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ABSTRACT

The recovery of input signals in a frequency selective fad-
ing channel is a problem of great theoretical and practical
interest. In this paper, we present several new blind algo-
rithms that utilize second order statistics for multichannel
equalization. The algorithms are based on the subspace ex-
traction of a preselected block column of the channel convo-
lution matrix. For multiuser system, user signal separation
can be achieved based on partial information of the com-
posite channel response. The equalization algorithms do
not rely on the signal and noise subspace separation and
therefore tend to be more robust to channel order estima-
tion errors.

1 INTRODUCTION

In digital communication systems, intersymbol interference
(ISI) and multiuser interference (MUI) are limiting factors
for the performance of the receiver. In order to achieve re-
liable and high-speed communication, channel equalization
is an important technique to overcome the e�ect of ISI and
MUI.
Traditional channel equalization is accomplished by uti-

lizing training sequences. Because of the time variant na-
ture of the channel, training sequences should be transmit-
ted periodically. Blind channel equalization does not re-
quire a training sequence. Generally at the receiver, only
the output sequence and some a priori statistical informa-
tion on the input sequence are utilized. Such methods o�er
potential improvements in system capacity by eliminating
the training overhead.
A class of second order statistical (SOS) algorithms [1]-[5]

have been presented that rely on the Single Input Multiple
Output (SIMO) system model. SOS methods require that
the channel diversity be available in terms of multiple an-
tennae or over-sampled signals from channels with excess
bandwidth. One class of channel equalizations are achieved
by �rst identifying the channel, then equalizing the channel
based on the estimated channel. A number of SOS based
channel equalizations are done based on some known chan-
nel identi�cation algorithms [1]-[5]. However, some exist-
ing subspace based blind channel identi�cation algorithms
[1][2][4][5] tend to be sensitive to channel order estimation
errors. When channel order is unknown, accurate channel
order estimation is di�cult to achieve in noisy environment
and poor channel identi�cation and equalization results are
likely.
In this paper, we will develop a family of new direct zero-

forcing blind channel equalizers. Our goal is to develop
equalization algorithms that are less sensitive to channel
order estimation errors. We will present SOS methods that
do not need to identify the unknown channel but instead
generate equalizer parameters based on the zero-forcing cri-
terion for SIMO and MIMO systems.

For SIMO systems, the zero-forcing blind equalizer can
be obtained directly based on second order auto-correlation
functions of the channel output signals. For MIMO systems,
our zero-forcing equalizer can minimize the ISI and reduce
the dynamic MIMO system into an almost memoryless sig-
nal mixing system. Source separation can be applied to the
equalized MIMO system outputs if additional information
(such as the pulse-shaping �lter or the CDMA spreading
code) is known. The implementations of these algorithms
are simple and e�ective.

2 PROBLEM FORMULATION

Consider a baseband QAM linear system with N users. As-
suming that the N user channels are all linear and causal
with impulse response fhu(t); u = 1; 2; � � � ; Ng, the received
signal can be written as

x(t) =

NX
u=1

1X
k=�1

sk;uhu(t�kT )+w(t); sk;u 2 Au; (2.1)

where T is the symbol baud period and A is the input sig-
nal constellation of user u. The channel input sequences
fsk;ug are i.i.d. with unit variance and are independent
for di�erent users. The noise w(t) is stationary, white, and
independent of channel input sequences fsk;ug.
Note that hu(t) is a \composite" channel impulse re-

sponse that includes transmitter and receiver �lters as well
as the physical propagation channel response. In a typical
multiuser system, multiple channels of observations will be
available from multiple sensors. If J subchannels (sensors
or antennae) exist, then x(t), hu(t) and w(t) are all J � 1
vectors. However, for simplicity of presentation, we assume
J = 1 throughout this paper. The objective of blind chan-
nel equalization is to demodulate the input sequence sk;u
from the output sequence x(t), given only some a priori
statistical knowledge of sk;u for unknown channels fhu(t)g.
Suppose that the channel is oversampled by p, then the

corresponding discrete MIMO system model is

xn =

NX
u=1

1X
k=�1

sk;uhu[n� kp] + wn;

where p is the number of output samples derived from over-
sampling (assuming that there is excess bandwidth). Sup-
pose that fhu(t)g has joint �nite support [0; Th] spanning
m0+1 integer baud periods. Let superscript f:g0 represent
matrix transpose. By de�ning notations

sk
�

= [sk;1 sk;2 : : : sk;N ]0; (2.2)

s[k]
�

= [s0k s0k�1 : : : s0k�m0�M+1]
0;

wk
�

= [wkp wkp+1 : : : wkp+p�1]
0;



w[k]
�

= [w0k w0k�1 : : : w0k�M+1]
0;

hu[i]
�

= [hu[ip] hu[ip + 1] � � � hu[ip+ p� 1]]0;

Hi
�

= [h1[i] h2[i] : : : hN [i]];

it is evident that

xk
�

=

264
xkp
xkp+1
...

xkp+p�1

375 =

m0X
i=0

Hisk�i +wk: (2.3)

Let Mp be the number of sampled channel outputs to be
collected in a block, where M is called the smoothing lag
or the equalizer memory. We form an Mp � (m0 +M)N
block Toeplitz matrix H, which we call channel convolution
matrix as,

H =

26664
H0 H1 : : : Hm0

0 : : : 0

0 H0 H1 : : : Hm0

. . .
...

...
. . .

. . .
. . .

. . .
. . . 0

0 : : : 0 H0 H1 : : : Hm0

37775 :

(2.4)
With these notations, a sampled channel output signal vec-
tor with length Mp can be written as

x[k]
�

=

264
xk
xk�1
...

xk�M+1

375 = Hs[k] +w[k]: (2.5)

This output signal block will be used to determine the zero-
forcing blind equalizer parameters.

3 COLUMN SUBSPACE ESTIMATION

Once we have the received signals, the key to getting the
zero-forcing equalizer is to estimate the column subspace
of a preselected block column in the channel convolution
matrix.

3.1 Basic Assumptions
We shall assume from here that H has full column rank and
is thus identi�able[1][2]. A more relaxed condition is for H
to have full column rank after removing all zero columns.
Assume that both the channel input signal s[k], and channel
noise w[k] are white with zero mean, and the input signal
s[k] has unit variance. The auto-covariance matrices of s[k]
and w[k] are

Rs(i) = Efs[k + i]s[k]Hg = JiN ; (3.1)

Rw(i) = Efw[k + i]w[k]Hg = �2wJ
ip (3.2)

In the above equations, �2w is the noise variance. Ef:g is the
expectation operator, f:gH denotes the complex conjugate
transpose operator and I is an Mp�Mp identity matrix. J
isMp�Mp and is called the Jordan matrix whose �rst sub-
diagonal entries below the main diagonal are unity while all
remaining entries are zero.

3.2 Useful Matrix Properties
For notational convenience, we de�ne

J0 = I; J�1 = J
0

: (3.3)

We also de�ne that

IiN
�

=
h
0 0
0 I(Mp�iN)�(Mp�iN)

i
Mp�Mp

(3.4)

and

�IiN
�

=

"
0iN�iN 0 0

0 IN�N 0
0 0 0

#
Mp�Mp

; (3.5)

where IiN is an identity matrix except for its �rst iN zero
diagonal entries and �IiN is all zero except for unit entries
on its (iN + 1) to (i+ 1)N -th diagonal elements. It can be
directly shown that

IiN = JiNJ�iN and �IiN = IiN � I(i+1)N : (3.6)

One important observation is that since H has full col-
umn rank, the following equation is true [9][10]

HH(HHH)#H = I; (3.7)

where f:g# denotes the pseudoinverse operator.

3.3 Column Subspace Estimation
In this subsection, we will present two methods to esti-
mate the column subspace matrix that can be used for zero-
forcing blind equalizer. We exploit second order statistics of
the channel output signal contained in its auto-covariance
matrices

Rx(i)
�

= Efx[k + i]x[k]Hg = HJiNHH + �2wJ
ip (3.8)

For simplicity, we �rst assume that the channel noise is
absent such that

Rx(i) = HJiNHH and Rx(0) = HHH : (3.9)

The noise parameter �2w can be estimated [3] and subtracted
from the covariance matrices.

3.3.1 Method A

Observe that from the expression of Rx(i) and (3.7),

Di
�

= Rx(i)Rx(0)
#Rx(i)

H

= HJiNHH(HHH)#H(JiN)HHH (3.10)

= HIiNH
H : (3.11)

Similarly,

Di+1
�

= Rx(i+ 1)Rx(0)
#Rx(i+ 1)H = HI(i+1)NH

H :(3.12)

Then we can form another Hermitian matrix from

�Di
�

= Di �Di+1 = H(IiN � I(i+1)N )H
H (3.13)

= H�IiNH
H

= H(i)H(i)H (3.14)

It is readily seen that matrix �Di has rank N .

3.3.2 Method B

Notice that

Rx(i+ 1) = HJ(i+1)NHH

= Rx(1)Rx(0)
#Rx(i): (3.15)

Similarly, Rx(i + 1) = Rx(i)Rx(0)
#Rx(1). From this re-

lationship, we get another equivalent formula for �Di as
follows

�Di = Rx(i)Rx(0)
#[Rx(0)�Rx(1)Rx(0)

#Rx(1)
H ]

[Rx(i)Rx(0)
#]H ; (3.16)



4 BLIND ZERO-FORCING EQUALIZATION

Recall from (2.5) that x[k] = Hs[k]+w[k]. Denote the zero-
forcing equalizer as G = [g1 g2 � � � gN ] which satis�es

GHx[k] = GHHs[k] +GHw[k]

= sk�i +GHw[k]: (4.1)

(4.1) implies that the zero-forcing equalizerG should satisfy
GHH = [0 0 : : : 0 I 0 : : : 0], where 0 is an N �N
all zero matrix and I is an N �N identity matrix and is on
the i-th block column position. To �nd G, it is equivalent
to

max
G

GH�DiG subject to GHRx(0)G = I: (4.2)

The above maximization problem is the generalized eigen
problem [9] where we need to solve for the N eigenvectors
of �DiG = �Rx(0)G corresponding to the N largest gen-
eralized eigenvalues of �.
Like other SOS based equalizers, the proposed zero-

forcing equalizer generates a memoryless mixture of N user
signals that need further separation. The actual zero-

forcing equalizer bG obtained from (4.2) is the true G with
a matrix ambiguity, i.e.,bG = GQH ; (4.3)

in which Q = [q1 q2 � � � qN ] is an N � N unitary
matrix. As a result, the output of the blind equalizer in

the absence of channel noise is simply bzk�i = bGHx[k] =
QGHx[k] = Qsk�i. This memoryless mixing matrix is
intrinsic to the multiple input system [8] and can not be
resolved unless additional information is available.

4.1 Performance Analysis and Optimum Delay Se-
lection

It should be noted that the zero-forcing equalizer is designed
for mixture signal estimate sk�i at a speci�c delay i. Thus,
di�erent delay can result in di�erent MSE. For practical
purposes, the minimum MSE criterion can be utilized to
select the best delay i for the equalizers.
Let the estimated input symbol with delay i be bsk�i =

GHx[k]. The MSE for the zero-forcing equalizer is

MSEzf(i)
�

=

NX
j=1

Efjsk�i;j � bsk�i;j j2g
=

NX
j=1

Efjsk�i;j � gHj (Hs[k] +w[k])j2g

= �2w

NX
j=1

jjgj jj
2; (4.4)

The optimum delay can be found by argmin
i

NX
j=1

jjbgj jj.
5 PARTIAL KNOWLEDGE BASED MUI

CANCELLATION

The detector obtained from (4.2) cancels ISI. For multiuser
system, the MUI still exists. To cancel MUI, notice that
in many communication systems, part of the composite sig-
nal channel, such as the pulse-shaping �lter, or the CDMA
spreading code is known to the receiver. We would like to
cancel the MUI based on the known �lter response f(t) for

signal separation. Without loss of generality, we assume the
user of interest is user 1. Our task is to �nd g1 so that the
ISI and MUI contained in gH1 x[k] is minimized.

Let f1
�

= [f1;1 f1;2 � � � f1;n2 ]
0 be the discrete-time

representation of f(t). The sampled channel im-

pulse response becomes hu[i] =
Pi

k=0
c1;i�kf1;k, where

c1
�

= [c1;1 c1;2 � � � c1;n1 ]
0 is the unknown channel re-

sponse. Now de�ne B1
�

= ZF where

Z
�

=

264
0 : : : 0 Ip�p
0 : : : Ip�p 0
...

...
...

Ip�p : : : 0 0

375
Mp�Mp

(5.1)

and

F
�

=

2666666666664

f1;1 0 : : : 0

f1;2 f1;1
. . . 0

...
. . .

. . .
...

f1;n2
. . .

. . . f1;1

0 f1;n2
. . .

...
...

. . .
. . .

...
0 0 : : : f1;n2

3777777777775
(5.2)

Notice that the Wiener-Hopf equation for the multiuser
system is

Rx(0)g1 = H(i; 1) = B1c1; (5.3)

where H(i; j) denotes the j-th column in the i-th block
column of H. Based on this equation, the desired equalizer
g1 can be determined by the following three ways.

5.1 Two-Step Method (TSM)

We've already got bG = GQH in (4.3). The second step
is to determine q1. Because B?1 Rx(0)g1 = 0, where B?1
denotes the null space of B1. Then g1 = GQHq1 = bGq1.
q1 can be found by solving B?1 Rx(0)bGq1 = 0.

5.2 Direct Estimation Method (DEM)
We can also estimate c1 directly from (4.2) and (5.3). From
(5.3), we have g1 = Rx(0)

�1B1c1. c1 can be found by

maxc1 c
H
1 B

H
1 Rx(0)

�1�DiRx(0)
�1B1c1 subject to

cH1 B
H
1 Rx(0)

�1B1c1 = 1

and therefore g1 can be determined.

5.3 Parameter Weighting Method (PWM)
From (4.2) and (5.3), we can �nd g1 by

ming1 g
H
1 [Rx(0) + �Rx(0)B

?H
1 B?1 Rx(0)]g1 subject to

gH1 �Dig1 = 1;

where � is an arbitrary weight that can be chosen by the
user.

5.4 Conditions for Unique Solution
We have the following proposition on the conditions for
unique solution.

Proposition 5.1 Suppose that in addition to the condi-
tion that H has full column rank, the condition that ma-
trix [B1 H(i; 2) H(i; 3) � � � H(i; N)] has full column
rank also holds, then g1 can be uniquely determined up to a
multiplicative constant �.



Proof is omitted due to page limit.

6 SIMULATION RESULTS

In the simulations, the input data signal is i.i.d., QPSK.
The noise is zero mean, white and Gaussian. The BER is
averaged over 1500 Monte Carlo runs. First we simulate an
SIMO system. We consider a raised-cosine pulse f(t) lim-
ited in 6T with roll-o� factor 0:10 and a two-ray multipath
channel c(t) = �(t)�0:7�(t�T=3). The over sampling factor
is p = 3. We also implemented the Subspace Method (SSM)
[4] for channel identi�cation, and then apply the MMSE al-
gorithm for channel equalization. As shown in Fig. 1, when
the channel order is perfectly known, the proposed methods
perform comparably well with the SSM. When the channel
order is not exactly known as shown in Fig. 2, the per-
formance of SSM degrades drastically, while the proposed
methods are more robust to channel order estimation errors.
Next, we consider an MIMO system. We simulated the

CDMA system with 4 users. The spreading codes are

F =

24 ++��++��++��++��++��
++++����++++����++++
++++++++��������++��
+��+++����+++��+��++

35
where each row of F corresponds to one user. The chan-
nels for all users are randomly generated as [1 randn(20)].
Equal energy for all users are assumed and � is selected
to be � = 200 in PWM. The BER vs. SNR plots for
three proposed user separation methods based on method
A are shown in Fig. 3 together with the method proposed in
[6], where MMSE equalization was applied on the identi�ed
channel.

7 CONCLUSIONS

We presented a family of new blind zero-forcing channel
equalization algorithms based on the subspace estimation
of a preselected channel block column. The algorithms are
capable of generating robust equalization results without
accurate channel order estimation. They can be applied to
SIMO systems directly to remove the ISI. Their applications
to MIMO systems are simple and direct. These algorithms
are very useful in many communication systems.
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Figure 1. BER vs SNR at the outputs of the di�er-
ent equalizers for SIMO system. Data length is 350
symbols. True channel order assumed.
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Figure 2. BER vs the estimated channel order.
Data length is 350 symbols. SNR=18dB.
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Figure 3. BER vs SNR at the output of di�erent
user separation methods for MIMO system. Data
length is 350 symbols.


