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Abstract. In this paper we develop the concept of a polygon-offset dis-
tance function and show how to compute the respective nearest- and
furthest-site Voronoi diagrams of point sites in the plane. We provide
optimal deterministic O(n(logn + logm) 4+ m)-time algorithms, where
n is the number of points and m is the complexity of the underlying
polygon, for computing compact representations of both diagrams.
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1 Introduction

The Voronoi diagram of a set S C IR? is a powerful tool for handling many geo-
metric problems dealing with distance relationships. Voronoi diagrams have been
used extensively, for example, for solving nearest-neighbor, furthest-neighbor,
and matching problems in many contexts. The underlying distance function is
typically either the usual Euclidean metric, or more generally a distance function
based upon one of the L, metrics. There has also been some interesting work
done using convex distance functions, which are extensions of the scaling notion
for circles to convex polygons. Nevertheless, we feel that defining distance in
terms of an offset from a polygon is more natural than scaling in many applica-
tions, including those dealing with manufacturing processes. This is because the
relative error of the production tool is independent of the location of the pro-
duced feature relative to some artificial reference point (the “origin”). Therefore
it is more likely to allow (and expect) local errors bounded by some tolerance,
rather than errors scaled around some (arbitrary) center.

In this paper we investigate distance functions based on offsetting convex
polygons, where the distance is measured along the infinitely extended medial-
axis of such a polygon. While the scaling operation shifts each edge of the poly-
gon proportionally to its distance from the origin, the offset operation shifts all
the edges by the same amount. Offset polygons are therefore not homothetic
copies of the original polygon (unless the original polygon is regular). We are
interested in the investigation of basic properties of polygon-offset distance func-
tions, with particular attention paid to how they may be used in the definition
and computation of Voronoi diagrams.
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the U.S. ARO under Grant DAAH04-96-1-0013. Work by the second author has been
supported in part by the National Science Foundation under Grant CCR-93-1714.
Work by the third author has been supported also by NSF grant CCR-96-25289.



1.1 Related Previous Work

We are not familiar with any prior work on defining distance in terms of offset
polygons, nor in methods for defining Voronoi diagrams in terms of such func-
tions. Minkowski was the first to study the related notion of convez distance
functions. He showed, for example, that distance can be defined in terms of a
scaling of a convex polygon, and that while such functions do not in general define
metrics, they exactly characterize the “distance” functions satisfying the triangle
inequality. Chew and Drysdale [CD] show that one can define nearest-neighbor
Voronoi diagrams using convex distance functions. They give an O(nmlogn)-
time method for constructing such diagrams for a set S of n points in the plane,
with distance defined by a scaling of an m-edge convex polygon. This is actually
quite close to optimal, as they show the Voronoi diagram can be of size ©(nm).
This work was generalized even further [Kl, KMM, KW, MMO, MMR], showing
how to define Voronoi diagrams in a very abstract setting. They also give ran-
domized incremental constructions for this abstract setting that can be applied
to nearest- and furthest-neighbor Voronoi diagrams for convex distance func-
tions. The running times of these constructions are expected to be O(nmlogn),
but it is possible to use their approaches to construct “compact” Voronoi di-
agram representations in O(nlognlogm + m) expected time. For the case of
nearest-neighbor diagrams this was improved by McAllister, Kirkpatrick, and
Snoeyink [MKS], who give a deterministic O(n(logn + logm) + m)-time method
for constructing a compact Voronoi diagram complete enough for answering
nearest-neighbor queries for a given convex distance function in O(logn +logm)
time. They do not address furthest-neighbor diagrams, however, nor do they
address the case when distance is defined by offsets of a convex polygon.

Aichholzer and Aurenhammer present in [AA] an algorithm for constructing
the so-called straight skeleton of a collection of polygonal chains, which identifies
with the medial-axis of a convex polygon. They mention the use of the skeleton as
a distance function and give a sketch [ibid., Figure 4] of a Voronoi diagram of two
straight segments. They take the set of polygonal chains which define the distance
function to also be the set of sites for which the Voronoi diagram is sought.
We, however, make the distinction between the convex polygon which defines
the distance function and the set of points, sites in the diagram. Aichholzer et
al. [AAAG] further study the properties and applications of the straight skeleton
of a simple polygon. They remark that the skeleton of a polygon “is no Voronoi-
diagram-like structure.” Unlike in the cited work the constructions presented in
this paper are Voronoi diagrams of point sets and not of polygons; the polygon
only defines the underlying distance function. We are therefore concerned with
a very different set of problems and constructions.

1.2 Our Results

In this paper we formally develop the concept of a convex polygon-offset distance
function and explore its properties. One such interesting property is the fact that
polygon-offset distance functions do not in general satisfy the triangle inequality.
This, of course, follows from the contra-positive of Minkowski’s characterization
theorem, but we provide a simple constructive proof. Nevertheless, we show that
convex polygon-offset distance functions satisfy all the topological properties for
abstract Voronoi diagrams [K1, KMM, KW, MMO, MMR]. Finally, given a set S



of n points in the plane, we show how to deterministicly construct compact repre-
sentations of nearest- and furthest-site Voronoi diagrams for S with respect to an
offset distance defined by an m-edge convex polygon in O(n(logn + logm) +m)
time. We apply the tentative prune-and-search paradigm of Kirkpatrick and
Snoeyink [KS], as utilized by McAlister et al. [MKS], to the polygon-offset dis-
tance function. Like the method of McAlister et al., our nearest-neighbor dia-
gram is based upon using this approach to design a non-trivial generalization
of Fortune’s plane-sweep algorithm [Fo], whereas our furthest-neighbor diagram
algorithm is based upon applying tentative prune-and-search to a generalization
of Rappaport’s space-sweeping algorithm [Ra].

2 Preliminaries

2.1 Convex Polygon-Offset Distance Functions

We first define the offset of a convex polygon. For simplicity of expression in this
extended abstract we define the offset so as to be piecewise-linear, and we show
in the full version that this can be extended to the usual definition of an offset
(when, for example, an outer offset is made up of alternating line segments and
circular arcs).

The outer e-offset of P is obtained by translating each edge e € P by ¢
in a direction orthogonal to e and by extending it so as to meet the trans-
lations of the edges neighboring to e. The edge €' is trimmed by the lines
parallel and at distance € (outside of P) of the neighboring edges of e. The
inner offset is defined in a similar way: For each edge e € P we construct
a line parallel to it and at distance € on the inside of P. If we increase &
continuously we observe that the edge e” (the inner offset of e) gets smaller
continuously and may even “disappear”. This happens when the neighboring
offset lines meet “before” they intersect with the line that corresponds to e”.
Figure 1 shows inner and outer offsets
of a convex polygon for some value of ¢.

We adopt the notation of [BBDG] and  Op,
denote the inner and outer e-offset poly- P
gons of P by Ip. and Op_, respectively.

In addition, the notation Op . is used

as a synonym for Ip ., in particular when

the sign of € is unknown.

As long as we increase ¢ (for inner
offsets) more and more edges of Ip . “dis-
appear” in a well-defined order. By in-
creasing the value of £ we actually move
all the vertices of P along (and inward) Fig. 1. Inner and outer offsets
the medial-axis of P. When two neigh-
boring vertices of P meet at a junction of the medial axis the corresponding
edge disappears and the two vertices are merged into one vertex. This process
continues and at some point we are left with a triangle which in turn eventually
collapses into a point for some value of e. We denote this point as the center of
P.

fo



Figure 2 illustrates the medial-
axis-based offset operation. In case
P contains two parallel edges which
also define the maximum width of
P, Ip. becomes (for some value of
€) a segment that can no more be
offset inwards. Let g¢ be the value
of € for which Ip., degenerates
into a point or a segment. gq is
also the Euclidean distance from
the center to the nearest edge of
P. The outer offset behaves more center N

“normally”: no edges appear or dis-
appear. Fig. 2. Offset and the medial-axis

We now define the convex polygon-
offset distance function Dp between two points p and ¢. Let d be the Euclidean
distance from the center to the closest edge in the offset of P centered at p
which first touches gq. Then Dp(p,q) = d/ep. This gives us a similar normaliza-
tion where Dp(p,p) = 0, and Dp(p,q) = 1 if q is on the unit polygon.

The polygon-offset distance function has several interesting properties. In
general, if the polygon P is not regular then the polygon-offset distance function
Dp is not symmetric. Thus it is not a metric. Moreover, it does not even obey the
triangle inequality, as we show below. Nevertheless, we show that the polygon-
offset distance function Dp can be used as a basic distance function in a well-
defined Voronoi diagram. We will denote the nearest- and furthest-site Voronoi

diagrams with respect to Dp by Vi and Vl’;, respectively.

2.2 Basic Properties

For measuring the distance from some point
p to another point ¢ we center P at p and off-
set, it until it hits q. We say that the edge of P
that hits g dominates it. We show later in this
section how the dominating edge may change
along some direction. Let us consider what
happens as we move points farther from p, the
center of P, in some direction defined by a ray
pg. When pg crosses an edge of the medial-
axis, this corresponds to switching from the
dominance of one edge to the dominance of
another edge, as each region of the plane sub-
division induced by the (infinite-extension of
the) medial axis corresponds to an edge. Figure 3 illustrates this situation: The
direction p§ (p is positioned at the center of P) is first dominated by e; € P (in
the inner offsets of P the edge e2 does not exist yet), and then it crosses an edge
of the medial-axis and becomes dominated by es.

Fig. 3. Dominating edges



We now give some more specific relationships
between Dp and the Euclidean distance E. Refer
to Figure 4. Assume that the dominating edge e
is moving in a direction ¢, from the center point
p (so that £, is perpendicular to e). In moving
from p to ¢ along this “wave” e, denote the angle
between ¢, and p§ by 6. A unit move of e in
the direction of 7§ corresponds to an offset of
cos() along £,. Intuitively, if the offset from P Fig. 4. Dp and the Euclidean
is growing along a moving “wave” e, the point distance
of contact is like a “surfer” moving on this wave
in the direction /.. Increasing the offset by 1 increases the Euclidean distance in
the direction of p¢ by 1/ cosf. When 6 = 0, £, and p¢§ have the same “speed”.
As the absolute value of § increases, a unit offset of an edge outward results in
an increasing Euclidean distance. Conversely, as 6 increases, a unit Euclidean
distance corresponds to a decreasing distance with respect to Dp along /., until
it vanishes at § = 7/2. Intuitively, the “speed” along pq is inversely proportional
to the charged Dp distance (the offset). At § = w/2 the charge (offset) is 0 and
hence the “speed” is infinite.

This explains why the “speed” along any direction v can only decrease. Con-
sider the situation where v crosses an edge of the medial-axis. That is, it moves
from a region that corresponds to some edge e; € P to the region that corre-
sponds to another edge e,. The edge of the medial-axis is the bisector of e; and
ey. Elementary geometry shows that v forms a larger angle with the normal to
e1 than that with the normal to e; and therefore its “speed” decreases, that is,
the offset charge is increased. Hence we have:

Theorem 1. Ifp, s, q are colinear points in this order, then Dp(p, s)+Dp(s,q) <
Dp(p,q) and equality holds if and only if every point on the edge pq is dominated
by the same edge of P when P is centered at p.

Corollary 2. A polygon-offset distance function does not fulfill the triangle in-
equality.

Minkowski [KN, p. 15, Theorem 2.3] proved that given a scaled distance func-
tion based on a shape S, the triangle inequality holds if and only if S is convex.

3 Nearest-Site Voronoi Diagram

Let us now address the construction of a nearest-site Voronoi diagram. We begin
by showing that this notion of distance fits the unifying approach of Klein [KW,
K]]. Klein proposes to replace the distance notion by bisecting curves. Each pair
of sites are separated by curves which divide the plane into two portions each
corresponding to one site. The Voronoi region of some site s is the intersection of
all the s-portions defined by bisecting curves between s and all the other sites.



3.1 Properties of Dp

In order to show that the polygon-offset distance function is valid for defining
Voronoi diagrams, we need to precisely define the nearest-site Voronoi diagram
in this context: The Voronoi cell that corresponds to a point p consists of all
the points z in the plane for which Dp(z,p) < Dp(z,q) for all ¢ # p. Note that
this definition measures the distance from the points z and not from the sites!
If we reverse the direction of measuring the distance, then we obtain a different
Voronoi diagram: that obtained with the former definition using a reflected copy
of P.

Klein makes use of the following three properties of metrics:
1. The topology induced is the same as that induced by the Euclidean metric;
2. The distance between every pair of points is invariant under translations;
3. Distances are additive along every straight line.
In fact, the third property can be replaced by a weaker property:

3'. Distances are monotonically increasing along every straight line.
Theorem 3. Dp has the properties 1, 2, and 3' above. Moreover,

1. The bisector of every pair of points consists of disjoint simple curves.
2. Curves portions of different bisectors intersect a finite number of times.

We next follow the approach of [KW] and show additional properties of a
polygon-offset distance function and the respective nearest-site Voronoi diagram.

Theorem 4. Every cell of V} is connected and |VE| = O(nm).

A distance function is called complete if it is uniquely defined for every or-
dered pair of points. The next theorem establishes an important intermediate-
position property for the convex polygon-offset distance function.

Theorem 5. Dp is complete and for every pair of points p,q in the plane there
exists a point v ¢ pq such that Dp(p,r) + Dp(r,q) = Dp(p,q).

Proof. Center the polygon P at p. Sweeping the whole plane with Op by ranging
e from —gy to +00 we can find the unique &; for which ¢ € 0Op,.,. Hence Dp
is complete. For the second property we observe that if the whole segment pg is
dominated by some edge e; € P (where the normal to e; and pg form the angle
6;), then all the points r € pq fulfill the claimed equality (since then Dp is merely
the Euclidean distance multiplied by a constant cos(6;)). This is not the case
when pq is dominated by more than one edge of P. Assume that pgq is first (at the
vicinity of p) dominated by the edge e; and finally (at the vicinity of ¢) dominated
by e;. We have already shown in Section 2.2 that cos(d;) < cos(f;) and that there
exists a point s € pg near ¢ such that Dp(p, s) + Dp(s,q) < Dp(p, q). It is fairly
easy to find another point s’ in the plane for which Dp(p,s') + Dp(s',q) >
Dp(p,q): select, for example, a point s’ whose distance from pqg is twice the
diameter of P. Now define a function f(x) = Dp(p,z) + Dp(z,q). Since Dp is
a continuous distance function, the function f(z) is continuous too. According
to the mean-value theorem there exists a point r in the plane for which f(r) =
Dp(p, q) and the claim follows.

Note that the theorem does not require r to belong to pg. The next theorem
establishes a crucial extension property. (Its proof is similar to that of Theorem 5
and omitted in this extended abstract.)



Theorem 6. For every pair of points p,q in the plane there exists a point r # q
such that Dp(p,q) + Dp(q,r) = Dp(p,r).

Theorem 7. Every cell of V3 is simply-connected.

Proof. The topology induced by Dp is the same as that of the Euclidean metric
(by Theorem 3). Dp is complete, for every pair of points p, ¢ in the plane there
exists a point ry ¢ pg such that Dp(p,71)+Dp(r1,q) = Dp(p, q) (by Theorem 5)
and a point 79 # ¢ such that Dp(p,q) + Dp(q,m2) = Dp(p,r2) (by Theorem 6).
This is sufficient for applying Theorem 4.1 of [KW] and obtaining the claim. O

3.2 Computing the Diagram

We define (following [KW]) the (a, @)-support as follows. A distance function D
has an («a, @)-support (for a # @ € [0, 7]) if it fulfills the following condition: Let
p,q be a pair of points in the plane, where pg is of slope a, and let £ be a line of
slope @ that passes through ¢. Then all points r that satisfy D(p,r) < D(p,q)
lie on the same side of £ as p (see Figure 5).

Lemma8. There exist angles a # 3 s.1.
Dp has both (a,@)- and (8, B)-support.

Proof. There exist three edges e;, e;, ex €
P that never disappear in inner offsets of
P (in a degenerate case mentioned earlier
there are only two such parallel edges).
Without loss of generality assume that
the normal vectors to e; and e; have slopes
in [0, 7r]. Consider the edge e; and the nor-
mal to it £;. Set «a to the slope of ¢; and
@ to the slope of e;. It is trivial to verify
that Dp has an («, @)-support. Similarly
set (3 to the slope of /; and 3 to the slope of ej. Obviously « # ( and the claim
follows. a

Now we apply the algorithmic framework of [KW] to establish the following:

Fig.5. (a,a)-support

Theorem 9. Let S be a set of n points in the plane. A compact representation
of VRA(S) can be computed in O(nlognlogm + m) expected time.

Proof. The needed topological properties of Dp have already been established.
This is sufficient for applying Theorem 5.1 of [KW] and obtaining the claim for a
constant m. The extra log m factor comes from the cost of the primitive function
(computing a Voronoi vertex), which is called (due to the randomized divide-
and-conquer paradigm) O(nlogn) times. Bisecting curves are then represented
implicitly by the relative positions of the sites that define them. |



4 Compact Nearest-Site Polygon-Offset Vor. Diagram

We now extend the work of McAllister, Kirkpatrick, and Snoeyink [MKS]. They
describe in detail an algorithm for constructing a compact nearest-site Voronoi
diagram where the underlying scaled distance function is defined by a convex
polygon. The compact diagram simplifies the full Voronoi diagram by main-
taining a coarse “dual” of it: For each vertex of the full diagram, the compact
diagram maintains a set of spokes (minimum-length segments from the vertex
to the sites), and each polygonal site is replaced by the convex hull of vertices
of the site in which spokes occur. (See [MKS, p. 81, Fig. 4] for an illustration.)
This allows the complexity of the compact diagram to be O(n) instead of O(nm),
where m is the complexity of P.

To save space in this extended abstract, we assume the familiarity of the
reader with [MKS] and sketch how to generalize the compact Voronoi diagram
to a convex polygon-offset distance function. In order to do that we have to:
(1) Make sure that the geometric properties of the compact Voronoi diagram
are preserved when we change the distance function to convex polygon-offset;
and (2) Verify that we can compute the same information by using the same
amount of time when we make this change.

For the first goal we need only note that for every 1 > &5 the convex polygon
Op,, fully contains the convex polygon Op., and that two offsets of the same
polygon intersect at most twice [BBDG, Theorem 1] (the second property is cru-
cial for applying the tentative prune-and-search technique of [KS]). This suffices
to prove the spoke properties (Lemmas 2.2 2.6 of [MKS]) and the correctness of
the plane-sweep algorithm (Lemmas 3.1-3.4 and Theorems 3.5, ibid.) We omit
here the details for lack of space. For the second goal we prove the following
theorem:

Theorem 10. Allowing O(m)-time preprocessing, Dp(p,q) can be computed in
O(logm) time for every pair of points p,q in the plane.

Proof. We observe first how P is used for measuring regular convex-distance be-
tween points in the plane. A binary search is performed (in O(logm) time) in the
(cyclic) ordered list of edge-slopes of P for finding the edge e that hits p¢. Then
the distance is easily determined. For a polygon-offset distance function we pre-
process P in O(m) time and build an appropriate (tree-like) data-structure that
represents the medial-axis of P. Each segment of the data-structure represents a
vertex (or several consecutive vertices) of P and each region is attributed by the
dominating edge. The data-structure should answer, given a vector p¢ positioned
such that p coincides with the center of P, in which region of the medial-axis
g falls. This region (which corresponds to a pair of vertices of P) defines the
edge of P that dominates g. The elegance of this approach is in that “disappear-
ing” edges are reflected by regions that correspond to pairs of non-consecutive
vertices along P. The query thus requires O(logm) time. O

Thus we are able to replicate the claims of [MKS] regarding the running
time of the primitive operations (Lemmas 3.13-3.15). In particular, the function
vertex(ABC) (given three sites A, B, and C, it returns the Voronoi vertex
around which they appear counter-clockwise) can still be implemented so that
it runs in O(logn + logm) time. This function is called O(n) times (due to the
sweep paradigm), resulting in an O(n(logn + logm) + m)-time method.



5 Furthest-Site Voronoi Diagram

In this section we show how to construct the furthest-site Voronoi diagram with
respect to Dp. For this purpose we show that Dp fits the framework of Mehlhorn,
Meiser, and Rasch [MMR] which follows Klein’s unifying approach [KW, KI].
Mehlhorn et al. show that under some conditions the complexity of the furthest-
site Voronoi diagram is O(n), where n is the number of sites.

First we adopt some terminology of [MMR]. Let p,q be a pair of points in
the plane. The dominant set Mp(p,q) contains all the points that are closer to
p than to g with respect to Dp.

Let S = {pi]1 <i<n} € R? be a set of n points. The family M =
{M(pi,p;)|1 <i#j<n}is called a dominant system if for all p;, p; € S:

1. M(p;, p;) is open and nonempty.
2. M(pi,p;) N M(pj,pi) = 0 and OM (p;, p;) = OM (p;, p;).
3. OM (p;, p;) is homeomorphic to the open interval (0, 1).

Theorem 11. Mp (the family M with respect to Dp) is a dominant system.

Assume that for the nearest-site Voronoi diagram every portion of a bisector
OM (p;,p;) is put in the cell of min (i, j).
A dominance system is called admissible if it satisfies in addition:
4. Bisectors intersect finitely-many time.
5. For all S’ € S,S" # () and for all reordering of indices of points in S:
(a) Every Voronoi cell is connected and has a nonempty interior.
(b) The union of all the Voronoi cells is the entire plane.
A dominant system which fulfills only properties 4 and 5b is called semi-admissible.

Theorem 12. M p is admissible.

The proof of Theorem 12 is straightforward (part of the theorem was proven
in a previous section) and is omitted in this version of the paper.

We now consider M7%, the “dual” of Mp, in which the dominance relation
as well as the ordering of the points are reversed.

Theorem 13. [MMR, Lemma 1] If Mp is semi-admissible then so is M.
Moreover, the (so-called furthest-site) Voronoi diagram that corresponds to M5,
is identical to the (nearest-site) Voronoi diagram that corresponds to Mp.

Note that admissibility is not preserved when moving to the dual of the
dominance system. This corresponds to the fact that cells in the furthest-site
Voronoi diagram may well be disconnected.

We have thus shown that the furthest-site Voronoi diagram (with respect
to Dp) can be defined in terms of a dominance system (by moving to its dual).
Therefore the results of [Kl, KW, KMM] apply to both nearest- and furthest-site
Voronoi diagrams. Furthermore, we can benefit from all the results of [MMR] on
this diagram, namely, that it is a tree, and that we can compute it by a random-
ized algorithm in O(nlognkK) time, where K is the time needed by a primitive
function which considers 5 sites. Since computing the intersection between two
bisectors requires O(logm) time, this primitive requires also this amount of
time in our setting. Hence the overall expected time required for computing the
furthest-site Voronoi diagram (with respect to Dp) is O(nlognlogm + m).



We have followed the approach of [KMM] only for proving the properties
of the Furthest-site Voronoi diagram. OQur real goal is to obtain an optimal
deterministic algorithm for computing the diagram. For this purpose we adopt
the plane-sweep (in 3-space) approach of Rappaport [Ra] which follows Fortune’s
algorithm [Fo], in which axis-parallel cones are emanating from the sites and the
plane-sweep detects their intersections and produces the corresponding Voronoi
vertices. The major detail that we need to note is that in our setting we have
“polyhedral” cones whose intersection can be computed in O(logm) time. Thus
we spend O(nlog n+m) time in preprocessing and O(n(log n+logm)) time in the
sweep (n events, for each we spend O(logm) time for computing and O(logn)
time for queue operations), resulting in an optimal @(n(logn + logm) + m)-
time algorithm. We again store the diagram compactly, representing bisectors
implicitly via the relative positions of the two sites that define them.

6 Conclusion

We develop in this paper the notion of a polygon-offset distance function. This
is an extremely important notion for tolerancing in manufacturing. We note not
only that this is not a metric, it does not even fulfill the triangle inequality.
We describe in detail how to compute the nearest and furthest-site Voronoi
diagrams with respect to this distance function. In a companion paper [BBDG]
we use these diagrams for solving a tolerancing problem: given a set S of points
in the plane and a convex polygon P, find the minimum e and the respective
translation 7 for which the e-offset annulus of 7(P) covers S.
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