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Abstract Stochastic optimization/approximation algorithms are widely used
to recursively estimate the optimum of a suitable function or its root under
noisy observations when this optimum or root is a constant or evolves ran-
domly according to slowly time-varying continuous sample paths. In compar-
ison, this paper analyzes the asymptotic properties of stochastic optimiza-
tion/approximation algorithms for recursively estimating the optimum or
root when it evolves rapidly with nonsmooth (jump-changing) sample paths.
The resulting problem falls into the category of regime-switching stochastic
approximation algorithms with two-time scales. Motivated by emerging ap-
plications in wireless communications, and system identification, we analyze
asymptotic behavior of such algorithms. Our analysis assumes that the noisy
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observations contain a (nonsmooth) jump process modeled by a discrete-
time Markov chain whose transition frequency varies much faster than the
adaptation rate of the stochastic optimization algorithm. Using stochastic
averaging, we prove convergence of the algorithm. Rate of convergence of the
algorithm is obtained via bounds on the estimation errors and diffusion ap-
proximations. Remarks on improving the convergence rates through iterate
averaging, and limit mean dynamics represented by differential inclusions are
also presented.

Keywords stochastic approximation, stochastic optimization, nonsmooth-
jump component, two-time scale, convergence and rate of convergence.
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1 Introduction

1.1 Motivation

This paper considers a class of two-time-scale stochastic optimization and
approximation algorithms for estimating a randomly evolving optimum of a
suitable function or its root. The randomly evolving optimum/root has non-
smooth (more specifically jump-varying) sample paths modeled as a finite
state Markov chain. The motivation for introducing this finite state Markov
chain stems from emerging applications in wireless communications (e.g.,
tracking fast fading channels in cognitive radio systems [9]), financial engi-
neering (e.g., modeling stochastic volatility and other market and economic
factors), discrete optimization, system identification, detection, nano tech-
nology, and optimization of a function whose noisy measurements contain a
jump component; see [1,3,4,11,13,31] among others. In these applications,
a Markov chain is used to modulate the regime switching and to model the
random environment. Typically, the system under consideration has a num-
ber of regimes or configurations nonsmoothly connected, across which the
behavior of the system is markedly different.

Due to the small step size used in the recursive computation of the se-
quence of iterates (parameter estimates), the stochastic optimization and ap-
proximation algorithms can be considered as a slow dynamical system. That
is, the iterates generated by the algorithm evolve slowly with time. Indeed,
the step size determines the adaptation rate of the algorithm. In comparison,
the Markov chain is a fast process – it varies at an order of magnitude faster
than the adaptation rate of the stochastic approximation algorithm. We fo-
cus on analyzing the behavior of the stochastic approximation/optimization
algorithm for such systems.

In general terms, our stochastic optimization problem can be posed as
analyzing the tracking behavior of a two-time-scale stochastic approxima-
tion algorithm. However unlike standard stochastic approximation problems,
there is an additional fast Markov chain parameter in the noisy measure-
ments. Because the stochastic approximation/optimization algorithm (with
a small step size) is a slow dynamic system and the parameter jump changes
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rapidly, it is virtually impossible to track the Markov parameter process using
a stochastic approximation method. Thus analyzing the behavior of stochas-
tic approximation and optimization algorithms under this scenario poses a
challenging problem. We observe, however, due to the fast variation of the
jump-changing parameter, there is no need to track the system at any given
instance since it will jump to another (Markov) state within a very short
period of time. Instead of tracking the system at any time instant, we sug-
gest to handle it using a different approach. We may treat the Markov chain
as another source of noise. As an alternative, we show that a limit system
can be obtained in which the switching is averaged out with respect to the
stationary measure. Our recommendation is: In lieu of tracking the original
system, we can concentrate on estimating the limit system.

Another example that motivates this paper is stochastic optimization
problems where noisy observations contain a fast jump component. Such
jump components may be used to model sudden changes in the system en-
vironment, for example, a Gilbert-Elliott model for a rapid channel fade in
a wireless communications system. Suppose we are interested in the follow-
ing stochastic optimization problem: Minimize a suitable (smooth) deter-
ministic function EF (x, ξn, θn) (where E denotes the expectation operator),
given noisy observations of the function values F (xn, ξn, θn) (or noisy ob-
servations of the gradient ∇xEF (xn, ξn, θn)) at suitable design points xn

with n = 0, 1, 2, . . . denoting the discrete time. Here {ξn} is a stationary
stochastic process termed “observation noise,” {θn}, independent of {ξn},
is a discrete-time Markov chain taking values in {1, 2, . . . , m0}, and having
transition matrix P ε = P + εQ (where P is irreducible and aperiodic, Q is
a generator of a continuous-time Markov chain and ε > 0 is a small parame-
ter). It is readily seen that EF (x, ξn, θn) =

∑m0

i=1 EF (x, ξn, i)P (θn = i). The
difficulty in using a stochastic approximation algorithm lies in: One needs to
track P (θn = i) of the Markov chain at each time instant n. In this paper, we
suggest a viable alternative. Instead of computing the optimal estimate (e.g.,
conditional mean) which evolves rapidly over time, we focus on asymptotic
or “near” optimality. In this setting, the instantaneous P (θn = i) is replaced
by its averaged, namely the “stationary distribution” of the Markov chain
θn. We can ignore the detailed variations, and focus on what happens in the
limit system. In many practical situations, such an approach will provide us
with approximate tracking capability or feasible estimation procedure.

Before proceeding, a remark on the analysis to be presented is in order.
Due to the time-varying characteristics and the Markovian jumps, we can-
not directly invoke the existing results in the literature of usual stochastic
approximation (SA) methods, for example, [17]. Instead, we need to start
by working out the stochastic averaging by applying a martingale problem
formulation. In this work, we first analyze the convergence of the algorithms.
Then we proceed to analyze the rates of convergence, which is handled via
the following steps. First an error bound is obtained by use of a Liapunov
function. Then the limit of a suitably scaled sequence of the estimation er-
rors is shown to be the solution of a stochastic differential equation. We
further demonstrate how the asymptotic convergence rate of the algorithm
can be accelerated using minimal window width “iterate averaging” [16]. In
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the late 1980’s and early 1990’s, the iterate averaging procedure for acceler-
ating convergence rates of stochastic approximation algorithms was proposed
by Polyak [19] (see also [20]) and developed independently by Ruppert [21].
The main idea of their approach is the use of averaging of iterates obtained
from a classical stochastic approximation algorithm with slowly varying step
sizes. Their work stimulated much of the subsequent research in this area
such as [7,22,16,27] among others.

1.2 Perspective

Bayesian Estimation versus Stochastic Approximation. To track a
fast jump changing Markovian signal, instead of using a stochastic approx-
imation algorithm (which is what this paper considers), one could use a
Bayesian Hidden Markov Model filtering algorithm [8]. Such Bayesian fil-
tering algorithms recursively compute the conditional mean estimate of the
state of the underlying Markov chain based on the observation history; see
also [12] for recursive (real time) joint state and parameter estimation for
HMMs. However, Bayesian filtering algorithms suffer from the twin curses
of modeling and dimensionality. That is, exact knowledge of noise distribu-
tion and the transition probabilities and state levels of the Markov chain
are required and the computational complexity is quadratic in the number of
states. For this reason, in many applications, for example, in wireless commu-
nications, Bayesian filtering is seldom used. In contrast, stochastic approxi-
mation algorithms are widely used although they do not exploit knowledge
of the underlying dynamics of the Markov chain to compute the estimates.
It is thus of significant interest to analyze the performance of a stochastic
approximation algorithm when the underlying parameter is jump-changing
rapidly.

Context. To give some perspective on the results in this paper, we briefly
discuss two other recent results which also deal with stochastic approxima-
tion and optimization algorithms and parameters with finite state Markovian
dynamics. If we specialize the SA algorithm to LMS (least mean squares) es-
timation and tracking, the dynamics of the true parameter considered in
this paper (modeled as a Markov chain with transition probability matrix
P + εQ, where P is a transition matrix and Q is a generator of a continuous-
time Markov chain) evolves on much faster time scale than the dynamics of
the stochastic approximation algorithm, i.e., ε = O(µγ) with 0 < γ < 1.
In comparison, the recent papers [29,31] analyze the tracking properties of
a stochastic approximation algorithm when the Markov chain dynamics of
the true parameter evolves on the same time scale, i.e., ε = O(µ), as the
stochastic approximation algorithm (with P = I used there). In [31,29], un-
like the results here, the limit dynamics of the iterates can be represented
by a Markov modulated ordinary differential equation (ODE) and the limit
of the scaled sequence of estimation errors satisfies a switching diffusion pro-
cess. In [30], we address the case where the Markov chain evolves much slower
than the dynamics of the stochastic approximation algorithm, i.e., ε = o(µ).
In that case, the limit dynamics are also captured by an ODE and the limit
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of a scaled sequence of the estimation errors is a diffusion process. The afore-
mentioned results together with findings of this paper give a characterization
of LMS type algorithms when the true parameter changes in accordance with
a Markov chain (with different scales).

1.3 Outline

The rest of the paper is arranged as follows. Section 2 presents the precise
formulation and the recursive algorithm. Section 3 is devoted to studying the
convergence of the algorithm. We derive an associated ordinary differential
equation through weak convergence analysis, in which both the observation
noise and the Markov chain are averaged out. Also provided is a bound in
terms of a Liapunov function, which leads to tightness of the iterates. This
tightness further allows us to obtain convergence to the stable point of a limit
ordinary differential equation using a stability argument. Section 4 proceeds
with the rate of convergence analysis. To ascertain the convergence rate,
we first derive a bound on the estimation errors, and then we show that a
scaled sequence of the estimation errors converges weakly to a diffusion pro-
cess through martingale averaging. Section 5 is devoted to iterate averaging.
Section 6 provides a case study on an adaptive filtering type algorithm, and
concludes the paper with further remarks.

2 Problem Formulation and Stochastic
Approximation/Optimization Algorithm

This section presents the problem formulation and the stochastic approxi-
mation/optimization algorithm. A main feature of this algorithm is that it
includes a discrete-time Markov chain. Compared with the variation of the
updates represented by the step size of the algorithm, the Markov chain is
rapidly varying. Throughout the paper, we use K to denote a generic positive
constant whose values may vary for different appearances. For z ∈ R

d×ι and
d, ι ≥ 1, z′ denotes its transpose.

2.1 Markov Chain θn

We will use the following assumption throughout the paper. It characterizes
the time-varying parameter as a two-time-scale homogeneous Markov chain
with a finite state space.

(A1) Let {θn} be a discrete-time Markov chain with finite state space

M = {1, . . . , m0}, (2.1)

and transition probability matrix

P ε = P + εQ, (2.2)
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where ε > 0 is a small parameter, P is an m0 × m0 irreducible and
aperiodic transition probability matrix, and Q = (qij) ∈ R

m0×m0 is a
generator of a continuous-time Markov chain (i.e., Q satisfies qij ≥ 0 for
i 6= j and

∑m0

j=1 qij = 0 for each i = 1, . . . , m0).

Note that the underlying Markov chain {θn} is in fact ε-dependent. Thus
it should have been written as {θε

n}. We suppress the ε-dependence for no-
tational simplicity. Also, for simplicity, suppose that the initial distribution
P (θ0 = i) = p0,i is independent of ε for each i = 1, . . . , m0, where p0,i ≥ 0
and

∑m0

i=1 p0,i = 1.
The irreducibility and aperiodicity of P imply the existence of the associ-

ated stationary distribution of the Markov chain associated with the transi-
tion matrix P . Denote the stationary distribution by ν = (ν1, . . . , νm0

). For
the Markov chain θn, denote the state probability vector pε

n by

pε
n = (P (θn = 1), . . . , P (θn = m0)) ∈ R

1×m0 , (2.3)

and denote the n-step transition probability matrix by (P ε)n. For 0 ≤ n ≤
T/ε = O(1/ε) and for T > 0, it can be shown that pε

n converges to the
stationary distribution ν, and that the time of the Markov chain θn spends
in a state i ∈ M can be approximated by νi in a suitable way. In addition,
similar results also hold for the transition matrices. These approximations
are formalized in the following lemma.

Lemma 1. Under conditions (A1), for some 0 < λ < 1, and

(i) for T > 0, and 0 ≤ n ≤ T/ε,

pε
n = ν + O(ε + λn); (2.4)

in addition, for some 0 < n0 < n,

(P ε)n−n0 = 11m0
ν + O(ε + λn−n0), (2.5)

where in (2.4) and (2.5), the bounds hold uniformly in 0 ≤ n ≤ T/ε;
(ii) for all n ≥ 0,

pε
n = ν + O(ε2n + ε + λn). (2.6)

Proof. The proof of (i) is a simplified version of that of [32, Theorem 3.11],
and the proof of (ii) is that of [32, Proposition 6.6]. 2

Remark 1. Note that in statement (i) of Lemma 1, n is chosen to be in the
range of 0 ≤ n ≤ O(1/ε), whereas in (ii), this range is removed. Assertion
(ii) will be needed in the diffusion approximation for the rate of convergence
study in Section 4.
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2.2 Stochastic Approximation/Optimization Algorithm

Let f(·, ·, ·) : R
d × R

d × M 7→ R
d, {ξn} be a sequence of R

d-valued noise
independent of the Markov chain {θn} (more precise conditions will be stated
in Section 3.1), µ > 0 be a constant (but small) step size, and xn ∈ R

d.
Consider a stochastic approximation/optimization algorithm of the form

{
xn+1 = xn + µf(xn, ξn, θn),
pε

n+1 = pε
nP ε, pε

0 = p0.
(2.7)

The first equation in (2.7) is the stochastic approximation update of the
parameter estimate xn. The second equation, denotes the evolution over time
of the state probabilities pε

n (2.3) of the Markov chain θn. For example, in
the context of the stochastic optimization problem outlined in Section 1.1,
f(xn, ξn, θn) represents the noisy gradient estimate of EF (xn, ξn, θn). Our
main motivation for considering a constant-stepsize algorithm is because we
are interested in adaptive optimization, i.e., algorithms that can track a time
varying optimal parameter; see [1,15,17] for further motivation.

Throughout the paper, we assume that the step size µ satisfies µ ≪ ε
and that ε = ε(µ) such that ε(µ) → 0 as µ → 0. That is, we assume that the
dynamics of the underlying parameter θn (the Markov chain with transition
probability matrix P ε) evolve on a time scale that is an order of magnitude
faster than the dynamics of the stochastic approximation/optimization algo-
rithm. An example of this two-time-scale behavior is obtained by choosing
ε = O(µγ) in (2.7) with 0 < γ < 1.

It is important to note that the numerical implementation of the above
algorithm does not require assumption (A1) or knowledge of the explicit dy-
namics of ξn or θn. The remainder of this paper analyzes the asymptotic
properties of (2.7) – it is in this analysis that we use (A1) and other assump-
tions listed below.

3 Convergence Analysis

This section is devoted to proving the convergence of the algorithm (2.7).
In Section 3.1, we take a continuous-time interpolation of the iterates, and
show using weak convergence methods that the limit dynamics satisfy an
ordinary differential equation. In Section 3.2, we derive a moment bound
on the discrete time iterates xn via use of a perturbed Liapunov function
approach. Finally, using a stability argument, we obtain the convergence to
the asymptotically stable point of the ODE.

3.1 Mean Dynamics: ODE Limit

Weak convergence is a generalization to function space of the concept of
convergence in distribution of random variables. Establishing weak conver-
gence of the iterates generated by the algorithm (2.7) requires verification
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of tightness, extraction of a weakly convergent subsequence, and characteri-
zation of the limit process. We will prove below that the iterates generated
by the algorithm (2.7) converge weakly (in a limiting sense made precise
below) to the trajectory of an ODE (ordinary differential equation) [17]. In
order to show this weak convergence, it is convenient to switch to continuous
time as follows: First, construct a sequence of piecewise constant continuous
time trajectories indexed by µ by interpolating the discrete time iterates xn

generated by the stochastic approximation algorithm (2.7) as:

xµ(t) = xn, t ∈ [µn, µn + µ). (3.1)

From an electrical engineering point of view, this interpolation is merely
equivalent to applying a zero-order hold circuit to the discrete time sequence
xn, resulting in the continuous time trajectory xµ(t).

Next we make the following assumptions:

(A2) The following conditions hold:
(a) For each ξ and each θ, f(·, ξ, θ) is a continuous function; there exists

f̂(·, ·) such that for each x and each θ, f̂(x, θ) = Ef(x, ξn, θ).
(b) {ξn} is a bounded stationary process taking values in R

d and being
independent of {θn}; for any m ≥ 0, as n → ∞,

1

n

m+n−1∑

k=m

Emf(x, ξk, i) → f̂(x, i) in probability (3.2)

for each x and each i ∈ M, where Em denotes the conditional ex-
pectation with respect to Fm, the σ-algebra generated by {x0, ξk, θk :
k < m, θm}.

(c) Define f : R
d → R

d as

f(x) =

m0∑

i=1

f̂(x, i)νi. (3.3)

The initial value problem

ẋ = f(x(t)), x(0) = x0 (3.4)

has a unique solution for each initial condition x0.

Assumption (A2) provides certain regularity conditions on the observa-
tion noise and the function under consideration. The noise condition (3.2) is
easily verified for a φ-mixing process since mixing implies ergodicity. Note
that with the conditional expectation presence, the condition is even weaker.
The noise condition can be further relaxed. For instance, we may assume that

f(x, ξ, θ) = f0(x, ξ̃, θ) + f1(x, θ)ξ̂ such that {ξ̃n} is a sequence of bounded
noise satisfying the conditions as in (A2), that f0(·) satisfies the conditions as
in (A2), and f1(·) is a bounded and continuous function for each i ∈ M, that

{ξ̂n} is a stationary sequence of possibly unbounded noise being independent
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of {θn} and {ξ̃n} with Eξ̂n = 0 and E|ξ̂n|
2+γ < ∞ for some γ > 0, and that

for each m,

1

n

m+n−1∑

k=m

Emξ̂k → 0 in probability as n → ∞.

Under such conditions, the subsequent convergence analysis carries over. We
use the current condition mainly for notational simplicity. To proceed, we
present a theorem that gives the mean dynamics of the iterates.

Theorem 1. Under conditions (A1) and (A2), xµ(·) converges weakly to

x(·), which is the unique solution of (3.4).

Remark 2. Its proof is divided into two parts presented in the next two
subsections. A pertinent way of carrying out the analysis is to use an N -
truncation of xµ(·) (see [17]). Since we will use such an approach in the
rate of convergence study, we simply omit the truncation step in this section
for ease of presentation. Without loss of generality, we assume that xµ(·) is
bounded throughout the rest of this section.

3.1.1 Tightness of {xµ(·)}

Use D([0,∞) : R
d) to denote the space of functions defined on [0,∞) taking

values in R
d that are right continuous and have left limits endowed with the

Skorohod topology; see [17] and the references therein. Then we obtain the
following lemma.

Lemma 2. Under conditions (A1) and (A2), {xµ(·)} is tight in D([0,∞) :
R

d).

Proof. We use the tightness criteria [14, p. 47]. For any δ > 0 and 0 < s ≤ δ,

lim
δ→0

lim sup
µ→0

E|xµ(t + s) − xµ(t)|2 = 0. (3.5)

In fact,

xµ(t + s) − xµ(t) = µ

(t+s)/µ−1∑

k=t/µ

f(xk, ξk, θk). (3.6)

Then by the boundedness of xn (see Remark 2) and hence the boundedness
of f(xn, ξn, θn),

E|xµ(t + s) − xµ(t)|2= E
(
µ

(t+s)/µ−1∑

k=t/µ

f(xk, ξk, θk)
)
′
(
µ

(t+s)/µ−1∑

j=t/µ

f(xj , ξj , θj)
)

≤ Kµ2

(
t + s

µ
−

t

µ

)2

= O(s2).

(3.7)
Taking lim supµ→0 followed by limδ→0, (3.5) is verified. Thus {xµ(·)} is tight

in D([0,∞) : R
d). 2


