

in the query q, and let us apply Theorem 5.1 with j0 ¼ k 2. In this case,

Theorem 5.1 implies we can QL-reduce q to a query with two variables. If

this final query is of the form ‘‘FINDðx; yÞeðx; yÞ’’ then we can resolve it by

applying an E-8 Reporting Join operation. On the other hand if for a quantifier

Q, it is of the form ‘‘FINDðxÞ QðyÞ : eðx; yÞ’’, then we can resolve it by

ALGORITHM FOR RELATIONAL CALCULUS QUERIES 315
similarly applying one of Lemma 4.1’s binary algorithms (for evaluating a

quantifier).]

5.2. RCS Queries with K Variables in the FIND-Clause

This section will generalize Theorem 5.2 so that it can also apply to RCS queries

having three or more variables in its FIND-clause. In particular, our objective will be

to prove the following result:

Theorem 5.3. Let e be any predicate expression built out of equality, order, list

and tabular atoms concatenated in arbitrary manner by AND, OR and NOT

connectives. Let q designate (37)’s relational calculus expression. If q satisfies the RCS

condition, then for some constant d, it is possible to find the tuples satisfying (37) in

time OðU þ I Logd IÞ and space OðU þ IÞ:

fFINDðr1r2 . . . riÞQiþ1ðriþ1ÞQiþ2ðriþ2Þ . . .QkðrkÞ : eðr1r2 . . . rkÞg: ð37Þ

Some added notation will be needed to help prove Theorem 5.3. Define an atomic

literal to be an expression that is either an atomic formula or the negation of an

atomic formula. Define a pure conjunction to be a conjunction of several atomic

literals. An example of a pure conjunction is

fA1ðr1Þ=A2ðr2Þ ^ A2ðr2Þ5A3ðr3Þ ^ ðr2; r3Þ 2 Tg: ð38Þ

We will need the following preliminary lemma to help prove Theorem 5.3.

Lemma 5.2. Suppose query (39) satisfies the RCS condition, and its predicate e is a

pure conjunction. Then for some constant d, it is possible to find the tuples satisfying

(39) in time OðU þ I Logd IÞ and space OðU þ IÞ:

fFINDðr1r2 . . . rkÞ : eðr1r2 . . . rkÞg: ð39Þ

Proof. Let S denote the set of tuples satisfying (39). For simplicity, let us assume

that all the attributes of the relations R1R2 . . .Rk are distinct. For any i5j, let Sði; jÞ
denote the projection of S onto the attributes of the Ri and Rj relations: In the

relational calculus notation, this simply means that Sði; jÞ is the set of ordered pairs

satisfying

Sði; jÞ ¼ fFINDðri; rjÞ9r19r2 . . . 9ri1

9riþ1 . . . 9rj19rjþ1 . . . 9rk : eðr1r2 . . . rkÞg: ð40Þ

The query in (40) does not necessarily satisfy the RCS condition, and therefore we

cannot directly use Theorem 5.2 to produce the set of tuples satisfying this equation.

One further definition is necessary to remedy this problem.

Let f ð jÞ be that integer i such that ri is the parent of rj if rj indeed has a

parent in (39)’s relational graph, and f ð jÞ ¼ 1 otherwise. Then the relational

calculus expression on the right-hand side of (40) essentially satisfies the RCS

DAN WILLARD316
condition when i ¼ f ð jÞ (see footnote6 for the meaning of the phrase ‘‘essentially

satisfies’’).

Let Uj denote the cardinality of Sð f ð jÞ; jÞ, and U denote the cardinality of (39)’s

output. Theorem 5.2’s algorithm can construct Sð f ð jÞ; jÞ, in OðUj þ I Logd IÞ. WH-

time and using OðI þ UjÞ space. The first step of our algorithm will use this

procedure to construct all the sets Sð f ð jÞ; jÞ for 24j4k. Since (40) implies Uj5U ,

these time and space costs, in fact, reduce to OðU þ I Logd IÞ and OðI þ UÞ.
The second step of our procedure will take the ‘‘natural join’’ [55] of all these

Sð f ð jÞ; jÞ relations to construct the relation S. It is immediate from our definitions

that S is in fact equal to the natural join of these relations, but it is not immediately

obvious that we can calculate their natural join within the quasi-linear time–space

claimed by Lemma 5.2. Our proof of the latter fact is partially related to the theory

of acyclic queries [2, 8, 9, 25, 26, 49, 52, 55, 70, 72].

The problem here is best understood if one considers the cost of taking the natural

join of k relations S1S2 . . .Sk by using the following 2-step procedure:

1. Set T2 ¼ S1tS2.

2. FOR i ¼ 3 TO k, DO Ti ¼ Ti1tSi.

This procedure will be called a chained natural join. It is easy to see that it will

consume an amount of time and space proportional to the sum of the cardinalities of

all the relations S1S2 . . .Sk and T2T3 . . .Tk (if we use hashing to run the joins in

essentially a very straightforward manner). However, this chaining procedure cannot

be presumed to have a quasi-linear cost. The difficulty is that S1S2 . . .Sk are its input

relations, but Tk is its sole output relation! Thus, the time/space complexity of a

chained natural join will exceed the desired OðI þ UÞ bound if one of the

intermediate relations T2T3 . . .Tk1 has a cardinality much larger than the sum of

the cardinalities of Tk and S1S2 . . .Sk.

To ascertain that a chained natural join procedure has an OðI þ UÞ complexity,

one must therefore verify that each of its intermediately calculated relations T2T3

. . .Tk1 are sets with cardinality no larger than say Tk. For general natural joins it is

impossible to obtain this well bounding condition (see for example the discussion of

cyclic queries in one of [2, 49, 55]). However, our interests will focus on the specific

problem of taking the natural join of the Sð f ð jÞ; jÞ where 24j4k. We will see how

the intermediate sets T2T3 . . .Tk1 have well-managed sizes in this particular case.

Thus, consider the following 3-step procedure:

(A) Set T2 ¼ Sð1; 2Þ (essentially by just renaming the latter set).

(B) For j ¼ 3 TO k, set Tj ¼ Tj1tSð f ð jÞ; jÞ.

(C) Output the relation Tk as the answer to (39)’s query.
6The relational graphs of some of the Sð f ð jÞ; jÞ queries may not technically satisfy the RCS condition

because some of their directed edges could be pointing in the wrong direction. We can remedy this problem

by rewriting the query Sð f ð jÞ; jÞ in an alternate form where the order in which the variables are

existentially quantified is permuted. It is well known that permutations of existential quantifiers do not

change the set of elements specified in a set-theoretic query similar to Eq. (40). Such permutations can

transform Eq. (40)’s possibly non-RCS query into an obviously equivalent RCS expression.

ALGORITHM FOR RELATIONAL CALCULUS QUERIES 317
As noted already, this procedure’s cost is proportional to the sum of the

cardinalities of the relations T2T3 . . .Tk and Sð f ð2Þ; 2Þ;Sð f ð3Þ; 3Þ . . .Sð f ðkÞ; kÞ. We

will use Fact * to determine the sizes of the tables T2T3 . . .Tk.

Fact *. The combination of the facts that e is a pure conjunction, Eq. (39) is an

RCS query, and the fact that each Sð f ð jÞ; jÞ satisfies Eq. (40) implies each of the sets

T2;T3;T4 . . .Tk1 have a cardinality no greater than the particular integer ‘‘U ’’ (which

in our notation designates the cardinality of the final output set Tk).

The proof of Fact * appears in Appendix A: It is related to theory of acyclic

queries of Refs. [2, 8, 9, 25, 26, 49, 52, 55, 70, 72]. Let us now explain its significance.

It implies that our natural join algorithm will run in a time no worse than 2k � U ,

since its running time is proportional to the combined cardinalities of all the sets

T2;T3 . . .Tk and Sð f ð2Þ; 2Þ; Sð f ð3Þ; 3Þ . . .Sð f ðkÞ; kÞ. Moreover, since k is a fixed

constant that depends only on the number of variables appearing in query (39), our

notation allows us to view the quantity 2k � U as an asymptote of the form OðUÞ,
where 2k is a coefficient lying inside the O-notation.

In summary, our algorithm for answering query (39) is a 2-step procedure, whose

first step constructs the Sð f ð jÞ; jÞ sets and whose second step applies k 2 iterations

of the natural join algorithm to construct the sets T3;T4 . . .Tk. The fourth paragraph

of this proof showed that the first step ran in time OðU þ I Logd IÞ and space

OðI þ UÞ, and the last paragraph indicated that OðI þ UÞ also bounds the second

step’s time/space costs. Hence, our algorithm is quasi-linear.]

We will next turn our attention to Theorem 5.3, whose formal statement was given

at the beginning of this section. Theorem 5.3 is substantially more general than

Lemma 5.2 because it allows the relational calculus expression to contain any

sequence of quantifiers, and it does not require e to be a pure conjunction. Its only

caveat is that it requires that the RCS Graph condition be satisfied.

Proof of Theorem 5.3. The first step of Theorem 5.3’s search algorithm will use

Theorem 5.1. The latter implies there exists a predicate e* such that (41) is a

QL-reduction of (37):

fFINDðr1r2 . . . riÞ : e* ðr1r2 . . . riÞg: ð41Þ

The expensive part of this step consists of building the new subsection lists L1L2 . . .
Lm to effect e’s translation into the ‘‘output-equivalent’’ form e* . By Theorem 5.1,

this translation process will consume OðI Logd IÞ time and OðIÞ space.

Our algorithm’s second step will use a set of pure conjunction predicates e1e2 . . . ek

such that

e* ðr1r2 . . . riÞ ¼ fe1ðr1r2 . . . riÞ _ e2ðr1r2 . . . riÞ _ . . . ekðr1r2 . . . riÞg; ð42Þ

For each such predicate ej, this step will employ Lemma 5.2’s algorithm to find the

set of tuples Sj satisfying fFINDðr1r2 . . . riÞ : ejðr1r2 . . . riÞg. Each such subroutine call

shall consume time OðU þ I Logd IÞ and space OðU þ IÞ. There are only a fixed

number of such subroutine calls (where the constant again depends on q); thus, this

DAN WILLARD318
second step also has a quasi-linear cost. It provides the answer to the query q because

the union of the sets S1;S2 . . .Sk is the query’s answer.]

We close this section by again reminding the reader of the observations made by

Remark 5.1. Our discussion throughout this chapter has deliberately been kept as

brief and as simple as possible so that a reader can most easily appreciate the gist. In

order to keep the discussion brief, we have deliberately omitted at several junctures

examining methods that will often reduce the coefficient belonging to the O-

notation’s OðU þ I Logd IÞ time asymptote, as well as omitted studying possible

methods that will often (but not always) reduce the value of the exponent d.

Such issues are clearly important from a pragmatic perspective, but they can be

studied by many researchers in the future. Instead, we have sought to give Theorem

5.3 the simplest possible proof in this paper, in order to attract the widest possible

audience for this general topic.

5.3. RCS Aggregation Queries

During the last few years, several articles about OLAP-like environments [10, 16,

17, 24, 28–32, 40, 41, 45, 50, 51, 53, 54, 73, 75, 76] have studied aggregation queries.

We will show in this section how Theorem 5.1’s QL-reduction method can assist in

such calculations. The notion of an RCS aggregation was defined in Section 2.2.

Thus, Eq. (43) is a request to calculate a table that has an entry for each input

element %xx 2 X , indicating the
P

f ð %yyÞ (under some aggregate-operator ‘‘�’’) of those

ordered pairs ð %xx; %yyÞ 2 X � Y that (43) seeks to output:

fListAggf ðx; yÞ 2 X � Y Q1ðr1ÞQ2ðr2Þ . . .QkðrkÞ : eðx; y; r1; r2; . . . rkÞg: ð43Þ

Theorem 5.4. Let � denote an Oð1Þ time aggregation operator that admits an

inverse, and q denote an RCS aggregation query, similar to Eq. (43). Each such RCS

aggregation query can be executed within the resource parameters of OðI Logd IÞ
WH-time and OðIÞ space (where the value of d again depends on the particular RCS

query q).

Proof. The relevant OðI Logd IÞ procedure is an easy consequence of Theorem

5.1’s methodology. It consists of the following two steps.

1. First spend OðI Logd IÞ time constructing the needed lists L1;L2; . . .Lk so

that after these lists are constructed, we have available an E-8 enactment expression

e* ðx; yÞ, relying on L1;L2; . . .Lk as its inputs, such that the set of ordered pairs

satisfying e* ðx; yÞ is the same as the output for the query:

fFINDðx; yÞ 2 X � Y Q1ðr1ÞQ2ðr2Þ . . .QkðrkÞ : eðx; y; r1; r2; . . . ; rkÞg: ð44Þ

Theorem 5.1 indicates that such a collection of subsection lists L1;L2; . . .Lk exists

and can be constructed in OðI Logd IÞ WH-time. Note that this step does not

physically perform either e* ðx; yÞ’s reporting join operation or (44)’s formal search

(because either of these operations can require in excess of OðI Logd IÞ time). Rather,

it merely constructs the collection of subsection lists L1;L2; . . .Lk.

ALGORITHM FOR RELATIONAL CALCULUS QUERIES 319
2. Finish (43)’s query by using an E-8 Aggregation-Join procedure to construct

the array Ff
e * ðxÞ. (The existence of an ‘‘E-8 Aggregation Join’’ for executing this task

in OðI Logd IÞ time was indicated by Item (B) from Section 2.1.)]

Remark 5.2. Let AVERAGE denote the conventional notion of an arithmetic

mean. This construct is not an ‘‘invertible’’ operator, but we can still apply Theorem

5.4 towards its calculation. Such an application would first use Theorem 5.4’s

algorithm to calculate the arrays for SUM and COUNT, and it would then divide

these arrays to construct the AVERAGE array.

Remark 5.3. Define � to be a SemiGroup operator iff it satisfies the associative

principle. (Semigroup operators do not necessarily admit an inverse, and they have

been studied extensively in computational geometry [6, 14, 21, 22, 44, 56, 63, 69].)

Theorem 5.4’s algorithm generalizes to semigroup operators automatically whenever

the E-8 enactment e* ðx; yÞ produced by its Step 1 contains no tabular atoms. (If

tabular atoms are present in e* ðx; yÞ, this generalization applies only when these

atoms do not lie within the range of a NOT connective symbol.)

Let us next consider a query seeking to find the list of Median, Minimal or

Maximal elements requested by an RCS formula. The first query type falls under

neither the paradigms of Theorem 5.4 nor Remark 5.3, since Median is neither an

invertible nor a semigroup aggregate operator. The operations of MIN and MAX

are semigroup operators; however, one would ideally desire them not to rely on

Remark 5.3’s procedure because it is much more inherently restrictive than Theorem

5.4’s procedure. It turns out that we can handle these three aggregation operations

with the full desired level of generality. The remainder of this section will discuss this

topic and other similar forms of aggregation queries.

Notation. Let F denote a sorted list itemizing the values of f ð %yyÞ for %yy 2 Y . Let A, I

and P denote functions (or equivalently arrays) that map each %xx 2 X onto numbers,

which we shall denote as Að %xxÞ, Ið %xxÞ and Pð %xxÞ. We will often replace the header

element ‘‘ListAggf ðx; yÞ’’ from Eq. (43)’s RCS query with alternate headers such as

‘‘List Countðx; yÞ’’, ‘‘SubCountAðx; yÞ’’, ‘‘CheckA;Pðx; yÞ’’ or ‘‘PickPðx; yÞ’’. Their

definitions are given below:

1. An RCS query that begins with the header ListCountðx; yÞ will denote a

‘‘ListAggðx; yÞ’’ query, where the aggregation operation is ‘‘Count’’. Thus, such a query

will construct an array IðxÞ, where for each %xx 2 X the array-element Ið %xxÞ will indicate

how many %yy 2 Y satisfy the condition to the right of Eq. (45)’s ListCount header:

fListCountðx; yÞ Q1ðr1ÞQ2ðr2Þ . . .QkðrkÞ : eðx; y; r1; r2; . . . ; rkÞg: ð45Þ

2. SubCountAðx; yÞ is defined so that Equation (46) is just an abbreviation for

Equation (47).

fSubCountAðx; yÞ Q1ðr1ÞQ2ðr2Þ . . .QkðrkÞ : eðx; y; r1; r2; . . . rkÞg; ð46Þ

fListCountðx; yÞ Q1ðr1ÞQ2ðr2Þ . . .QkðrkÞ : eðx; y; r1; r2; . . . rkÞ

^ f ðyÞ4AðxÞg: ð47Þ

DAN WILLARD320
Theorem 5.4 implies that the above queries can be executed with quasi-linear efficiency

(because if we view the tuples %xx and %yy as containing one extra field each, denoted as,

respectively, ‘‘Að %xxÞ’’ and ‘‘f ð %yyÞ’’, then query (47) falls within Theorem 5.4’s paradigm).

3. Let IðxÞ denote the ‘‘SubCountA Array’’ that is produced by Item 2’s

procedure (above). The header CheckAðx; yÞ will indicate the presence of a 2-step

procedure that first constructs this subcount array IðxÞ, and then for each %xx 2 X

compares the values of Ið %xxÞ with Pð %xxÞ. This procedure will store the results of these

multiple comparisons in an output array called ‘‘TðxÞ’’. Thus, Tð %xxÞ will correspond

to one of the three key-words of ‘‘less-than,’’ ‘‘equals’’ or ‘‘greater-than,’’ depending

on how Ið %xxÞ compares to Pð %xxÞ.

4. In order to define (48)’s PickPðx; yÞ command, let us assume P denotes an

array of integers and each element y 2 Y has an unique f ðyÞ value:

fPickPðx; yÞ Q1ðr1ÞQ2ðr2Þ . . .QkðrkÞ : eðx; y; r1; r2; . . . rkÞg: ð48Þ

This command will be defined as an operation that constructs an array A where Að %xxÞ
is the particular element in the sorted list F , such that precisely Pð %xxÞ distinct %yy 2 Y

satisfy (49). Footnote7 explains the significance of this definition through three

examples, illustrating how we can make the array AðxÞ correspond to a list of

minimum, maximum or median elements, by applying various different forms of

PickPðx; yÞ operations:

Q1ðr1ÞQ2ðr2Þ . . .QkðrkÞ : eð %xx; %yy; r1; r2; . . . rkÞ ^ f ð %yyÞ4Að %xxÞ: ð49Þ

Theorem 5.5. Suppose the PickPðx; yÞ query in (48) satisfies Section 2.2’s ‘‘RCS

graph condition.’’ Then there will exist some constant d such that this query can be

processed in OðI Logd IÞ WH-time and using OðIÞ space.

Proof. Let Ny again denote the cardinality of table Y . The heart of our

PickPðx; yÞ search algorithm will consist of making Log2ðNyÞ subroutine calls to Item

3’s CheckA;Pðx; yÞ procedure. In essence, these Log2ðNyÞ subroutine calls will enable

us to formulate a straightforward generalization of a conventional binary search,

where each iteration allows us to more closely approximate the final form of the

particular array A that our PickPðx; yÞ query seeks to construct.

More precisely, let m denote F ’s median f ðyÞ-value. The array A will be initially set

so that Að %xxÞ ¼ m for each %xx 2 X . Our first invocation of CheckA;Pðx; yÞ will use this

initial state for A to generate an output array T , where Tð %xxÞ specifies one of the three

states of ‘‘less-than’’, ‘‘equals’’ or ‘‘greater-than’’ (depending on how Ið %xxÞ compares

to Pð %xxÞ). Then if m1 and m2 denote the respective elements of F that have 25% and

75% of members of F lying below them, our algorithm will rewrite the array A so

that Að %xxÞ will now equal one of the three values of m1, m or m2, depending on

whether Tð %xxÞ had stored a state of ‘‘less-than’’, ‘‘equals’’ or ‘‘greater-than’’. Our
7 If P is an array whose every element is the integer 1 then Að %xxÞ will represent the minimal value f ð %yyÞ for

the set of ordered pairs ð %xx; %yyÞ satisfying the condition to the right of Eq. (48)’s ‘‘PickPðx; yÞ’’ header. It will

likewise be the corresponding maximal value if P represents the array which is the output of Eq. (45)’s

ListCount query. On the other hand, if we let P denote the arithmetic mean of these two arrays, then

‘‘PickPðx; yÞ’’ will cause the output array A to be Eq. (48)’s list of implied median elements.

ALGORITHM FOR RELATIONAL CALCULUS QUERIES 321
algorithm’s second and further invocations of the subroutine CheckA;Pðx; yÞ will be

analogous to the first, except that they will use the array A’s successively revised states.

In other words, our algorithm for constructing A will be roughly the same as the

conventional binary search, except that it runs all the binary searches simultaneously for

every %xx 2 X ; thus, at the conclusion of its Log2ðNyÞ subroutine calls to CheckA;Pðx; yÞ,
our algorithm will have constructed all the values for Að %xxÞ. The formal description of

this analog of binary search will not appear here because it is an extremely

straightforward consequence of the definitions of CheckA;Pðx; yÞ and of PickPðx; yÞ.
Since Ny4I and since Theorem 5.4 implied CheckA;Pðx; yÞ had a quasi-linear

efficiency, it follows that PickPðx; yÞ must also have a quasi-linear complexity, with its

exponent d differing from CheckA;Pðx; yÞ’s exponent by exactly an increment of 1.]

6. SIGNIFICANCE OF RESULTS

The preceding discussion was deliberately written in a style to make our proofs as

short and simple as possible. To shorten the proofs considerably, we have often

produced versions of our algorithm that had a needlessly large coefficient. Any other

style of presentation would have been inappropriate for an article attempting to

present briefly the simplest possible overview for this subject.

However, because, for the sake of brevity, our presentation sacrificed the

coefficient inside the OðI Logd I þ UÞ and OðIÞ asymptotic magnitudes, we request

that the reader not prejudge the RCS algorithm based on the particular version of

the procedure presented in these pages. We do not claim that the coefficient hidden

inside the O-notation will always be small, even when one does try to minimize the

coefficient. However, it should have an adequately small magnitude for our

algorithm to be worthy of consideration in several settings.

The growth in main memory size is the main reason the RCS formalism is

tempting. The first sentence of this article did not exaggerate in noting that the size of

the main memory has grown by a factor of more than 10,000 since the time, 20 years

ago, when the potential of RCS was mentioned in our dissertation [59]. One way to

illustrate this change is simply to take Moore’s Law and count the number of

doublings that would take place in 20 years at a rate of one doubling per 18 months

(i.e., 213:5 > 10; 000Þ. A second method to gather a roughly similar estimate is to

observe that since their inception 23 years ago, the memory spaces of Personal

Computers have actually grown by a somewhat larger 32,000-to-1 ratio.8 Moreover,

the recent ‘‘1998 Ansilamar Report’’ seems to agree with our interest in databases

resident in main memory. It [7] predicts that:

‘‘Within ten years, it will be common to have a terabyte of main memory serving

as a buffer pool for a hundred terabyte database. All but the largest database tables

will be resident in main memory.’’
8The original Altair machine had a 4K memory, which differs by a 32,000-to-1 ratio from the 128-Meg

memories becoming the standard size for Personal Computers in several stores we visited while preparing

the final draft of this paper. In particular, on 16 December, 2000, one store manager informed us that 80%

of his Gateway computer sales involved at least 128-Meg size machines, and no computers were now

available below a 64-Meg size.

DAN WILLARD322
In all these contexts put together, it would seem safe to suggest that some forms of

OðI Logd I þ UÞ algorithms will be cost-effective for certainly some databases

resident in the main memory.

Our work related to RCS had thus influenced Goyal and Paige, who were

generous enough to mention our name in the title of one of their articles [27]. It

described an implementation of a portion of Theorem 5.3, based essentially on the

combination of our prior work [59, 65, 67], private communications from Willard

and some of Paige et al.’s earlier work [11, 27, 33, 46–48].

One implementation of at least a portion of the RCS method is thus already

available at an experimental level; moreover, some aspects of the RCS formalism are

likely to have implications for database design, even if the full desired level of a

commercial-grade software product never emerges. It is, after all, reasonable to view

database theory from roughly a RISC-like perspective. That is, suppose one

implemented only the E-8 reporting and aggregate JOIN procedures from our earlier

1996 article [67], using a RISC-type philosophy, where a small number of primitive

operations should be the focus of an extremely intense and dedicated effort to

implement them with maximum efficiency. (In the SQL language, such an

implementation could correspond to a strongly optimized procedure for executing

those SELECT-FROM-WHERE queries that have only two tables appearing in the

FROM-clause and whose WHERE-clause corresponds to essentially an E-8

enactment (see footnote9 for how one can model an E-8 enactment’s tabular atoms

in the SQL language). It would then be plausible to ask the database user to perform

more complicated k-variable relational-calculus-like operations by having the

computer programmer literally manually chain together several subroutine calls to

a library of very efficient E-8 enactment operations.

In other words, we are suggesting that one can interpret Theorem 5.3 as having

either of two uses. One possibility is to see it as describing formal operations

available to a computer optimizer. An alternate interpretation is to view it as

summarizing how a human computer programmer can hand-optimize his code when

using a library of computer programs for doing E-8 operations efficiently.

6.1. What Actually is an RCS Query?

There are also other issues, pertaining to the potential implications of RCS, that

we should vent at least briefly. Although Section 2.2 may have appeared to have

given a fully succinct and explicit 1-paragraph definition of the RCS language, it

actually contained some non-trivial levels of ambiguity hidden within it. After all,

while many relational calculus queries may technically violate the RCS acyclic query

property, they are often still ‘‘output-equivalent’’ to other queries that are acyclic.

For instance, Example 4.3 illustrated how}when one uses a tabular atom to replace

Eq. (29)’s existential quantifiers}the non-RCS query in (29) is output-equivalent to

(30)’s RCS query.
9The ‘‘EXISTS’’ or ‘‘IN’’ primitives, when embedded inside a WHERE-clause, can be used by SQL to

signal the presence of a Tabular atom. An alternative for the SQL language would obviously be to

introduce a new primitive into the language for explicitly representing Tabular atoms. We suspect that the

second approach is preferable, but either could be used.

ALGORITHM FOR RELATIONAL CALCULUS QUERIES 323
There are also many other types of examples of pairs of output-equivalent

relational calculus queries with a similar property. For instance, let X and Y denote

two relations. Consider the following query:

Find all %xx 2 X where there are at least two different elements %yy1 and %yy2 in Y

satisfying eðx; yÞ.

Both Remark 4.2 of this present paper and Remark 4 of our earlier paper [65]

anticipated this type of query by including the notion of a ‘‘generalized quantifier’’ in

the RCS language. We defined a ‘‘generalized quantifier’’ as any function that

mapped values from the count-array FeðxÞ onto Boolean values. Thus, a valid

example of a generalized quantifier could be a quantifier Q that returns the value

TRUE when FeðxÞ52. Note that this means that (50) and (51) are two alternate

formalisms for representing the italicized sentence as a relational query:

FIND x 2 X COUNTðy 2 Y Þ52 : eðx; yÞ; ð50Þ

FIND x 2 X 9y1 2 Y 9y2 2 Y : y1=y2 ^ eðx; y1Þ ^ eðx; y2Þ: ð51Þ

The point is that these two queries have identical output, although technically only

the former actually belonged to the RCS class.

A third example of a pair of output-equivalent queries appears below:

FIND x 2 X 9y 2 Y 9z 2 Z : ½A1ðxÞ5B1ðyÞ ^ B2ðyÞ5CðzÞ�_

½A1ðxÞ5B1ðyÞ ^ A2ðxÞ5CðzÞ�; ð52Þ

FIND x 2 X 9y1 2 Y 9z1 2 Z 9y2 2 Y 9z2 2 Z :

½A1ðxÞ5B1ðy1Þ ^ B2ðy1Þ5Cðz1Þ� _ ½A1ðxÞ5B1ðy2Þ ^ A2ðxÞ5Cðz2Þ�: ð53Þ

This example has almost the precise opposite quality to the example from the

previous paragraph. Their difference is that the former example had the RCS query

possess fewer quantifiers than its non-RCS counterpart, while the latter example has

the RCS query containing more quantifiers.

A fourth class of similar examples arises because one can permute the order of two

consecutive existential (or universal) quantifiers without changing the meaning of the

relational calculus query. (It is also possible to permute the order of two variables in

the FIND clause.) In some cases, such permutations will transform a non-RCS query

into an RCS query (because such permutations reverse the directions of some edges

in our query’s corresponding graph). Moreover, one can often apply several

algebraic identities to transform non-RCS queries into output-equivalent RCS

operations.

In closing this subsection, we wish to point out that it is not picayune to examine

methods for transforming non-RCS queries into output-equivalent RCS forms. We

DAN WILLARD324
do so because we believe that database researchers are most likely to ask themselves

the following question:

What are the linguistic limitations of an RCS-like database query language? That

is, what types of natural database queries cannot be expressed in this formalism?

Our point is that the answer to this question is complicated and partly ambiguous

because each of Eqs. (29), (51) and (52) illustrate examples of non-RCS queries,

which, after a trivial transformation, have the same output as an RCS search.

How many more examples of this type are there? We do not know: The most

general version of the problem of translating non-RCS queries into output-

equivalent RCS operations is clearly NP-hard. Moreover, there certainly exists

several database queries that lie properly outside the RCS class, but can be executed

efficiently. For instance, the Papadimitriou–Yannakakis article [49] showed how

certain types of cyclic inequality join-project-selections can be processed efficiently,

and we will illustrate a different type of such example in Section 6.3. The future will

certainly discover many more such examples.

6.2. More About Tabular Predicates

Our earlier Example 4.3 explained that one reason we introduced the Tabular

Predicate notion into the RCS language was to broaden considerably this database

language. Thus, Example 4.3 showed how Eq. (29) technically was not an RCS

query, but that the tabular atoms allowed us to rewrite it in an alternate form that

was RCS.

This broadening of the RCS language is obviously a nice feature. However, there

is also a second nice aspect of the tabular predicates that might be overlooked if we

were not to mention it explicitly. It will require some additional notation.

Let Nx and Ny again denote the cardinality of the relations X and Y . Let Nt

denote the cardinality of a tabular section T which itemizes some ordered pairs ðx; yÞ
from the cross-product space X � Y . In theory, Nt could obviously be as large as the

quantity Nx � Ny. However, it is well known that in many database settings, it will

satisfy either Nt5OðNx þ NyÞ, or at least

Nt{Nx � Ny: ð54Þ

We will use the term Sparse Table to describe a tabular section T whose set of

ordered pairs satisfies an identity similar to Eq. (54).

One can appreciate the very central nature of sparse tables in database

applications by looking as far back as the early Codasyl literature. The notions of

a 1-1 and many-to-1 relationship stem from the original Codasyl Set-Ownership

model: it is well known that if T either represents a 1-1 or many-to-1 relationship

then the sparsity inequality below will be satisfied:

Nt4Nx þ Ny: ð55Þ

The 1-1 and many-to-1 relationships clearly occur very frequently in database

applications, since most of the database textbooks give this topic quite prominent

mention. Thus because Eq. (54) is often satisfied, it would be prudent for a database

ALGORITHM FOR RELATIONAL CALCULUS QUERIES 325
optimizer to attempt to use this equation to optimize performance (whenever such an

opportunity arises). Moreover, (54)’s inequality is especially significant because there

are many instances when (54) is satisfied without the tabular sections formalizing a 1-1

or many-to-1 relationship (see the second-to-last paragraph of Example 3.3 for several

such examples in a typical database environment). Hence, one reason we introduced the

Tabular atom formalism into the RCS and E-8 languages, starting in our dissertation

[59], was because the widespread implicit usage of sparse tables in database applications

made it desirable for an optimizer to take advantage of the presence of sparsity for

improving performance, whenever such an opportunity10 occurs.

Before closing this section, we should also mention that it is possible to view

tabular atoms as not exactly representing explicitly formed tables T , available at the

onset of a database search. Instead, if one so desires (?), one can view the tabular

sections T as representing intermediately constructed objects that are built midway

during a sequence of several serially performed RCS operations.

6.3. More Issues About Database Language Expressibility

For the sake of keeping our mathematical discussion in this article as crisp and

abbreviated as possible, we had assumed that the tuple variable r would span over

only a single relation R. From a mathematical perspective, this assumption was very

minor because it is obvious that all our algorithms (and their quasi-linear

performance characteristics) will trivially generalize to the broader case where r can

range over the union of several relations, such as for example R1 [R2 [� � � [Rj. Let

us therefore use the acronym E-RCS for a query that is the same as an RCS

operation, except that its tuple variables r are allowed to range over the union of

several relations, such as for example R1 [R2 [� � � [Rj . Also, let the acronym UE-

RCS denote a query of the form q1 [q2 [� � � [qj, where each qi is E-RCS.

It often happens that a distinction may be trivial from a mathematical perspective,

but still possess some significance from a systems-programming perspective. This

type of issue seems to arise when one compares the RCS, E-RCS and UE-RCS

languages. From the mathematical perspective of Algorithm Design, the distinction

between these three languages is trivial because they all have the same quasi-linear

time complexities (for both the cases of doing a Find or Aggregation search). In

contrast, we will see that this distinction is quite important from the viewpoint of

database expressibility.

In particular, one reason that the E-RCS primitive is needed is that the

unmodified-RCS formalism is unable to express the relational algebraic notion of

‘‘Finite Set Union’’ without E-RCS’s added flexibility. One would certainly like a

database language to have a capacity to formulate as working operations each of

Codd’s eight original relational algebra commands (i.e. Union, Intersection, Set-

Subtraction, Projection, Division, Selection, Cross-Product and Join). It turns out

that E-RCS formalism is fully adequate for this purpose.

10Our article [67] explained that the E-8 Reporting and Aggregate Joins had complexities of

OððNx þ NyÞLogd * ðeÞ Ny þ Ne þ NtÞ and OððNx þ NyÞLogd * ðeÞ Ny þ NtÞ. Whenever Nt{Nx � Ny, these

runtimes are clearly much better than the OðNx � NyÞ cost of a brute force exhaustive search.

DAN WILLARD326
It also turns out that there are several examples of UE-RCS queries that actually

cannot be written in an E-RCS form. This curiosity occurs because some UE-RCS

queries q1 [q2 [� � � [qj have the property that if one attempts to compress q1; q2

; . . . ; qj into a single relational calculus expression, then the resulting graph GðqÞ will

contain such a large number of edges that it would violate Section 2.2’s RCS graph

condition. Thus, one needs the UE-RCS primitive to signal the fact that these

operations can be performed efficiently by breaking them into their subcomponents

q1; q2; ::; qj and then taking the union of the resultant queries.

To further appreciate the potential as well as inherent limitations of RCS-like

languages, it is helpful to return to some of the comments that Papadimitriou and

Yannakakis [49] made about database optimization. They noted that the commonly

believed conjectures about NP-hardness suggest that (1) a deterioration in

performance for some cyclic database queries will be unavoidable, and (2) it will

also be impossible to devise a decision procedure that takes a relational calculus

query q of length L as input, and determines in time polynomial in L the amount of

resources that the query q will optimally require. Thus, the study of quasi-linear

database search algorithms is highly likely to be a never-ending quest that never fully

reaches a perfect conclusion. At best, it will probably only devise broadly general

languages that can process a reasonably large fraction of potential queries with

quasi-linear efficiency.

In this context, we can now more clearly explain our basic objectives. Our

Example 4.3, Sections 6.1 and 6.2, and our 3-way distinction between RCS, E-RCS

and UE-RCS queries had collectively documented that there are a quite

large number of likely database queries that have RCS-like quasi-linear complexities.

By showing that a database optimizer can perform a very broad class of rela-

tional calculus queries with quasi-linear efficiency, we have sought to stimulate

further research into this area. For instance, one would like ideally to lower

the exponent d and the coefficient hidden inside the asymptote OðI Logd I þ UÞ as

much as possible, as well as to further extend the class of queries q that can be

processed with quasi-linear efficiency. We hope that our research into RCS will thus

stimulate other researchers to join our investigation into the many remaining open

questions.

APPENDIX A: PROOF OF FACT *

This appendix will prove Fact *. Since results roughly similar to this claim have

analogs in the literature on acyclic joins [2, 8, 9, 25, 26, 49, 52, 55, 70, 72], mentioned

in Section 2.3, our proof of Fact * will be short and abbreviated. We will need one

lemma to help prove Fact *.

Lemma A.1. Once again, let us assume that query (A.1) satisfies the RCS graph

condition and that its predicate eðr1r2 . . . rkÞ is a pure conjunction:

fFINDðr1r2 . . . rkÞ : eðr1r2 . . . rkÞg: ðA:1Þ

ALGORITHM FOR RELATIONAL CALCULUS QUERIES 327
Let Tk denote the set of k-tuples satisfying (A.1). Suppose that the sets Tj1 and

Sð f ð jÞ; jÞ (used during the jth iteration in Step B of Lemma 5.2’s algorithm) satisfy the

two conditions:

ð%rr1; %rr2; . . . %rrj1Þ 2 Tj1 , 9rj ; 9rjþ1; . . . 9rk : eð%rr1; %rr2; . . . %rrj1; rj ; rjþ1; . . . rkÞ; ðA:2Þ

ð%rrf ð jÞ; %rrjÞ 2 Sð f ð jÞ; jÞ , 9r1; . . . 9rf ð jÞ19rf ð jÞþ1; . . . 9fj19rjþ1; . . . 9rk :

eðr1 . . . rf ð jÞ1; %rrf ð jÞ; rf ð jÞþ1 . . . rj1; %rrj ; rjþ1 . . . rkÞ: ðA:3Þ

Then the set Tj ¼ Tj1tSð f ð jÞ; jÞ will also satisfy:

ð%rr1; %rr2; . . . %rrjÞ 2 Tj , 9rjþ1; 9rjþ2; . . . 9rk : eð%rr1; %rr2; . . . %rrj ; rjþ1; rjþ2; . . . rkÞ: ðA:4Þ

Proof. Let t be a ðj 1Þ-tuple ða1; a2; . . . aj1Þ 2 Tj1. Then from (A.2), we can

infer the existence of a more elongated k-tuple ða1; a2; . . . akÞ 2 Tk. Similarly, if ðx; yÞ
is an ordered pair in Sð f ð jÞ; jÞ, we can infer from (A.3) the existence of a k-tuple

ðb1; b2; . . . bkÞ 2 Tk with bf ð jÞ ¼ x and bj ¼ y.

By definition, the preceding tuple t and ordered pair ðx; yÞ will generate an element

in the ‘‘join-set’’ Tj ¼ Tj1tSð f ð jÞ; jÞ precisely when x ¼ af ð jÞ. This element will

simply be a j-tuple ðc1; c2; . . . cjÞ where cj ¼ y and all the other ci ¼ ai. To prove that

(A.4) is satisfied, it suffices to show that this j-tuple ðc1; c2; . . . cjÞ can be associated

with a longer k-tuple ðc1; c2; . . . ; ckÞ 2 Tk.

To do so, we will use the fact that Eq. (A.1)’s query q satisfies the RCS graph

condition. Let GðqÞ denote the graph associated with q. Let G * ðqÞ be a graph

identical to GðqÞ except that:

1. If GðqÞ is a forest-graph containing distinctly more than one tree, then

G * ðqÞ will be a tree where for each i > 1, there will be a new edge in G * ðqÞ connecting

ri to r1 when such an edge is necessary to connect what would otherwise be two

disjoint trees into one single tree.

2. We will view G * ðqÞ as an undirected graph in the current discussion.11

Our objective will be to finish Lemma 6.1’s proof by using the graph G * ðqÞ
to construct the tuple k-tuple ðc1; c2; . . . ckÞ 2 Tk which the previous paragraph

needed.

This construction is quite simple. Let us say the node ri lies on the left-hand side of

the tree-graph G * ðqÞ if the path from ri to rj goes through rf ð jÞ. Say it lies on G * ðqÞ’s
right-hand side otherwise. Let the k-tuple ðc1; c2; . . . ckÞ have its components ci defined

by the two rules that ci ¼ ai if ri is a ‘‘left’’ node and ci ¼ bi if it is ‘‘right-sided’’.

Since Lemma 6.1’s hypothesis indicated eðr1r2 . . . rkÞ was a pure conjunction, this fact

and ða1; a2; . . . akÞ 2 Tk and ðb1; b2; . . . bkÞ 2 Tk immediately imply ðc1; c2; . . . ; ckÞ 2 Tk.

Hence, Eq. (A.4) is certainly valid.]
11 In Theorems 5.1, 5.2 and 5.3, we needed the definition of GðqÞ to view this structure as a directed graph

(basically to preclude some difficulties that could otherwise be posed by universal quantifiers and

generalized quantifiers). These difficulties cannot exist for Eq. (A.2)–(A.4) because they contain only

existential quantifiers. Therefore without difficulty, G * ðqÞ can be viewed as an undirected graph in our

present discussion.

DAN WILLARD328
We will now use Lemma 6.1 to complete the proof of Fact * (from Lemma 5.2’s

proof). The formal statement of this claim appeared in Lemma 5.2’s proof, and we

have duplicated it below:

Fact *. The combination of the facts that e is a pure conjunction, (A.1) is an RCS

query, and each Sð f ð jÞ; jÞ set satisfies (A.5) implies that each of the sets T2;T3;T4 . . .
Tk1 have a cardinality no greater than the cardinality of Tk:

Sð f ð jÞ; jÞ ¼ fFINDðrf ð jÞ; rjÞ9r1 . . . 9rf ð jÞ1

9rf ð jÞþ1 . . . 9rj19rjþ1 . . . 9rk : eðr1r2 . . . rkÞg: ðA:5Þ

Proof. It will be immediately apparent that the claim is true if we can establish

that each of the sets T2;T3;T4 . . .Tk1 satisfies

ð%rr1; %rr2; . . . %rrjÞ 2 Tj , 9rjþ1; 9rjþ2; . . . 9rk : eð%rr1; %rr2; . . . %rrj ; %rrjþ1; rjþ2; . . . rkÞ: ðA:6Þ

We can easily verify this fact by induction. In particular, T2 must satisfy condition

(A.6) simply because step A of Lemma 5.2’s join algorithm defined T2 ¼ Sð1; 2Þ and

the hypothesis of Fact * had indicated that Sð1; 2Þ satisfied Eq. (A.5). The further

verification that T3T4 . . .Tk1 satisfy Eq. (A.6) follows by an easy inductive

argument that uses Lemma 6.1 and the fact that Tj satisfies (A.6) to conclude that

so does Tjþ1 satisfy (A.6)

Hence, all of T2;T3;T4 . . .Tk1 satisfy Eq. (A.6). This implies that they all have

cardinalities no greater than the cardinality of Tk.]

REFERENCES

1. C. Beeri, R. Fagin, D. Maier, A. Mendelzon, J. Ullman, and M. Yannakakis, Properties of acyclic

database schemes, in ‘‘STOC-1981,’’ Milwaukee, WI, pp. 355–362, 1981.

2. C. Beeri, R. Fagin, D. Maier, and M. Yannakakis, On the desirability of acyclic database schemes,

JACM 30 (1983), 479–513.

3. J. Bentley, Multidimensional binary search trees used for associative searching, CACM 18 (1975),

509–517.

4. J. Bentley, Multidimensional divide-and-conquer, CACM 23 (1980), 214–229.

5. J. Bentley and H. Mauer, Efficient worst-case data structures for range searching, Acta Inform. 13

(1980), 155–168.

6. J. Bentley and J. Saxe, Decomposable searching problems: Static to dynamic transformations, J.

Algorithms 1 (1980), 301–358.

7. P. Bernstein, M. Brodie, S. Ceri, D. DeWitt, M. Franklin, H. Garcia-Molina, J. Gray, J. Held,

J. Helterstein, H. Jagadish, M. Lesk, D. Maier, J. Naughton, H. Pirahesh, M. Stonebraker, and J.

Ullman, The Asilomar Report on Database Research, AMC Sigmod Rec. 27, 4 (1998), 74–80.

8. P. Bernstein and D. Chiu, Using semijoins to solve relational queries, JACM 21 (1981), 25–40.

9. P. Bernstein and N. Goodman, The power of natural semijoins, SIAM J. Comput. 10 (1981), 751–771.

10. K. Beyer and R. Ramakrishnan, Bottom-up computation of sparse iceberg cubes and maintenance of

data cubes and summary data in a warehouse, in ‘‘SIGMOD-1999,’’ Philadelphia, PA, pp. 359–370,

1999.

11. J. Cai and R. Paige, Binding performance of language design, in ‘‘POPL-1987,’’ Montreal, Quebec,

pp. 85–97.

12. B. Chazelle, Filter search: A new approach to query processing, SIAM J. Comput. 15 (1986), 703–724.

ALGORITHM FOR RELATIONAL CALCULUS QUERIES 329
13. B. Chazelle, A functional approach to data structures and its use in multidimensional searching,

SIAM J. Comput. 17 (1988), 427–462.

14. B. Chazelle, Lower bounds for orthogonal range searching, JACM 37 (1990), 200–212; and also

JACM 37 (1990), 439–463.

15. B. Chazelle and L. Guibas, Fractional cascading: A data structuring technique, Algorithmica 1 (1986),

133–162 and 163–191 (a 2-part article).

16. P. Deshpande and J. Naghton, Aggregate aware caching for multi-dimensional queries, in ‘‘EBDIT-

2000,’’ Lecture Notes in Computer Science, Vol. 1777, pp. 168–182, Springer-Verlag, Berlin, 2000.

17. P. Deshpande, K. Ramasamy, A. Shukla, and J. Naghton, Caching multidimensional queries using

chunks, ‘‘SIGMOD-1998,’’ Seattle, WA, pp. 259–270, 1998.

18. H. Edelsbrunner, A note on dynamic range searching, Bull. EATCS 15 (1981), 34–40.

19. H. Edelsbrunner and M. Overmars, Batch solutions to decomposable search problems, J. Algebra 5

(1985), 515–542.

20. R. Fagin, Degrees of acyclicity for hypergraphs and relational database schemes, JACM 30 (1983),

514–550.

21. M. Fredman, Lower bounds on some optimal data structures, SIAM J. Comput. 10 (198), 1–10.

22. M. Fredman, A lower bound on the complexity of range queries, JACM 28 (1981), 696–706.

23. M. Fredman and D. Willard, Surpassing the information theoretic barrier with fusion trees, J.

Comput. System Sci. 47 (1993), 424–436.

24. S. Geffner, D. Agrawal, and A. Abbadi, The dynamic data cube, in ‘‘EBDIT-2000,’’ Konstanz,

Germany, pp. 237–253, 2000.

25. N. Goodman and O. Shmueli, Tree queries: A simple class of relational queries, ACM TODS 7 (1982),

653–677.

26. N. Goodman and O. Shmueli, Syntactic characterization of tree schemes, JACM 30 (1983), 767–786.

27. D. Goyal and R. Paige, The formal speedup of the linear time fragment of Willard’s relational calculus

subset, in ‘‘Algorithmic Languages and Calculi’’ (Bird and Meertens, Eds.), pp. 382–414, Chapman &

Hall, 1997.

28. S. Grumbach, M. Rafnelli, and L. Tinini, Querying aggregate data, in ‘‘PODS-1999,’’ Philadelphia,

PA, pp. 174–184, 1999.

29. A. Gupta, V. Harinarayan, and D. Quass, Aggregate query processing in data warehousing

applications, in ‘‘VLDB-1995,’’ Zurich, Switzerland, pp. 358–369, 1995.

30. V. Harinarayan, A. Rajaraman, and J. Ullman, Implementing data cube efficiently, in ‘‘SIGMOD

1996,’’ Montreal, Quebec, pp. 205–216, 1996.

31. J. Hellerstein, P. Haas, and H. Wang, On-line aggregation, in ‘‘SIGMOD-1997,’’ Tucson, AZ,

pp. 171–182, 1997.

32. C. Ho. R. Agrawal, N. Migiddo, and R. Srikant, Range queries in OLAP data cubes, in ‘‘SIGMOD-

1997,’’ Tucson, AZ, pp. 73–88, 1997.

33. S. Koenig and R. Paige, A transformational framework for the automatic control of derived data, in

‘‘VLDB-1981,’’ Cannes, France, pp. 306–318, 1981.

34. D. Lee and F. Preparata, Computational geometry: A survey, IEEE Trans. Comput. 33 (1984),

1072–1101.

35. D. Lee and C. Wong, Worst-case analysis of region and partial region searches in multi-dimensional

binary search trees and balanced quad trees, Acta Inform. 9 (1977), 23–29.

36. Y. Lien, On the equivalence of database models, JACM 29 (1982), 333–362.

37. G. Lueker and D. Willard, A data structure for dynamic range queries, Inform. Process. Lett. 15

(1982), 209–213.

38. K. Mehlhorn, ‘‘Data Structures and Algorithms,’’ Vol. 3, Multidimensional Searching and

Computational Geometry, Springer-Verlag, Berlin, 1984.

39. K. Mehlhorn and S. Naher, Dynamic fractional cascading, Algorithmica 5 (1990), 215–241.

40. I. Mumick, D. Quass, and B. Mumick, Maintenance of data cubes and summary data in a warehouse,

in ‘‘SIGMOD-1997,’’ Tucson, AZ, pp. 100–111, 1997.

41. W. Nutt, Y. Sagiv, and S. Shuring, Deciding equivalence among aggregate queries, in ‘‘PODS-1998,’’

Seattle, WA, pp. 214–223, 1998.

DAN WILLARD330
42. M. Overmars, ‘‘The Design of Dynamic Data Structure,’’ Lecture Notes in Computer Science, Vol.

156, Springer-Verlag, Berlin, 1983.

43. M. Overmars, Range searching on a grid, J. Algebra 9 (1988), 254–275.

44. M. Overmars and J. v. Leeuwen, Two general methods for dynamizing decomposable searching

problems, Computing 26 (1981), 155–166.

45. G. Ozsoyoglu, Z. Ozsoyoglu, and V. Matos, Extending relational algebra and calculus with set-valued

and aggregate functions, ACM TODS 25(4) (1996), 8–13.

46. R. Paige, ‘‘Formal Differentiation}A Program Synthesis Technique,’’ UMI Research Press, 1981

(277pp); revised Ph.D. thesis, NYU, June 1979, which appeared in Courant CS Rep 15, pp. 269–658,

September 1979.

47. R. Paige, Applications of finite differencing to database integrity control and query/transaction

optimization, in ‘‘Advances in Database Theory,’’ (H. Gallaire, J. Minker, and J. M. Nicolas, Eds.),

Vol. 2, pp. 171–210, Plenum Press, New York, 1984.

48. R. Paige and F. Henglein, Mechanical translation of set theoretic problem specifications into efficient

RAM code}A case study, J. Symbolic Comput. 4(2) (1987), 207–232.

49. C. Papadimitriou and M. Yannakakis, On the complexity of database queries, J. Comput. System Sci.

58 (1999), 407–427.

50. S. Rao, A. Badia, and D. Van Gucht, Providing better support for a class of decision support queries,

in ‘‘SIGMOD-1996,’’ Montreal, Quebec, pp. 217–227, 1996.

51. N. Rousspoulos, Y. Kotidis, and P. Rousspoulos, Cubetree: Organization of an bulk incremental

updates on the data cube, in ‘‘SIGMOD-1997,’’ Tucson, AZ, pp. 89–99, 1997.

52. Y. Sagiv and O. Shmeuli, Solving queries by tree projections, ACM TODS 18 (1993), 487–511.

53. S. Tsur, J. Ullman, S. Abiteboul, C. Clifton, R. Motwani, S. Nestorov, and A. Rosenthal, Query

flocks, a generalization of association-rule mining, in ‘‘SIGMOD-1998,’’ Seattle, WA, pp. 1–12, 1998.

54. S. Tsur and C. Zaniolo, LDL: A logic based data language, in ‘‘VLDB-1986,’’ Kyoto, Japan,

pp. 75–90, 1986.

55. J. Ullman, ‘‘Database and Knowledge Base Systems,’’ Vols. I and II, Computer Science Press,

Rockville, MD, 1989.

56. P. Vaidya, Space time tradeoffs for orthogonal range queries, in ‘‘STOC-1985,’’ Providence, RI,

pp. 169–174, 1985.

57. M. Vardi, The complexity of relational query languages, in ‘‘STOC-1982,’’ San Francisco, CA,

pp. 137–146, 1982.

58. M. Vardi, On the complexity of bounded-variable queries, in ‘‘STOC-1995,’’ Las Vegas, NV, pp. 266–

276, 1995.

59. D. Willard, ‘‘Predicate-Oriented Database Search Algorithms,’’ Harvard Ph.D. dissertation, May

1978, published in the Garland Series of Outstanding Dissertations in Computer Science.

60. D. Willard, Efficient processing of relational calculus expressions using range query theory, in

‘‘SIGMOD-1984,’’ Boston, MA, pp. 160–172.

61. D. Willard, New data structures for orthogonal queries, SIAM J. Comput. 14 (1985), 233–253.

62. D. Willard, On the application of sheared retrieval to orthogonal range queries, in ‘‘1986

Computational Geometry Conference,’’ pp. 80–90, 1986.

63. D. Willard, Multidimensional search trees that provide new types of memory reductions, JACM 34

(1987), 846–858.

64. D. Willard, Lower bounds for the addition-subtraction operations in orthogonal range queries,

Inform. Comput. 82 (1989), 45–64.

65. D. Willard, Quasi-linear algorithm for processing relational calculus expressions, in ‘‘PODS-1990,’’

Nashville, TN, pp. 243–257, 1990.

66. D. Willard, Optimal sampling residues for differentiable database problems, JACM 38 (1991),

104–119.

67. D. Willard, Applications of range query theory to relational database selection and join operations, J.

Comput. System Sci. 52 (1996), 157–169.

68. D. Willard, Examining computational geometry, Van Emde Boas trees and hashing from the

perspective of the fusion tree, SIAM J. Comput. 29 (2000), 1030–1049.

ALGORITHM FOR RELATIONAL CALCULUS QUERIES 331
69. D. Willard and G. Lueker, Adding range restriction capability to dynamic data structures, JACM 32

(1985), 597–617.

70. M. Yannakakis, Algorithms for acyclic database schemes, in ‘‘VLDB-1981,’’ Cannes, France,

pp. 82–94, 1981.

71. A. Yao, On the complexity of maintaining partial sums, SIAM J. Comput. 14 (1985), 277–288.

72. C. Yu, M. Ozsoyoglu, and K. Lam, Optimization of distributed tree distributed queries, J. Comput.

System Sci. 29 (1984), 409–445; in ‘‘IEEE-Compsac-1979,’’ pp. 306–312, 1979.

73. M. Zaharioudakis, R. Cochrane, G. Lapis, H. Pirajesh, and M. Urata, Answering complex SQL

queries using automatic summary tables, in ‘‘SIGMOD-2000,’’ Dallas, TX, pp. 105–116, 2000.

74. C. Zaniolo, ‘‘Analysis and Design of Relational Schemata for Database Schemes,’’ Ph.D. dissertation,

1976. Available as Tech Report UCLA-Eng-7669.

75. C. Zaniolo, Design and implementation of a logic based language for data intensive applications, in

‘‘Proceedings of the 5th Symposium on Logic Programming,’’ Chicago, IL, pp. 1666–1687, 1988.

76. Y. Zhao, P. Deshpande and J. Naughton, An array-based algorithm for simultaneous multi-

dimensional aggregates, in ‘‘SIGMOD-1997,’’ Tucson, AZ, pp. 159–170, 1997.

	1. INTRODUCTION
	2. GENERAL FRAMEWORK
	3. FOUR EXAMPLES OF E-8 ENACTMENT PROCEDURES
	4. NOTATION AND EXAMPLES OF RCS SEARCHES
	5. RCS OPTIMIZATION METHODOLOGY
	6. SIGNIFICANCE OF RESULTS
	APPENDIX A: PROOF OF FACT
	REFERENCES

