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Abstract. The recent advent of Cloud Computing, inevitably gave rise to Cloud 

Robotics. Whilst the field is arguably still in its infancy, great promise is shown 

regarding the problem of limited computational power in Robotics. This is the 

most evident advantage of Cloud Robotics, but, other much more significant yet 

subtle advantages can now be identified. Moving away from traditional Robot-

ics, and approaching Cloud Robotics through the prism of distributed systems 

or Swarm Intelligence offers quite an interesting composure; physical robots 

deployed across different areas, may delegate tasks to higher intelligence agents 

residing in the cloud. This design has certain distinct attributes, similar with the 

organisation of a Hive or bee colony. Such a parallelism is crucial for the foun-

dations set hereinafter, as they express through the hive design, a new scheme 

of distributed robotic architectures. Delegation of agent intelligence, from the 

physical robot swarms to the cloud controllers, creates a unique type of Hive In-

telligence, where the controllers residing in the cloud, may act as the brain of a 

ubiquitous group of robots, whilst the robots themselves act as proxies for the 

Hive Intelligence. The sensors of the hive system providing the input and output 

are the robots, yet the information processing may take place collectively, indi-

vidually or on a central hub, thus offering the advantages of a hybrid swarm and 

cloud controller. The realisation that radical robotic architectures can be created 

and implemented with current Artificial Intelligence models, raises interesting 

questions, such as if robots belonging to a hive, can perform tasks and proce-

dures better or faster, and if can they learn through their interactions, and hence 

become more adaptive and intelligent. 
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1 Introduction 

In this paper we formulate and examine a deep learning decision-making system, 

deployed through the Robotic Applications Platform, as a means to create a hive con-

troller that will be able to learn from stimuli from different interactions, whilst outper-

forming traditional architectures. Robots, and especially humanoid robots, lack com-

putational performance, an inherent hindering property of current central processors, 

that prohibits fast and complex algorithms such as computer vision, audio processing, 

knowledge management or learning. A variety of Artificial Intelligence (AI) models, 

such as Artificial Neural Networks attempted to address this problem, giving rise to a 

variety of other fields, such as Neuro-Robotics. Yet although those models provided 

advantages, due to the fact that modern day robots are still constrained by their pro-

cessing capabilities, implementation of those models was limited and not as advanta-

geous as expected. 

And thus, whilst AI models and fields such as Deep Learning advanced, Robotics 

did not reap the benefits of those advancements. Out of this necessity for better per-

formance, spawned the field of cloud robotics. Its premise is quite simple: delegate 

intensive and demanding algorithms to a powerful cloud via network connectivity, 

leaving low latency crucial tasks to be handled on-board the robot. That premise is 

soundly founded upon the biological counterpart: the human neocortex, which sepa-

rates higher level cognitive functionality from lower level functions [1][2], such as 

somatosensory, proprioceptive or motor skills, which more often than not, are handled 

subconsciously, enabling higher level cognitive functions, such as learning or deci-

sion making to be performed consciously. 

The usage of Cloud Robotics (CR) offers quite a lot of advantages, and only two 

major disadvantages: network latency and difficulty in dealing with dissimilar embod-

iment across a variety of robots. Hence, the need for differentiation of what algorith-

mic controllers may reside in the cloud, and which should remain on board the robot, 

are dictated by those disadvantages. Crucial, low latency operations that deal with the 

robot's balance or physical control should remain on-board, whilst more abstract, 

higher level cognitive tasks, not important for the robot's physical control and the 

safety of the people around it, may be delegated to the cloud. 

Through examination of Moore's law with regards to the speculated performance 

of computational capabilities on robots, we can safely assume that we should not 

anticipate quantum leaps in the processing capability on robots any time soon. 

Whereas recent multi-core trends, as well as massively parallel algorithms have seen 

an increase from general purpose graphic processing compute (    ), the energy 

consumption limitations and energy storage of robots, add more value to higher 

bandwidth and lower latency networking technology, rather than to mobile computing 

processors. The only exception to this general rule could be the advent of neural-

based chips (duped as Neurochips) which are expected within the next 5 years. Due to 

all the aforementioned reasons, it is justified to invest time and research in distributed 



controllers that rely on networking, rather than to invest on singleton models and 

architectures that require increased computational performance on-board the robot. 

2 Related Research 

2.1 Cloud Robotics 

Previous research in Cloud Robotics is somewhat limited. The most notable project is 

RoboEarth [3] which focused on an internet for robots and a knowledge sharing on-

tology for robots. Only after 2011 does research appear related to Cloud Robotics 

[4][5]. Albeit such a new field may appear revolutionary, it is based upon existing 

models and technologies, proven and thoroughly evaluated, many of which are im-

ported from Computer Science and Artificial Intelligence. A wide array of existing AI 

models, previously used in robotics, such as Neuro-Robotics, Finite State Automata 

(FSM), Evolutionary Computation, Heuristic controllers and such, are all still usable 

and implementable, through a much more elastic, large and distributed platform. Be-

cause of that, previous research still relevant and related to the proposed Hive Intelli-

gence model should be mentioned: Swarm Intelligence and Distributed Systems. Dis-

tributed systems as a Computer Science field are used for the purpose of the hive, and 

are hereinafter represented as the operation of Swarm Intelligence on robots and the 

cloud. Ant and Bee colonies, as sub-fields of Swarm intelligence have been re-

searched, as artificial and natural systems that give rise to higher intelligence as a 

collective system of lower-lever intelligence. 

On the contrary, the hybridisation between cloud, centralised and decentralised in-

telligent agents we propose, revolves around a ubiquitous disembodied intelligence 

based on the cloud, enabling the swarm. Our work, as part of the Robotic Applica-

tions Platform (RAPP) focuses on that hybridisation, described as Hive Intelligence, 

which aims to bridge complex and massively parallel algorithms for the purpose of 

learning, in ensemble with swarm intelligence. The accumulated collective interac-

tions of the physical robots, aim to stimulate and teach the Queen, the agent residing 

on the cloud, to further enhance the collective intelligence, a concept never attempted 

before. With the exception of FSM and Heuristic controllers, Hive intelligence shares 

common components of Neuro-Robotics and Swarm Intelligence. 

2.2 Neuro-Robotics 

Neuro-Robotics as a sub-field combines Neuroscience, Robotics and AI, and has 

mostly focused on locomotion, motor control, learning and action selection. Research 

in the past two decades, examined biologically plausible mechanisms derived from 

the nervous system[6], behaviour-based robotics dependent upon stimuli [7], whereas 

more recent research investigated brain-centric architectures [8][9][10] emphasising a 

brain-like processing system. In a similar fashion, our design portrays a partial pro-

cessing system, which behaves as the central brain of the hive, whilst at the same 

time, permitting localised processing centres in physical robots. The architecture of 



Hive Intelligence does employ state-of-the-art Deep Networks, in order to enable the 

hive agent to learn efficiently and accurately, albeit not limited to it. 

2.3 Swarm Intelligence 

Swarm Intelligence, distinctly different from Neuro-Robotics, investigates the collec-

tive behaviour of decentralised self-organised artificial agents. The pioneers of the 

field, Gerardo Beni and Jing Wang, introduced the concept [11] in 1989. There exists 

a plethora of algorithms belonging to Swarm Intelligence, such as Particle Swarm 

Optimisation [12], Ant Colony Optimisation [13] and Artificial Bee Colony [14], 

amongst others. 

In stark contrast to the research in swarm intelligence, we're not examining optimi-

sation techniques through simulated swarms, but rather we propose to utilise a variety 

or robots, as part of a swarm, that may or may not be self-organising. This rather dif-

ferent approach, has been examined in the recent past [15][16], yet focused on the 

behaviour of the swarm. The title Hive Intelligence does not indicate any similarity 

with the Bee Colony algorithms, but with the organisation of a Bee Hive, in an effort 

to emphasise the key role of a central superior entity within the swarm. 

Whilst Hive intelligence does not inhibit or prohibit collective behaviour or self-

organisation, thereby collective behaviour is not the main focus. Providing a new type 

of non-biologically plausible artificial hive intelligence, focuses at enabling central-

ised surrogacy for intensive learning and memory, in order to create a more adaptive 

swarm. 

3 The Hive 

Hive Intelligence as a system is based upon the Robotics Application Platform 

(RAPP), which utilises an array of cloud-based services and robotic applications. 

Whereas traditional robotic controllers use heuristics or FSM for action-decision in 

order to execute a corresponding action or procedure, the hive design allows for 

greater flexibility, adaptation, learning and adjustment, mostly due to the fact that 

input received from robots is not tied to a specific action or decision, but may be in-

terpretable as different actions or decisions, depending on previous training and the 

context. 

Therefore, the hive is made up of the core-agent residing on the cloud, and the 

swarm agents, residing in robots. In that effect, the core-agent in the cloud is the 

queen, which is responsible for most action-decisions, through the execution of exist-

ing robotic applications, smaller controllers that perform a distinct or characteristic 

operation. However, to assume that the queen acts simply as a black box is erroneous, 

because the agent can utilise previous knowledge, ontological, visual or audible, as 

well as concepts derived from categorisation or clustering via multiple robot-users 

interactions, in order to evaluate and estimate what the output to a specific user input 

should be. 



3.1 Input Preprocessing 

In the most abstract sense, the queen acts as an i/o neural module, which is dependent 

on other algorithms to process its input, and other algorithms which will execute its 

output (equation 1). 

      ))      ) (1) 

The input   may be pre-processed by algorithms (function     )), and then propa-

gated into the queen agent (function  ). The output of the queen agent  , is the activa-

tion of a rapp or rapps    with the parameters  . The input pre-processing is multidi-

mensional and belongs to different domains, and we assume that the type of input 

provided by robot stimuli is known, and hence we can infer which functor should pre-

process it.  

If for example the input provided is audio (voice), then the speech-recognition 

functor    should produce partial input to  . Similarly, if the input given is video, the 

computer-vision functor    should produce a partial input to  . Therefore, the input to 

the queen agent is the encoded information produced as output from the sensor func-

tors   . Whereas the state space of the input   may be infinite, the output produced by 

the pre-processing functors   , is finite, since the pre-processing functors may be 

unable to process  , correctly classify it or group it. 

Yet, in the event that neural-based functors, acting as approximators are employed, 

such as Restricted Boltzmann Machines [17] (RBM), and thereby producing probabil-

ities of what an object is or what a sound means, represented as encoded input to  , 

we can hypothesize, that near-infinite or very large processing capabilities should 

arise, based upon a brain-like deep-network. 

Encoding of the input provided to the visible layer of the RBM is a sparsely en-

coded representation of heterogeneous symbolic representations, in combination with 

non-symbolic metric data. We chose to do so, due to the relative advantageousness of 

sparse encoding when compared to localised or distributed encoding [18][19]. In ad-

dition to the aforementioned reason, distributed encoding of symbolic representations 

(such as words, object names or location titles) could possibly hinder the ability of the 

RBM to correctly classify input patterns. 

3.2 Neural Architecture 

The queen agent  , is a neural-based Deep Belief Network (DBN) implemented as 

a Deep Boltzmann Machine [20] with great representational power, whilst relying on 

probabilistic and statistical neural properties as derived from the Boltzmann architec-

ture (fig. 1). 

Furthermore, we chose to enhance the DBN that is the queen agent, by utilising 

similar characteristics of Convolutional Neural Networks [21] (CNN), the most nota-

ble being the interconnectivity of smaller sub-networks in order to extract subsets or 

features of the given input. In that sense, the agent queen is a hybrid system of two 

different Deep Learning designs, in order to be able to approximate, learn and identify 

important features and estimate which should be the best action-decision. However, 



we do not allow interconnectivity between Deep RBM as CNN do, but rather isolate 

stacks of Deep RBM, which are tasked with the propagation of a specific type of in-

put. Only at the final Deep RBM, acting as the bridge between the other stacks, we 

allow information to be universally propagated. 

 

Fig. 1. Deep Boltzmann Network 

 

Fig. 2. Demonstration of Multi-Stack Deep Boltzmann Network 

The overall design, uses the stacked or deep RBM model, whilst separating deep 

layers   . The input       , as discussed in (3.3), may be symbolic or metric infor-

mation, and as such, different Deep RBM handle each category, as shown in figure 

(2), in layer   . During feature extraction and subspace sampling in   , the categories 

across different stacks of different kinds of input, are not interconnected.  The last 

layer    interconnects the categorical Deep RBM, into one universal Deep RBM, that 

approximates for the given input across sets of Deep RBM, known patterns and their 

associated actions-decisions. 

Another feature, studied in both biological and artificial systems, is the small world 

characteristics [22] with a smaller amount of neurons, connected by a much higher 

amount of synapses. As with Restricted Boltzmann Machines, no connections exist 

within the neurons of a layer, and the square boxes in figure (2) represent a Deep 

RBM. The stochastic and representative abilities of the RBM, in combination with 



their fast and easy training due to Contrastive Divergence and Gibbs sampling, proven 

to work well [17][23], provide sound reasons for employment of this architectural 

model. 

The Neural Model uses Hinton's simple RBM training technique [24], as shown in 

equation (2). 

     )   ∑               ∑              ∑            (2) 

The Hopfield configuration     ), where       are the states of visible unit   and 

hidden unit  , respectively.       are their biases and     is the weight between them. 

The network assigns a probability by using the energy function, shown in equation 

(3). 

     )  
 

 
       ) (3) 

Where   is calculated by summing all visible and hidden pairs, shown in (4). 

  ∑        )
    (4) 

The learning rule, when simplified, is shown in (5). 

       〈    〉     〈    〉     ) (5) 

Constant   is the learning rate. The network is assumed to be initialised in a ran-

dom state, and using Gibbs sampling, whereas updating uses Contrastive Divergence 

[23][24]. Models other than the Binary RBM as described by Hinton, include the 

possibility of using a Sparse RBM [25], or a Gaussian-Bernoulli RBM [26]. The 

learning rate may be adjustable (as mentioned in [24]) and the hidden to visible neu-

ron ratio may also be adjusted, through trial and error, in order to fine-tune perfor-

mance. 

3.3 Encoding and Input Types 

Per the Restricted Boltzmann Machine literature, all input will be min-max normal-

ised between 0 and 1. Whereas a 0 could be assumed to be a false or absent encoding, 

and a 1 could be assumed to be a true or present encoding, real non-binary values may 

also be used, in order to encode arithmetic values. That distinction is important, and is 

the main driving reason behind the distinct categorisation of Deep RBM, as different 

categories, may have different domains and thus, different encodings. As already 

discussed in section (3.1), encoding is sparse, and in some cases it may be auto-

encoded. 

A synopsis of the input to the Queen mechanism is given in order to best portray 

the ambiguity of information processed by the system. The possible input types to the 

learning system, denoted as        are: 

         : Objects in view range detected. This information can be encoded as the 

object's ontology class, thus indexed by sparse encoding. 



         : Description of the location of robot and users, such as Kitchen, Living 

Room,... etc. The possible locations will exist as classes in the ontology, also in-

dexed via an absent or observable encoding. 

          : Temporal information such as time of day, day of week, month etc. 

Integral type, min-max normalised. 

           : Sentiment analysis of the words (e.g. sentiment analysis pre-processing 

of the verbal user input). This input can be encoded with three classes: Positive, 

Neutral, Negative.  Symbolic binary encoding is used in this scenario. 

         : A tokenised sentence, from speech-to-text pre-processing. This subset is 

sparsely encoded, where the number of inputs will be equal to the cardinality of the 

lexicon. 

      : Recently or previously executed application sparsely encoded by a unique 

identifier. 

           : Cognitive condition based on pre-processed measurements, or hard-

coded information. This encoding is both sparse and real-valued, as different types 

of cognitive values may represent psychological phenomena, such as anxiety, 

stress, depression, etc. 

3.4 Output Decision System 

The output of the Queen agent is actions or decisions. Yet the output of the Deep 

RBM model is an approximation of similarity to known patterns, e.g., known states. If 

we describe all the input attributes to the queen agent as a Markov state   , then an 

action   , is the choice to execute a RAPP on the robot or cloud. That action is not the 

output of the Deep RBM, but knowledge, discovered through random or heuristic 

searches and direct robot-user interactions. Thus, the association of an action    to a 

specific state   , also describes the relation of the        to        . 

Whilst the Deep RBM serves as an approximation for similar input, actions are not 

discovered or necessarily tied to a specific action or output. Typically, such approxi-

mations perform equally well to heuristic controllers or FSM, but their advantages are 

performance (especially during reconstruction in RBM), but most importantly, feature 

extraction and partial reconstruction, hence, plasticity in decision-making and adapta-

tion to new or unforeseen states and events. 

Whereas an FSM or Heuristic controller need to be explicitly programmed or have 

defined output or actions for a specific input, the proposed design can deal, in a prob-

abilistic manner, with unknown input-states, partial input-states or noisy input-states, 

and thus approximate with minimal algorithmic searches, the best known course of 

action. 

Another interesting aspect of the suggested architecture it that the queen agent can 

produce many different outputs by approximating input to output, in a probabilistic 

manner. Therefore, the hive contains a RAPP suggestion mechanism, regardless of 

previous experience of an individual robot or the robot swarm. Furthermore, the hive 

is able to be trained on heterogeneous problems, and through feature extraction and 

classification, detect alarming situations concerning the user. In such a scenario, aside 



from the action, as described by a RAPP suggestion or execution, the hive can alert 

medical personnel or caregivers, or even perform a rudimentary form of medical pre-

diction via previous states experienced by other robots of the swarm, even if that par-

ticular robot or user has never experienced this state. 

The actual         is a vector containing the metric similarity or the approximation 

of similarity of the input, to an already experienced pattern used during training. As 

such, in the event that a new input during reconstruction, matches with high probabil-

ity a dangerous or worrying condition, an alert may be issued by the hive. The normal 

operation is to execute the best scoring RAPP as either suggested by a heuristic con-

troller or an FSM, or as discovered via other means, such as Reinforcement learning 

[27] and  -greedy exploratory policies, which are outside the scope of this paper. 

4 Hive Training and Learning 

4.1 Information and Knowledge Management 

A basic node of the RAPP system, where the hive Queen algorithms will be exe-

cuted, is RIC, the RAPP Improvement Centre. This information scheme resides in the 

cloud and consists of the following subsystems. 

Firstly, there is an ontology component, created by the fusion of the KnowRob ro-

botic ontology (RoboEarth project) and the OpenAAL ontology, which contains con-

cepts relative to assisted or independent living. This component will be responsible 

for storing different concepts (ontology classes), their semantic relations, as well as 

aggregated instances of these classes. 

Furthermore, several general purpose services that provide access to heavy duty al-

gorithms such as Speech-to-Text audio processing, Computer Vision algorithms and 

others. These services can be called from any RApp and any information captured or 

generated by them will be stored in the RAPP cloud, and thus be available to the Hive 

intelligence. The information warehousing will follow a top-down encapsulated 

scheme, where data will be stored per RApp and per User. 

Other data stored and manipulated either by RAPP services, Rapps, or the hive it-

self, is raw data, or inferred data, such as statistical information and calculated arising 

probabilities. 

4.2 Robot – User Interaction 

The actual training, employing the RIC data can be unsupervised, semi-supervised 

or even supervised through interaction. Unsupervised training may be deployed as 

feature extraction and clustering procedures, or even as HMMs (Hidden Markov 

Models) [28] for predictions concerning anticipated user actions and interactions in 

the User-Robot-Environment domain. A supervised approach includes direct input 

from the user, which indicates if the output was the desired one or in general terms 

acceptable. This is possible via robot-user vocal communication, where the robot 

obtains affirmation that the an action    is indeed the wanted output for an input state 



  , as discussed in (3.4). This is a form of direct and supervised training, as the infor-

mation collected during such an interaction, becomes in essence the data used to train 

the hive intelligence. 

A paradigm of this approach may be, information based on user-generated re-

sponses and non-intrusive observations from compliance of the end user. In the first 

scenario, the robot initiated communication, obtains a response, which when pro-

cessed by the hive agent, produces a set of viable Rapps that could be executed. In the 

latter scenario, an action (described by the execution of a Rapp) may be assumed to 

be correct, unless the user objects to the robot about its course of action. 

Seamlessly switching between both scenarios, creating a fusion of supervised and 

semi-supervised training, with resemblance to physical learning and problem-solving, 

such as the way the human mind learns by collecting unlabeled data [29]. Learning 

from interactive experience, may be a radical new approach to training robots, which 

will enable knowledge and experience re-use in the robot swarm, through the hive's 

collective memory. 

4.3 Training Procedures 

Through the robot-user interaction as described in (4.2), a variety of symbolic and 

metric data is collected, whilst the queen agent has not been trained. During this pre-

training phase, the Hive is virtually a passive system, which only observes the interac-

tions and stores data in a shared memory, employed via the RAPP Platform. At this 

phase, only FSM or heuristic controllers (cloud and robot based) are deployed. 

When deemed that enough data has been collected, from the robot-swam, via a va-

riety of interactions between different users and robots, aggregated and encoded data, 

that has already been pre-processed (see 3.1), is then trained into the Deep RBM in 

one single batch, after being sparsely encoded (see 3.3). The indexing and encoding 

procedure is not part of the training process, but rather a part of the queen agent and 

the RIC. Doing a single training session, rather than mini-batches, is based upon the 

decision to contain two identical Deep RBM in the agent's memory, each mirroring 

one another. Whilst a one-time training could take longer than mini-batch training, a 

mirroring system, will allow one RBM to function, while its copy can be updated by 

being trained with new data. 

In order to reach the decision point, where one of the Deep RBM has to be re-

trained, a statistic variance of new information, must be calculated which demon-

strates that enough new data has been recorded that is very different from currently 

existing data in the agent's memory. Whilst current implantation of the Deep RBM is 

based upon a CPU version, future versions based on      compute, should provide a 

significant reduction in training time, as experienced in recent research [30]. 

5 Work In Progress 

The described platform is currently work in progress. Parts of the RAPP platform 

are being actively developed, as is part of the Hive system. The RAPP platform is 



expected be complete within 2015, the Hive system, not being a standalone system, 

but rather relying on the rest of the RAPP platform, will also be complete within 

2015. Other machine learning models, that can be used as inference or learning mech-

anisms are also being examined, but the core of the Deep RBM is already being eval-

uated. 

 

Fig. 3. Blueprint for the Hive 

The work so far was oriented in the full specification of the overall RAPP System 

architecture (figure 3). As indicated, the RAPP System is divided in the Robot and the 

Cloud part. The Cloud part, denoted as RAPP Platform is comprised of the RApp 

Store which is indexes all available RAPPS and distributes them to the robots, the 

RIC which encapsulates the DB, the Ontology, the Services and the Hive Intelligence, 

and the dynamically allocated Cloud agents which are distributed asynchronous 

RApps executing concurrently with their robot counter-part. The Robot counter-part 

consists of a Core agent that controls the communication with the cloud and provides 

robot-specific resources to the applications, and the dynamic agents which are the 

robot-part of a RApp, and the communication layer that is responsible for all module 

interactions in the robot realm. 

The consortium's next step is the actual implementation of this system, followed by 

its actual deployment in elders suffering from mild cognitive impairment or going 

through hip fracture rehabilitation. The robots to be used are Aldebaran's NAO, a 

humanoid social robot, and ANG-Med, a robotic walking aid, manufactured by the 

INRIA science and technology institution. 

6 Conclusions 

In order to advance the research in the field of cloud-robotics beyond the current 

state of the art, we've described a hybrid system, which fuses cloud robotics, with 

Deep-Learning. This combination tackles computational limitations onboard robotics, 

knowledge and experience sharing amongst robot swarms, and highly stimulates a 



Deep-Learning-based robotic controller, which is used to process high-level decisions 

delegated by individual robots. 

We have argued and described how such a system is much more elastic and adap-

tive to robot-user interactions, and how it benefits from interactive learning, either by 

direct vocal communication with the users, or by indirect observations. Furhermore, 

in order to take a holistic approach with regards to the learning of the hive intelligent 

agent, information used to train the hive agent, is obtained across different domains, 

such as Computer Vision, Knowledge Representation, Speech Recognition, Sentiment 

Analysis and so on. Due to the heterogenous nature of the information used, we've 

described a Deep Learning model, based upon Deep RBM, but with certain biological 

characteristics. The main hypothesis of this neural design, is the ability to correctly 

classify and approximate heterogenous information provided to the hive intelligence, 

and extract features which are important, and upon which the agent will base its deci-

sions. 

Finally, the described system finds a fruitful application field in the RAPP project, 

which delivers a Robotic Application store combined with a collective knowledge 

representation and a centralised memory storage. It is unquestionable that as the 

trends indicate, the future of robotics lies in distributed cloud execution and central-

ised inference mechanisms that gather and produce knowledge in a machine friendly 

form, allowing robots to form their own digital communities. As such, the way we 

currently perceive robot software and their controllers, may be changing towards 

directions which borrow from biological systems, but enable new unique artificial 

intelligence blueprints, as hybrids of collective and centralised cybernetic controllers. 
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