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An ability to decode semantic information from fMRI spatial pat-
terns has been demonstrated in previous studies mostly for 1
specific input modality. In this study, we aimed to decode semantic
category independent of the modality in which an object was pre-
sented. Using a searchlight method, we were able to predict the
stimulus category from the data while participants performed a
semantic categorization task with 4 stimulus modalities (spoken
and written names, photographs, and natural sounds). Significant
classification performance was achieved in all 4 modalities. Modality-
independent decoding was implemented by training and testing the
searchlight method across modalities. This allowed the localization of
those brain regions, which correctly discriminated between the cat-
egories, independent of stimulus modality. The analysis revealed
large clusters of voxels in the left inferior temporal cortex and in
frontal regions. These voxels also allowed category discrimination in
a free recall session where subjects recalled the objects in the
absence of external stimuli. The results show that semantic infor-
mation can be decoded from the fMRI signal independently of
the input modality and have clear implications for understanding the
functional mechanisms of semantic memory.
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Introduction

Modern theories about conceptual representation share the
view that object properties are stored throughout the brain,
with specific perceptual or action-related information stored
in corresponding sensory and motor systems. Our knowledge
of an object includes its visual features, which will be rep-
resented in the brain regions that analyze shape and color, its
manner of moving, represented in the brain regions that
respond to a particular kind of movement, its taste, involving
gustatory areas, and so forth (Riddoch et al. 1988; Martin
2007; Patterson et al. 2007; Mahon and Caramazza 2009). At
the same time, the majority of authors agree that these distrib-
uted semantic representations can be directly accessed from
different kinds of input (Marinkovic et al. 2003; Bright et al.
2004; Price 2004; Kircher et al. 2009; Price 2010; Pobric et al.
2010), i.e. when either a word, a picture, or a characteristic
sound refers to an object.

According to modern theories, amodal functionality plays a
key role in semantic retrieval (Price 2004). Areas involved in
semantic retrieval are taken to represent converging infor-
mation from multiple modalities and assumed to correspond to
high-level object representation. Neuroimaging studies have
implicated a number of brain regions as being involved in
semantic tasks regardless of input modality. These are ventral

occipitotemporal cortex (Chao et al. 1999; Buckner et al.
2000), posterior middle temporal gyrus (MTG) (Vandenbulcke
et al. 2007; Kircher et al. 2009), anterior temporal lobe
(Vandenberghe et al. 1996; Patterson et al. 2007), middle
frontal gyrus (MFG) (Vandenberghe et al. 1996; Kircher et al.
2009; Van Doren et al. 2010), and left inferior frontal gyrus
(IFG) (Bright et al. 2004). As yet, there is a large variation in
the effects reported in neuroimaging studies, and there is no
definitive anatomical or cognitive model of semantic proces-
sing. More knowledge is necessary at the level of neural
coding of concepts. That is, what is the common pattern of
brain activity across stimulus modalities and how similar are
activity patterns in different individuals?

In this study, we addressed the questions stated above by
means of multivariate pattern analysis (MVPA) of functional
magnetic resonance imaging (fMRI) data. This approach is
also referred to as “brain decoding.” In 2001, Haxby demon-
strated that the category of a viewed object could be identified
from the fMRI signal in the ventral visual pathway (Haxby
et al. 2001). Since then, extensive work has been carried out
on detecting and classifying patterns of activation in response
to visual stimuli (Cox and Savoy 2003; Kamitani and Tong
2005; Haynes and Rees 2006; Reddy and Kanwisher 2007;
Shinkareva et al. 2008; Shinkareva et al. 2011). In the auditory
modality, the ability to decode different speech sounds has
also been demonstrated (Formisano et al. 2008; Dasalla et al.
2009). Some studies addressed decoding of the semantic cat-
egory of visually presented words (Just et al. 2010, Shinkareva
et al. 2011), or drawings of objects with captions (Mitchell
et al. 2008). Thus, an ability to decode the spatial patterns of
fMRI signal associated with object semantics using unimodal
means of object presentation has been shown before.

MVPA allows for a direct test of the correspondence
between patterns of brain activity when stimuli are presented
in different modalities by determining whether a decoding
algorithm is able to generalize across modalities. Furthermore,
MVPA can be used for mapping patterns of brain activity. A
popular approach to pattern localization is to analyze the
brain volume with a multivariate searchlight (Kriegeskorte
et al. 2006). In this approach, a multivariate statistic is com-
puted in the spherical neighborhood of each voxel as the
searchlight sphere moves through the measured volume. The
multivariate statistic across spheres allows for detecting non-
smooth, but nevertheless functionally localized patterns and
thus composes a map of task-related activity in the brain.

Evaluation of the possibility to decode semantic infor-
mation from different stimulus modalities is also relevant for
the development of brain–computer interfaces (BCIs). In
BCIs, brain activity is measured and used directly to operate
devices such as computers, wheelchairs, or prostheses
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(Wolpaw et al. 2002; van Gerven et al. 2009). BCIs are being
developed to aid communication and improve the quality of
life of people suffering from, e.g., speech impairments. State-
of-the-art methods for BCI speech communication involve
recording signals from motor cortex involved in speech and
translating them into articulation commands that drive a
speech synthesizer (Brumberg et al. 2010). Yet, developing a
BCI that directly transforms neuronal activity underlying the
selection of a particular concept into a speech output is a fas-
cinating challenge for cognitive neuroscience. In this context,
identification of the neural signature of modality-independent
object representations would be an important stepping stone.

In this study, we applied a support vector machine (SVM)
(Vapnik 2000) searchlight technique in a semantic category-
decoding paradigm. Subjects performed a semantic categoriz-
ation task with 2 semantic categories—animals and tools,
based on 4 types of stimuli: written names, spoken names,
photographs, and natural sounds. In addition to the runs with
presented stimuli, there was a free recall run in which subjects
were required to recall, or imagine, objects of different cat-
egories. We trained the SVM to predict the stimulus category
in each of the 4 modalities. We also implemented cross-modal
classification by training and testing the SVM across modal-
ities. Both for unimodal and for cross-modal decoding, we
analyzed the distribution of SVM prediction accuracies
throughout cortex. Finally, we demonstrated that brain
regions that allowed modality-independent decoding could
predict semantic category in the free recall session.

Materials and Methods

Subjects
Fourteen native Dutch speakers (2 males, 18–27 years of age, 1
left-hander) participated in the study. Data from 3 additional subjects
exhibiting head motion beyond 3.0 mm were excluded. All subjects
reported that they did not suffer from any neurological disorders and
gave written informed consent prior to the experiment in accordance
with the guidelines of the local research ethics committee.

Stimuli
Entities of 2 semantic categories (animals and tools) were presented
in 4 modalities: verbal auditory (spoken Dutch words recorded
digitally at 16 bits with a sampling rate of 44.100 Hz; 20 animal and
20 tool names), verbal visual (written Dutch words, white letters on a
black background; 20 animal and 20 tool names), nonverbal visual
(colored photographs; 20 animal and 20 tool photographs), and non-
verbal auditory (natural sounds; 15 tool sounds and 15 animal vocali-
zations). The photographs and the natural sounds were obtained
from the multimodal stimulus set (Schneider et al. 2008). The exem-
plar sets in the 4 modalities were not exactly the same: for pictures
and natural sounds, the exemplars were selected with special atten-
tion to recognition rates and correct category identification, according
to the results by Schneider et al. (2008). The spoken and written
stimuli were selected such that words belonging to the 2 categories
matched for word length. The full list of experimental stimuli is avail-
able in the Supplementary Table 1.

Experimental Design
The experimental stimuli in each category in each modality were
divided over 2 subsets so that half of the exemplars made up 1 subset
(see Supplementary Table 1). Stimuli from 1 subset were presented in
1 block. Within a block, each stimulus was presented 2 or 3 times in
succession. Stimulus duration was 400 ms for pictures, written words,
and natural sounds. The duration of spoken words ranged from 426

to 1196 ms (M = 795ms, SD = 162 ms). A fixation cross was shown on
screen during the auditory presentation. Stimuli were followed by a
blank screen with a random duration between 1000 and 1200 ms. The
duration of 1 block was 40 s, and the blocks were separated by 10 s
of fixation.

Each subset of stimuli was presented 4 times during the exper-
iment but the order of exemplars was randomized upon each next
presentation of the block. The order of exemplars was different
across all participants.

Subjects were instructed to judge whether each stimulus within a
block was semantically consistent with the others. They had to
respond upon appearance to out-of-category exemplars. The out-of cat-
egory exemplars were distributed randomly in the presentation. In fact,
50% of the blocks did not contain any out-of-category exemplars, 44%
contained 1 out-of-category exemplar, and 6% contained 2 such exem-
plars. All out-of-category exemplars were vehicles, musical instruments,
or sport objects. Subjects made responses by pressing a button with
the index finger of the dominant hand. The experiment finished with 2
free recall blocks: in each of them, the name of a category appeared on
screen for 2 s, followed by 40 s of a blank screen with a fixation cross.
Subjects were instructed to recall covertly all the entities from the
probed category that they had seen during the experiment.

FMRI Data Acquisition
Subjects were scanned with a Siemens 3T Tim-Trio MRI-scanner,
using a 32-channel surface coil. We used a parallel-acquired
inhomogeneity-desensitized (PAID) fMRI sequence (Poser et al.
2006). That is, images were acquired at multiple TEs following a
single excitation. The following acquisition parameters were used
TE1 = 9.4 ms, TE2 = 21.2 ms, TE3 = 33 ms, TE4 = 45 ms; TR = 2.28 s.
Scans covered the whole brain with 35 slices of 3 mm thickness, slice-
gap of 17%; voxel size 3.5 × 3.5 × 3.5 mm3; field of view 224 mm;
echo spacing 0.5 ms. The PAID multiecho sequence entails broad-
ened T �

2 coverage. Because T �
2 mixes into the 4 echoes in a different

way, the estimate of T �
2 is improved. A whole-brain high-resolution

structural T1-weighted MPRAGE sequence was performed to charac-
terize subjects’ anatomy (TR = 2300 ms, TE = 3.03 ms, 192 slices with
voxel size of 1 mm3, field of view 256 mm), accelerated with GRAPPA
parallel imaging.

FMRI Data Preprocessing
The first preprocessing step entailed the combination of images ac-
quired at multiple TEs with a contrast-to-noise ratio weighting ap-
proach (Poser et al. 2006) using a homemade MATLAB script
(MATLAB R2008b, The MathWorks, Inc., Natic, MA). Subsequent pre-
processing of the fMRI data was performed using SPM8 (Welcome
Trust Centre for Neuroimaging, University College London, UK). The
combined EPI volumes were realigned and spatially normalized to
Montreal Neurological Institute space without changing the voxel
size. Subsequently, for each subject, a linear model was created, con-
taining the head motion parameters and a set of cosine basis func-
tions. The cosine basis functions captured the low-frequency drifts in
the data with a cutoff at 448 s. After model estimation, the resulting
residual images were used for further processing.

For the classification, residual images from all volumes collected
between 6 s after block onset and 6 s after block offset were selected
(correcting for the hemodynamic lag). Images were averaged with a
sliding window of 5 images to increase signal-to-noise ratio. A gray
matter probability mask was created using a template structural
image. Voxels with a gray matter probability exceeding 0.5 were in-
cluded in the searchlight analysis.

FMRI Data Analysis
Statistical analysis was performed using MATLAB R2008b (The Math-
Works, Inc., Natic, MA) and FieldTrip, an open source Matlab toolbox
for the analysis of neuroimaging data (Oostenveld et al. 2011). We
used a multivariate searchlight technique together with a linear SVM
classifier to decode object category (Fig. 1A). The searchlight sphere
was centered on each gray matter voxel in turn and the classification
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accuracy and significance were computed at the local spherical neigh-
borhood of the voxel. The radius of the searchlight sphere was 2.5
voxels (diameter of 17.5 mm) such that each sphere comprised 33
voxels. Classification accuracy (proportion of correctly classified
trials) for each sphere was assigned to the sphere’s central voxel, in
order to produce accuracy maps. The resulting accuracy maps were
then smoothed with an 8-mm Gaussian kernel.

The following unimodal classification tests were performed: 1)
classification with only picture trials, 2) classification with only
natural sound trials, 3) classification with only spoken word trials,
and 4) classification with only written word trials. In all unimodal
tests, the classifier was trained and tested on the data from different
presentation blocks, in which the presented stimuli belonged to
different subsets. That is, the testing phase always included unfamiliar
category members, which is a crucial ingredient for inferring abstract
category representation from MVPA (Vindiola and Wolmetz 2011).
The procedure was subsequently repeated with the testing and train-
ing subsets interchanged. The results from the 2 validation runs were
averaged to produce a single estimate of classification accuracy.

Finally, the generalization test across all modalities was performed.
In this test, the classifier was trained on data belonging to 3 input
modalities while data belonging to the remaining modality was
retained for subsequent validation. The validation procedure was
repeated 4 times such that each of the modality-specific data subsets
was used once for the validation. The results from the validations
were averaged to produce a single estimate of generalization
performance.

Significance of the classification outcome at the single-subject level
was assessed with a permutation test. The classification accuracies
were obtained for 100 samples with random permutations of the class
labels. The P value was defined as the fraction of samples for which
the accuracy was greater than or equal to the accuracy obtained using
the correct labeling. While shuffling the labels, we kept track of the

partitioning of the data arising from the cross-validation. That is, the
labels were permuted within the partitions of the dataset used to
build up each fold (Pereira et al. 2009). Importantly, we also kept
track of the original block structure of the experiment. The labels
were shuffled not between individual volumes but rather between
entire blocks. In that way, we took into account within-block corre-
lations of the fMRI data.

Statistical Group-Level Analysis
Consistency across subjects was accessed with a binomial test. For
each searchlight sphere, we calculated the number of significant out-
comes (P < 0.01 in the permutation test) across 14 subjects. Then, we
tested the significance of that observed number with a binomial test
under the assumption that the probability of a sphere to be significant
in a random subject was 0.01. Thus, we produced an estimate of sig-
nificant performance of a sphere across subjects under the null
hypothesis that the observed number of successful outcomes was due
to false positives. In case of rejection of the null hypothesis, activity
patterns within a sphere were taken to be informative for the
animals–tools classification across participants.

After thresholding, the resulting statistical maps (group-level bino-
mial test, P < 0.001, FDR-corrected) were used to identify clusters of
interest. The maps were transformed into binary images with all sig-
nificant voxels assigned to 1. Clusters of significant voxels were ident-
ified as the connected components in the 3D binary representation.
The resulting clusters were overlaid with the original accuracy maps,
and in each of the clusters, the anatomical location of the voxel with
maximal classification accuracy (averaged across subjects) was ident-
ified. Anatomical labels were derived from the SPM Anatomy Toolbox
(Eickhoff et al. 2005).

The left-handed participant was also included in the group analy-
sis. Before including this participant, we ascertained that there was

Figure 1. (A) Searchlight technique used for decoding object category. The accuracy of the SVM classification was computed in the spherical neighborhood of each voxel as the
searchlight sphere moved through the measured volume, probing over 15.000 voxels in total. Resulting accuracy maps were smoothed, thresholded, and used for the group-level
analysis. (B) Results of the post hoc test showing averaged classification accuracies across 14 subjects for 4 modalities. Selection of voxels for classification was based on the
generalization test. (C) Distribution of the classification accuracies from the searchlight maps in 1 representative subject. Results of the unimodal and the cross-modal tests are
shown. The central mark is the median; whiskers extend to maximal and minimal accuracy values. Black dots indicate the significance threshold (P< 0.01 in the permutation
test). (D) Distribution of the classification accuracies from averaged searchlight maps from 14 participants. Black dots indicate mean significance threshold (P<0.01 in the
permutation test) across 14 participants.
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no significant difference in classification performance between this
participant and the others. Furthermore, the patterns emerging in the
group-level analysis did not change appreciably, regardless of
whether or not this participant was included.

Generalization to the Free Recall Session
An SVM classifier was trained on the data from actual stimulus presen-
tation and then tested on the recall data. Voxels for this analysis were
selected individually for each subject. All voxels belonging to the
spheres that had shown significant performance (P < 0.01) in the gen-
eralization across modalities were used to train the classifier. Given
the selected voxels, the classifier was trained on the data from each
individual modality (4 separate tests) and subsequently tested on the
recall session. In addition, the classifier was trained on the combined
data from all modalities and tested on the recall session.

Behavioral Analysis
A 2-way analysis of variance was used to test for the differences in the
experimental task performance during the blocks of different categories
and modalities. This analysis was performed using PASW Statistics 18,
Release Version 18.0.0 (SPSS, Inc., 2009, Chicago, IL). This analysis in-
cluded behavioral data from 13 participants because responses from 1
participant were not recorded due to a hardware error.

Results

Behavioral Results
A significant main effect of modality on the response time
was found, F(3,371) = 17.8, P < 0.001. Participants responded
faster to out-of-category items during picture blocks
(M = 0.715 s, SD = 0.15) than during written word blocks
(M = 0.861 s, SD = 0.15), spoken word blocks (M = 1.026 s,
SD = 0.16) and sound blocks (M = 1.160 s, SD = 0.19). When
interviewed after the scanning session, all participants re-
ported that the sound blocks represented the most difficult
task. This, together with reported response time results,
suggests that the task was not of equal difficulty among the
modalities. No significant effect of category on response time
(F(1,371) = 0.8, P = 0.35) and no significant interaction (F
(3,371) = 0.402, P = 0.751) was found.

Searchlight Results
The classification accuracies obtained in the whole-brain
searchlight analysis are shown in Figure 1. Panel B shows dis-
tribution of the accuracies in the searchlight maps of 1 repre-
sentative subject, and Panel C shows the distribution resulted
from averaging the maps from 14 subjects. When averaged
voxel-by-voxel across subjects, the accuracy values deviate
less from chance level. Extremely low values cancel out when
averaging, whereas above-chance values persist in the aver-
aged maps. This indicates that accurate classification was not
only possible in individual subjects, but that the same voxels
return high classification accuracies across subjects.

For visual object presentations, the group-level statistical
analysis of the searchlight maps replicated previous findings,
showing categorical differences in regions of the ventral
visual pathway (bilateral middle and inferior occipital gyri
(IOG), bilateral inferior temporal gyri (ITG), see Fig. 2A and
Table 1). Categorical responses in the ventral visual pathway
were robust and reproducible across individuals.

For the presentation of natural sounds, the group-level
analysis identified category-specific patterns of activation in

primary auditory cortex, specifically, bilateral posterior
superior temporal gyri (STG). These patterns can be explained
by acoustic differences between the sounds of the 2 categories.
Significant clusters in the right hemisphere extend toward the
middle temporal and inferior parietal gyri. Additionally, the
analysis revealed consistent differential response in bilateral
superior frontal gyri (Fig. 2B and Table 1).

In the searchlight classification analysis, both with spoken
and written words, a set of voxels in the bilateral STG was
identified (Fig. 2C,D), although for written words only few
voxels in the left hemisphere survived the threshold. Further,
for spoken words, the analysis revealed differentiating voxels
in the frontal lobes (right MFG, right SFG, right orbital gyrus,
left IFG).

As is evident in Figure 2, in all 4 within-modality tests,
group-level statistics revealed larger significant clusters in the

Figure 2. Results of the searchlight analysis, showing discriminability between
animals and tools in the within-modality tests. The color represents the P values
resulting from the group-level statistical analysis. (A) Results for picture-based
classification. (B) Results for natural sound-based classification. (C) Results for
spoken word-based classification. (D) Results for written word-based classification.
The maps in panels A, B, and C are thresholded at P< 0.001, FDR-corrected; for
written words presentations (D) the map is thresholded at P<0.01, FDR-corrected,
because no clusters survived the more stringent threshold.
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right rather than in the left cerebral hemisphere. One might
conclude that the right hemisphere contributes more strongly
to categorization task than the left hemisphere across all mod-
alities. However, inspection of within-modality-activation
maps from individual subjects showed no prevalence of the
right hemisphere in the number of significant voxels. Most
likely, the hemispherical asymmetry emerges in the group-
level analysis because the category-responsive patterns were
more spatially focused and more consistent across partici-
pants in the right hemisphere. Therefore, more voxels could
have passed the group-level statistical test.

Figure 3 shows the statistical map obtained in the general-
ization test. The localization results are listed at the bottom of
Table 1. The cross-modal searchlight mapping revealed a
large group of voxels with maximal accuracy in left ITG. The
cluster partly extends to a number of adjacent brain areas,
such as left FG, left ITG, left MTG, and left IOG. The
second-largest cluster of voxels was identified frontally, cover-
ing a large portion of the right IFG and MFG. Further, 2 sig-
nificant clusters of voxels were identified in the left IFG.
Finally, smaller clusters were found in the right FG, left
angular gyrus, and right cerebellum.

The analysis did not show a one-to-one correspondence
between the areas involved in unimodal and cross-modal cat-
egory discrimination. This is not surprising given that the stat-
istical sensitivity of the unimodal and cross-modal tests was

different. Figure 1B illustrates the effect of the different
thresholds applied in the cross-modal and unimodal tests,
showing that the classifiers’ predictions in the cross-modal
test were less variable than in the unimodal tests. This is due
to the fact that the cross-modal test used many more exem-
plars for both training and testing. With an increase in the
number of test trials, the significance threshold decreases
because, given a large number of trials, even classification
performance that is slightly above chance level does not occur
often in a permutation sample.

To further test the functional involvement of the identified
cross-modal areas, we performed a post hoc analysis, where
an SVM classifier was trained and tested for each of the 4
modalities, using the voxels that had been identified in the
cross-modal test (Fig. 1D). As in the whole-brain within-
modality analysis, the classifier was always tested on unfami-
liar category exemplars. The classifier indeed performed
above chance level in each of the 4 modalities, showing that
these regions were involved in unimodal category discrimi-
nation. The performance is, however, not high enough to
pass the threshold in the unimodal tests.

Free Recall Test
As an additional task, at the very end of the experiment, sub-
jects were asked to recall all the exemplars of both categories

Table 1
The results of the searchlight analysis

Modality Size X Y Z Location P

Pictures 637 48 −70 −1 Right middle temporal gyrus 1.89E−15
199 −40 −56 −15 Left fusiform gyrus 3.23E−11
164 −47 −81 −1 Left middle occipital gyrus 9.24E−06
26 −43 −63 10 Left middle temporal gyrus 9.24E−06
13 45 −21 45 Right postcentral gyrus 1.86E−07
12 −22 −95 17 Left middle occipital gyrus 9.24E−06
11 13 −98 3 Right calcarine 9.24E−06

Sounds 249 62 −46 −1 Right middle temporal gyrus 9.24E−06
21 −57 −25 10 Left superior temporal gyrus 9.24E−06
20 −43 −25 6 Left superior temporal gyrus 1.86E−07
19 55 −49 45 Right inferior parietal gyrus 9.24E−06
16 27 42 38 Right superior frontal gyrus 9.24E−06
15 −19 4 69 Left superior frontal gyrus 9.24E−06
12 24 14 62 Right superior frontal gyrus 9.24E−06

Spoken words 838 66 −14 3 Right superior temporal gyrus 2.85E−13
386 31 53 −11 Right middle orbital gyrus 1.86E−07
107 −50 0 −8 Left superior temporal gyrus 3.23E−11
54 −61 −28 10 Left superior temporal gyrus 9.24E−06
47 −8 60 24 Left superior medial frontal gyrus 9.24E−06
39 −43 25 20 Left inferior frontal gyrus 9.24E−06
23 6 32 45 Right superior medial frontal gyrus 9.24E−06
15 24 −28 17 Right thalamus 9.24E−06
14 6 53 41 Right superior medial frontal gyrus 9.24E−06
13 45 11 −32 Right temporal pole 9.24E−06
11 −43 42 −1 Left inferior frontal gyrus, p. triangularis 9.24E−06
11 −1 18 17 Left anterior cingulate 9.24E−06

Written words 114 59 −32 6 Right superior temporal gyrus 9.24E−06
All 301 −43 −53 −11 Left inferior temporal gyrus 3.23E−11

250 34 39 −8 Right inferior orbital gyrus 3.35E−04
46 31 −42 −18 Right fusiform gyrus 3.35E−04
44 −43 −70 27 Left angular gyrus 3.35E−04
27 31 −70 −50 Right cerebellum 9.24E−06
27 38 32 3 Right inferior frontal gyrus, p. triangularis 3.35E−04
17 −40 39 10 Left inferior frontal gyrus 9.24E−06
12 3 −70 −18 Right cerebellum, vermis 3.35E−04
11 −40 7 10 Left inferior frontal gyrus, p. opercularis 9.24E−06

After thresholding the group-level statistical maps, clusters of significant voxels were identified. A threshold of P< 0.001 was chosen in all cases except for the written words and for the generalization
across modalities. For the written words and for the generalization, a threshold of P< 0.01 was chosen since, for those modalities, no clusters survived the more stringent threshold. All thresholds were
FDR-corrected. In each of the resulting clusters, the voxel with maximal classification accuracy (averaged across subjects) was identified. For each cluster, the table shows the cluster size as well as the
anatomical location and label of the identified voxel. For this voxel, the P value obtained in the group-level test is given. Only clusters larger than 10 voxels are listed in the table.
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they had seen during the experiment. We assessed how well
the classifier that had been trained on the data from each indi-
vidual modality or on the combination of modalities would
predict the category of entities in the recall session. Results of
this test are shown in Figure 4. Voxels that had shown signifi-
cant performance in the generalization were used for the
analysis in all the modalities. The average classification accu-
racies and the standard error of the mean in this test were
0.56 ± 0.06, 0.65 ± 0.06, 0.56 ± 0.06, and 0.60 ± 0.07 for classi-
fiers trained on pictures, sounds, spoken words, or written
words, respectively. Finally, when trained on the combination
of all modalities, and tested on the free recall data, the classi-
fier performed at 0.67 ± 0.05.

In this test, we observed a large variation in classification
performance across subjects. One cause of this variation is the
low number of exemplars in the test set in this analysis. The
recall session only consisted of 2 blocks of 40 s each. There-
fore, the number of volumes available for testing the classifier
in this condition was relatively low. Classification accuracies
deviated considerably from chance level, and even very high
accuracies obtained in some participants were not statistically
reliable. Nevertheless, Figure 4 illustrates, that, on the whole,
across the group of 14 subjects, the free recall prediction accu-
racies in most of the tests were above chance level. The accu-
racies obtained from the group were significantly higher than
chance level (right-tailed t-test, P < 0.01), when trained on the
combination of the data from all modalities. This indicates
successful object category decoding during free recall.

Discussion

In the present study, we investigated the possibility to decode
semantic category (animals vs. tools) from fMRI spatial pat-
terns using an SVM searchlight technique in a setting where
stimuli were presented using 4 different input modalities. Sig-
nificant decoding performance was achieved, both within and

across different input modalities. Furthermore, the employed
searchlight technique allowed localization of those brain
regions that were involved in successful decoding across sub-
jects. A free recall test showed that these brain regions even
allowed decoding of semantic category in some subjects in
the absence of external stimuli.

Overall, the unimodal results in the present study confirm
previous work on animal–tool dissociations in the brain. Evi-
dence has accumulated that visual presentation of these
object categories elicit distinct patterns of neural activity in
regions that mediate object recognition, notably the ventral
occipitotemporal processing stream (Martin 2007; Op de
Beeck et al. 2008). In a series of studies, Chao et al. (1999,
2002) found greater activity in the lateral fusiform gyrus (FG)
for animals than for tools stimuli. In contrast, the medial FG
was more active for tools than for animals. In posterior lateral
temporal cortex, enhanced activity in left posterior MTG and
inferior temporal sulcus in response to tools was reported.
These results have been replicated in a number of later
studies (reviewed by Martin and Chao 2001; Martin 2007). Im-
portantly, recent studies have reported similar animal-tool dis-
tinctions in semantic decision tasks with verbal stimuli,
namely written objects’ names (Devlin et al. 2005; Hauk et al.
2008) and spoken objects’ names (Noppeney et al. 2006).
Only few studies have investigated dissociations in processing
of animal and tool sounds. Tranel (Tranel et al. 2003; Tranel
et al. 2005) demonstrated modulation of the activation in the
ventral inferior temporal cortex when naming sounds. Other
neuroimaging studies showed a left posterior MTG focus for
tool sounds and bilateral middle STG focus for animal sounds
(Lewis et al. 2005; Doehrmann and Naumer 2008). In the
latter 2 studies, the authors suggest that the region of middle
STG is more sensitive to physical attributes of the sounds,
whereas posterior MTG operates on higher processing levels
and supports lexical-semantic processing.

For the 2 verbal modalities—spoken and written words,
the searchlight technique revealed large clusters of category-
discriminative voxels in bilateral middle and posterior STG—a
region that supports lexical-phonological processing (Hickok
and Poeppel 2007). Although the discriminative patterns that
resulted from the group-level analysis seem to be right

Figure 4. Free recall test performance. The averaged classification accuracies across
14 subjects are shown. Selection of voxels for classification was based on the
generalization test. The classifiers have been trained on the data from 1 modality, or
on the combination from all modalities (see captions below the graph) and tested on
the free recall data. Error bars indicate standard error of the mean. P values obtained
in a right-tail t-test against 0.5 are shown above each bar.

Figure 3. Results of the searchlight analysis, showing discriminability between
animals and tools in the generalization across modalities. The color represents the P
values resulting from the group-level statistical analysis, thresholded at P<0.01,
FDR-corrected. (A) Whole-brain view. (B) Multiple slices view. Locations of the axial
sections are illustrated in the bottom row.
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dominant, this is likely due to the fact that the responses were
more variable across participants in the left rather than in the
right hemisphere.

The novelty of our research lies in demonstrating that the
semantic category of a presented stimulus can be decoded not
only using different input modalities, but also by generalizing
the decoding across modalities. Our cross-modal classification
results directly demonstrate that the left ITG, FG, and pMTG
display a common pattern of activation for concrete objects,
regardless of whether objects are presented visually, auditory,
or verbally. This implies that neuronal circuits in these
regions support the representation of semantic knowledge by
integrating information originating from different input
streams.

Shinkareva et al. (2011) applied a multivariate classification
approach to identify the category of presented stimuli (dwell-
ings vs. tools) and demonstrated the ability to generalize the
classifier between 2 modalities (pictures and written words).
To our knowledge, it is the only previously published study
that showed generalization of a classifier across modalities. A
direct comparison between the study of Shinkareva et al.
(2011) and the present study is problematic as different signal
analysis approaches were used. In Shinkareva et al. (2011),
the modalities were compared at a level of distributed pat-
terns of activations, whereas the present study examined local
patterns. By analyzing a single brain region at a time, Shinkar-
eva et al. (2011) revealed a large number of regions in which
voxels were diagnostic for the semantic category in a similar
way across the 2 modalities. On contrary to these results, in
the present study, the whole-brain searchlight analysis ident-
ified a very distinctive cluster of common activation for the
different modalities in the left ITG (Fig. 3).

The integrative role of the left ITG and ventrolateral occipi-
totemporal cortex has been suggested by previous studies.
The left fusiform region supports complex visual processing
and, for a long time, it has been assumed that the visual
differences between stimuli of different categories fully
account for the category-related patterns of activation in this
region. However, accumulation of evidence in recent years
suggests that this region is sensitive to semantic manipula-
tions (Vandenberghe et al. 1996; Moore and Price 1999;
Martin and Chao 2001; Price et al. 2003; Devlin et al. 2005;
Wheatley et al. 2005; Martin 2007; Birn et al. 2010; Van Doren
et al. 2010).

A number of authors considered left posterior MTG as a
key node in the system of storage and retrieval of lexical se-
mantic information in the brain (Hagoort et al. 2009; Snijders
et al. 2009; Binder and Desai 2011). In a recent study, Wei
et al. (2012) demonstrated that the amplitude of spontaneous
low-frequency fluctuations in the BOLD signal in the left
pMTG is highly correlated with individual variability in con-
ceptual processing efficiency, assessed with behavioral tests.
The behavioral tests included picture and sound object
naming and picture associative matching. The left pMTG was
the only brain region in which the spontaneous neuronal
activity was significantly correlated with performance in all
tests, regardless of stimulus modality (Wei et al. 2012).

Studies on audio–visual integration further support the
suggested integrative role of the left posterior MTG and FG.
This research focuses on how information from several
sensory modalities is integrated to form a coherent whole. In
a natural perceptual situation, a complex visual stimulus is

paired with a matching auditory counterpart, for instance, the
picture of a car and its corresponding engine sound. Neuroi-
maging studies have intended to capture this process of
audio–visual integration, either by contrasting unimodal and
bimodal stimuli or by contrasting congruent and incongruent
bimodal stimuli. In a number of studies, posterior MTG has
been shown to be important for integrating multimodal infor-
mation about complex stimuli (Beauchamp et al. 2004;
Naumer et al. 2009). Activation in the left FG has also been
found in studies on audio–visual integration (Adams and
Janata 2002), as reviewed by Doehrmann et al. (2008).

The generalization tests also revealed a number of frontal
areas involved in the semantic task, regardless of input
modality, which indicates abstracting away from low-level
perceptual features to higher-level conceptual processing.
These results are consistent with previous research. Lesions of
the dorsal and medial frontal lobe cause transcortical motor
aphasia (Luria and Tsvetkova 1968; Alexander 1997), a syn-
drome with characteristic nonfluency in spontaneous speech
and word-finding problems, especially in cases when a large
set of responses is possible (Robinson et al. 1998). Patients
are often able to name objects relatively normally but are
unable to generate a list of words within a category when no
cue is presented (Luria and Tsvetkova 1968; Freedman et al.
1984). Neuroimaging studies on semantic fluency, which is an
ability to generate word lists, have shown activation in the
superior–anterior part of the MFG (Birn et al. 2010).

The present results strongly agree with a hierarchical neu-
roanatomical model of semantic processing as recently pro-
posed by Binder and Desai (2011). In short, this model
describes semantic processing as an interactive continuum,
where low-level modality-specific representations interact
with higher-level convergence zones. The convergence zones
in the inferior parietal lobe and much of the ventral and
lateral temporal lobe bind representations from multiple mod-
alities and encode an abstract, schematic level of concept rep-
resentation. Binder further proposes that prefrontal regions
similar to those identified in the current study control top–
down activations and are necessary for self-guided, goal-
directed semantic retrieval (Binder et al. 2009; Binder and
Desai 2011).

Successful decoding of semantic category independent of
input modality also points toward the possibility of develop-
ing a BCI which is driven exclusively by concept selection.
The experimental scenario of the final analysis, where we as-
sessed whether the classifier could identify semantic category
in free recall, is close to a desired real-life situation of BCI
usage. In this analysis, we compared decoding performances
of different classifiers: each classifier was trained on the data
from 1 modality and tested on the free recall data, and voxels
that allowed for generalization across 4 modalities were used.
The above-chance performances obtained in this test indicate
the possibility of decoding semantic information from the
brain, during nondirected free recall, in the absence of any
acoustic or visual cues. The improvement of prediction accu-
racy when trained on the combination of all modalities con-
firms that the patterns of the neuronal activations captured by
the generalization test reflect conceptual representations that
abstract away from specific sensory attributes of presented
stimuli.

Summarizing, our study has shown that decoding of se-
mantic category independent of input modality is a feasible
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goal. Our results lead us to conclude that left inferior tem-
poral cortex in combination with right middle and superior
frontal cortex and left inferior frontal cortex could be a viable
substrate for such decoding. The present results offer an op-
portunity to decode semantic information from brain signals
and pave the way for understanding the mechanisms of
storage and retrieval of semantic information. In this view,
the present study is especially interesting given that categori-
cal discrimination is one of the basic principles of organiz-
ation of semantic knowledge in humans (Mandler 2004).

Supplementary Material
Supplementary material can be found at: http://www.cercor.
oxfordjournals.org/.
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