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Modalities in Vector Logic

EDUARDO MIZRAIJI

Abstract Vector logic is a mathematical model of logic in which the truth
values are mapped on elements of a vector space. The binary logical func-
tions are performed by rectangular matrices operating on the Kronecker
product of their vectorial arguments. The binary operators acting on vectors
representing ambiguous (fuzzy) truth values, generate many-valued logics. In
this article we show that, within the formalism of vector logic, it becomes
possible to obtain truth-functional definitions of the modalities “possibility”
and “necessity”. These definitions are based on the matrix operators that rep-
resent disjunction and conjunction respectively, and each modality emerges
by means of an iterative process. The construction of these modal operators
was inspired in Tarski’s truth-functional definition of possibility for the
3-valued logic of Lukasiewicz. The classical Aristotelian link between pos-
sibility and necessity becomes, in the basic vector logic, a corollary of the De
Morgan’s connection between disjunction and conjunction. Finally, we
describe extensional versions of the existential and universal quantifiers for
vector logics.

1 Introduction The mathematical representations of logic have opened illu-
minating perspectives for the understanding of the logical constructions created
by the humans. These representations have also provided us with powerful tech-
nical instruments that present a wide spectrum of applications. A profound anal-
ysis of the relations between mathematics and logic can be found in Curry [4].

Recently, an algebraic representation of the propositional calculus in which
the truth values are mapped on the elements of a vector space has been described.
In this representation, the logical computations are performed by matrix oper-
ators. In particular, binary operations are executed by rectangular matrices that
act over the Kronecker product of their vectorial arguments. This algebraic model
of logic has been denominated “vector logic”, and has been discovered investi-
gating a neural model (see Mizraji [11] and [12]).

An interesting property of this formalism is the following: once a binary vec-
tor logic isomorphic in the binary domain with the classical propositional cal-
culus is defined, the binary operators can compute ambiguous truth values,
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generating a many-valued logic. These ambiguous truth values are defined as a
linear combination of the basic truth values. Moreover, this vectorial formalism
allows to generate non-standard many-valued logics (an example is the Shefferian
vector logic, described in Mizraji [12], that presents a non-involutive negation).

Copilowish has published a pioneer paper applying linear algebra to formal
logic (see Copilowish [3]). And a recent contribution, Stern [14], provides with
a representation of the logical calculus in which square matrices operate on two
adjoint vector spaces. This system produces scalar outputs (a difference with vec-
tor logics that generate vectorial outputs).

The original contributions by Lukasiewicz to the field of many-valued logics
had been guided by his research on modal logics (see Lukasiewicz [9]). He found
that a truth-functional definition of the modal operations was not possible within
a binary system of logic. The very natural emergence of many-valued logics in
the framework of the basic vector logic suggests that it can constitute a suitable
formalism to construct modal operators. In this article we show how these con-
structions can be performed. The “possibility” and the “necessity” operators
are built up by means of an iterative process that uses the matrix operators dis-
junction and conjunction, respectively. It is then shown that the classical Aris-
totelian relations between “possibility” and “necessity” are corollaries of the
De Morgan’s relations between disjunction and conjunction. We describe, also,
an extensional representation of the existential and universal quantifiers in the
frame of vector logic.

2 Basic vector logic The investigations about the vector structures of the
logical systems are just in their beginnings. The first goal of the research pro-
gram on vector logics is the statement of some classical logical operations in terms
of matrix formalisms. Usually, the vectorial representation of the classical results
implies the “collapse” of an arbitrary Q-dimensional vector space in a
1-dimensional subspace (even in the case of some probabilistic many-valued log-
ics, as we will see in Section 3). The development of multidimensional logical
operators will be the subject of future communications. In this section, we
describe the basic matrix operators of classical propositional calculus.

Given a pair of truth values T, “true”, and F, “false”, and a set 7 = {T,F},
the monadic logical operators are functions of the class M : 7— 7, and the binary
operations correspond to functions of the class B : 7 X 7— 7 (7 X 7: Cartesian
product of 7). The basic vector logic assigns to T the column vector s and to F
the column vector n, with s,n € V, a Q-dimensional vector space defined over
the field of real numbers. Given a matrix W, we represent the transpose as W7,
Let us assume that s and n are orthonormal vectors. Hence, we have the follow-
ing scalar products ¢{s,n) = {(n,s) = 0 and ¢s,s) = {n,n) = 1 (the scalar product
between two O-dimensional column vectors a,b is aTh = (a,b)).

We will use in this work an operation named the Kronecker product
(also named direct or tensor product) defined as follows (see Bellman [2] and
Graham [5]):

Definition 2.1 Given the matrices A = [a;;] of order m X n and B = [b;;]
of order p X g, the Kronecker product A ® B of order (mp) X (nq) is defined as

A ® B = [a;B].
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This product is associative and distributive:
AX®B)®A'=ARQ BXA).
A+B)®A'+B)=AQA'+ARB +BX®A'"+BRB.

An important property of this product is the following: if the dimensions are
appropriate, the matrices A, A’, B, and B’ satisfy

(A ®B)(A’®B') = (AA') ® (BB').
For Q-dimensional column vectors a, a’, b, and b’ this property implies
(a®b)T(@ ®b’) =<a,a’)<b,b").

Definition 2.2 The Kronecker power (see Bellman [2]) is defined by the fol-
lowing properties:

APl=A® A
AKl = Ak=11  A
and satisfies
Alx] ® Al = Alk+]]
(AB)“‘] = AlKI gLkl
We define now the four monadic matrices:
I=ssT+ nn7,
N =nsT + snT,
K=ssT +sn”,
M =nsT + nnT.

The matrix I acts as an identity operator for the set {s,n}, Is =s, In = n. On
the other hand, the matrix N corresponds to the classical negations (-T = F,
-F =T), since Ns =n and Nn =s.

These square matrices are linked by the following identities:

" NN=1I
KI=KN=KM =KK =K
MI=MN=MM =MK =M.

We will now show the representation of the conjunction and disjunction
operations in the basic vector logic. The classical conjunction p A g and disjunc-
tion p v q between two arbitrary propositions p and g are described in the fol-
lowing table:

pArg pvq

Mm-S
M-
mmm e >
M <
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Given the pair of orthonormal vectors (s,n), a matrix version of these logical
connectives can be immediately constructed using the Kronecker product (Mizraji

[12)).

The conjunction is executed by the following matrix C,
C=sc@)T+ns@NT+nn®s)T+nn®n)7T,
since
C(s®s)=s
Cs®n)=C(n®s)=C(n®n) =n.
The disjunction is computed by the matrix D,
D=ss®s)T+scs@n)T+sm®s)T+nn® n)7T,
with
DSs®s)=D(s@n)=Dn®s)=s
D(n @ n) =n.

Using the monadic operators, these rectangular matrices can be represented as
follows:

C=1®s"T+M®nT,
D=K®s"+1I®n".

It can be easily demonstrated that C and D are connected by the matrix version
of De Morgan’s relations:

D =NC(N ® N),
C =ND(N ® N).

It can be shown (see Mizraji [12]) that:
(a) the matrix L corresponding to the implication p »> gis L=D(N ® I),
(b) the matrix S corresponding to the Sheffer’s connective p|q is S = NC,
(c) the matrix P corresponding to the Peirce’s connective p | g is P = ND.

3 Logical subspaces Given a vector space ¥y, spanned by an orthonormal
basis By = {x,Xa,...,Xg}, we can define, for any ordered pair (x;,x;), the fol-
lowing truth values: s = x;, n = x;. Consequently, a Q-dimensional vector space
allows construction of Q(Q — 1) different sets of matrix propositional opera-
tors. Once the pair s, n, is selected, a class of many valued logic is generated by
the operators of the basic vector logic, provided that the inputs have the form
w=+vs+ (1 —y)n, y € [0,1].
Let us define the set of these inputs as follows:

Definition 3.1 F={ys+ ({1 —y)n:y€[0,1]}.

“Fuzzy” inputs happen when y € (0,1).
This set F is one among the Q(Q — 1) 1-dimensional logical subspaces of
Vo supported by the pairs {s,n}. These logical subspaces allow us to contact
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with the probabilistic logics defined in the scalar domain, as we show in what
follows.

If h is the output vector of a matrix operator @ the segmental projections
are: ug = s' h. These segmental projections generate a scalar version of the vec-
torial many-valued logic produced when the inputs belong to the set F. Given
u=aoas+ (1 —a)n,v=86s+ (1 —B)n, o, € [0,1], we obtain:

pn=1—-a
pe=af
pp=a+p —apf.

These last equations define a truth-functional probabilistic logic (again see Miz-
raji [12]).

We must emphasize that the fundamental property of these 1-dimensional
logical subspaces is that they are closed with respect to the propositional oper-
ations; that is, if the inputs of a matrix logical operator belong to their partic-
ular F, then the output belongs also to this F. Remark that these 1-dimensional
vector subspaces support a vectorial many-valued logic with the cardinality of
continuum. This fact illustrates an important issue: vector logics require one to
distinguish between “dimension” and “many-valuation”. In our example, a
bidimensional basis generates an infinite-valued vector logic. The potentialities
of logics with further dimensionalities remain to be explored.

4 Recursive generation of modalities An important area of research in
modal logic is concerned with the definitions of the “possibility” and “necessity”
operators. An exhaustive description of this area can be found in the text of
Hughes and Cresswell [6].

Given a proposition p, the modalities “p is possible”, Op, and “p is neces-
sary”, Op, are linked by the following Aristotelian equivalence: Op eq =< (—p).
One of the objectives of the following constructions is to define, within the
framework of vector logic, matrix modal operators that satisfy the Aristotelian
equivalences. A complementary objective is to built up these modal operators
using the D and C operators of propositional vector logic, defined in Section 2.

Let us mention an important historical antecedent. In a classical work pub-
lished in 1930, Lukasiewicz showed that the existence of truth-functional modal
operators needs the construction of many-valued logics (Lukasiewicz [9],[10]).
In the case of the Lukasiewicz 3-valued logic, .3, the truth values for a prop-
osition p could be 0, 1, and 1. The negation was symbolically defined by: -1 =0,
=0 =1, =} = 1. Representing the truth value of a proposition X as | X|, the
implication p — g satisfies in L5 the usual relations for the values 0,1 (corre-
sponding to F and T), and for the third truth value we have |[0— 1| = |1 1| =
31 =1,13-0[=|1-3] =14

In his [9], Lukasiewicz reported a truth-functional definition of “possibility”
proposed by Tarski for the 3-valued logic £.;. Tarski defined “p is possible”, ¢p,
as follows: Op = per —'p — p. Hence, for L5, Tarski’s operator has the follow-
ing truth table:
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p Op
0 0
1 1
1 1

We are now going to show that, within the framework of vector logic, these pre-
vious results by Lukasiewicz and Tarski provide strong hints about how to build
vectorial modal operators using a recursive procedure.

In the basic vector logic, the matrix that executes the implication, L, gener-
ates, when the inputs are vectors u,v € F, the following segmental projection
(Mizraji [12]): uz =1 — a(1 — B). Note that if « =3 = 1, we get u; = 2; hence,
this scalar implication does not coincide with }; implication (|1 — 1| = 1).
Note also that in the Kleene 3-valued logic, it is |1 — 1| = 1 (see Rescher [13]).
Due to this discrepancy, Tarski’s definition of possibility does not work in the
basic vector logic. However, Tarski’s definition provides the fundamental clue
for the design of vector modal operators. Note that in the previously described
vector logic, the expression —p — p is represented by the equation L(Nu ® u) =
LIN®I)(u® u). But, sincc LIN® I) =D, we get L(Nu ® u) = D(u ® u).
This expression is equivalent to the classical binary tautology pv q eq ~p— q.

Let us construct the following sequence:

u; =D& u)
u; =D(u; @ uy)

u,; =D(u, ® u,).

We now define each term of this sequence as a “possibility of order r”, in brief,
r-possibility. We use the notation ¢, (u) = u,.

Definition 4.1 We define the “crisp” possibility (c-possibility) operator < as
the limit of this sequence for r — oo:

O (u) = lim {D(u, ® u,)}.

The importance of this limit will be shown in Section 6.
The “necessities of order r” (r-necessities) are generated by the successive
terms of the following iterative procedure:

vi=C(vQ® V)
v =C(v; ® vy)

Vi1 = C(v, ® V).

The notation for the r-necessity is (1, (v) = v,. The limit of this sequence allows
to define a vectorial “crisp” necessity (c-necessity) operator:

Definition 4.2 O(v) =lim {C(v, ® v,)}.
r—oo
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It can be immediately proved, using the De Morgan relations between D and C,
that the r-possibilities and the r-necessities, are linked by matrix versions of the
Aristotelian equivalences.

5 Matrix modal operators Assume that a pair of orthonormal vectors s,n
has been selected from a vector space V. The recursive construction showed
previously allows us to define the modalities of order » by means of the follow-
ing expressions:

O, (u) = (rff D[f(i)])u[f(r)]

i=0

r—1
0,(v) = (H C[f(i)]>v[f(r)]’
i=0
where f(i) = 2/; the exponents represent the Kronecker powers. For instance,
the possibility and the necessity of order 3 are given by the expressions:

03(u) = [D(D® D)(D® D ® D ® D)] (u*)
O3(v) = [C(CR®CHC®C®CR®O)NFH.

Note that u and v are Q-dimensional column vectors; hence, the Kronecker expo-
nent f(r) generates a Q") -dimensional column vector. Consequently, any
modality of order r is generated by a matrix of order Q x Q7" acting on a vec-
tor of order Q/” x 1. The output, naturally, is a Q-dimensional vector.

It is easy to demonstrate, from the properties of the Kronecker product, that
the De Morgan relation between D and C generates Aristotelian relations between
r-modalities: O, (u) = NO,(Nu). We can illustrate the general demonstration
procedure for the particular case of modalities of order 2:

O2u) = [C(CRO)](u®u®u® u)
=[NDIN@N)(CRO)](u®u®u@ u)
= [ND(NC ® NOIN“'NYu@u®@u® u)
= [ND(D ® D)] (Nu ® Nu ® Nu ® Nu) = NO,(Nu).

The same constructive procedure of demonstration can be extended to modalities
of any order. Interpreting the modalities as the successive terms of a sequence,
we define the crisp modal operators as the limit of these sequences:

O (u) = lim {0, (u)}
O(v) = lim {O,(v)}.

These limits can be interpreted as the product of a rectangular non-finite matrix
acting over a non-finite Kronecker power, generating a Q-dimensional vector as
output. These limit matrix operations are symbolically representable by the fol-
lowing expressions:
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O(m) = (f[ D[f(i)]>u[°°]

i=0

O(v) = (f[ C[f(i)])v[oo] .

i=0

6 “Crisp” vectorial modalities on logical subspaces We are going to show
in this section that when the crisp vector modal operators act on the logical sub-
spaces defined in Section 3, we obtain vectorial versions of some of the classi-
cal results of modal logic. The strategy that we follow here is to analyze, for
arbitrary vectors u,v belonging to the logical subspace F, the scalar projections
of the successive r-modalities.

Givenu = as + (1 — a)n, a € [0,1], the segmental projection of the pos-
sibility of order r is o, = sTu,. Therefore, o, =1 — (1 — @), t =2".

Let Oa = sT(Ou); consequently, Oa = lim,,o[1 — (1 — )’], with

1 iffas0
0 iffa=0.

This last equation is, in fact, a classical definition of “possibility” for scalar truth
values that take their values from the interval [0,1] (see Lewis and Langford [8]
and Rescher [13]). Hence, due to the fact that the space F is closed under the
propositional operator D, the sequence converges to the following limits:

s iffu#n
Ou =
n iffu=n.

The equivalent analysis of r-necessities shows that for a basic vector logic,
given a vector v = (3s + (1 — 8)n, the sequence corresponding to the segmental
projections are given by 8, = s'v,. Defining (08 = sT(0v), we obtain 08 =
lim, . 8%, t =2".

Hence, it corresponds to the classical definition of necessity for scalar vari-

ables belonging to [0,1]:
8= 1 iffB=1
o iffg#1.

Consequently, if the argument is an arbitrary vector belonging to the logical sub-
space F, the operation used to define the vectorial necessity, converges to the

following limits:
s iffv=s
Ov = .
n iff v#s.

In the usual axiomatic presentations of modal logics, for the construction of
the two basic modal operators, once defined one of them, the Aristotelian rela-
tionship between necessity and possibility is used to define the other. For
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instance, once the possibility operation Op is built, the necessity operation, Op,
is defined as follows:

Op =per 7O p.

In the framework of the basic vector logic, the “crisp” modal operators ¢
and O are constructed from the matrix operators D and C, respectively, and
their link is shown in the following theorem:

Theorem 6.1 Ou = NO (Nu).
Proof: Ou = lim {C(u, ® u,)}

= lim {(ND(N ® N)(u, ® u,)}
= N[lim {D(Nu, ® Nu,)}] = NO (Nu).

The scalar version of our system of modal logic is connected with the probabi-
listic logics, but it constitutes a special case in which all the operations are truth-
functional. Rescher has demonstrated that a non truth-functional probabilistic
logic satisfies the axioms of system S5 (see Rescher [13]).

Given the propositions p and g, consider the following expressions:

1. p->Op

2. Op-p

3. Op—->9Op

4. O(p—-¢q)— (Op-0Og).

For the basic vector logic, the preceding expressions become the following equal-
ities (u,v € F):

I"La® Ou) =s

2. L(Ou®@u)=s

3. L(Ou® %u) =s

4. LIOL(u ® v) ® L(Ou ® Ov)] =s.

This set of equalities can be easily demonstrated taking into consideration the
following properties of the vectorial implication:

Lu®s)=L(n®u)=s

Lc®@u)=mu

L(u ® n) = Nu.
Proof: (of 1Y) Ifu=n,Ou=nand L(n ®n) =Nn=s.Ifu#n, Cu=sand
L(s ® s) =s. Hence, L(u ® Ou) =svu € F.

It is immediate to see that the axiom of Brouwer p — [OOp has an equiva-
lent version in the basic vector logic: L(u ® OOu) = s. The strict implication
defined by Lewis (see Lewis and Langford [8]), p < ¢ 5= =0 (pA—q), can be
expressed in vector logic by the equation L.(u,v) = NO [C(u @ Nv)]. By means
of De Morgan’s relations, we get L. (u,v) = NO [NL(u &® v)]. Hence, by Theo-
rem 6.1 L.(u,v) = O[L(u ® v)].
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7 Extensional quantification The classical Aristotelian relation between
modal operators, symbolically expressed “C01 = —~<$—”, is analogous to the
relation between quantifiers in the first order predicate calculus, symbolically
“y = =3, where V represents the universal quantifier, and 3 represents the
existential quantifier.

The established connection between the operators ¢ and [0 and matrices D
and C, respectively, has a counterpart in the theory of vectorial quantifiers. We
will now describe an extensional version of the quantifiers in the framework of
basic vector logic.

Let us assume a predicate P(x) and a universe defined by a finite set of vari-
ables x;: U = {x1,Xx5,...,Xg}. Suppose the existence of a valuation Val(P) that
assigns to each P(x;) a vectorial truth value: Val[ P(x;)] = u;,u; € {s,n}.

The extensional definitions for the classical quantifiers are given by

IxP(x) eq P(x1) vP(x;) v...v P(xg)
VxP(x) eq P(x1) AP(Xx3) A...A P(XR).

The matrix operators disjunction D and conjunction C allow the construction
of vector versions for the quantifiers, using as a guide the previous extensional
definitions. Consider the following sequence:

d1=lll

d;=D(u, ® d;)

d,1 =Dy ®dy),
where u; = Val[ P(x;)]. We define
3[u] = lim{d,}.
n—R
Consider now the sequence:
¢ =V

¢ =C(v, ® ¢;)

Cpny1 = C(vn+l ® Cn),

with v; = Val[P(x;)]. Hence, we define

v[u] = lim{¢c,}.
n—-R

Note that these constructions are also possible for infinite numerable universes U.
With the preceding definitions, the existence of an x; such that P(x;) is true,
implies 3[u] = s. On the other hand, if P(x;) is true for any x; € U, we have
V[u] = s. These results can be immediately proved by analyzing the segmental
projections.

In order to generalize the argument, we assume in what follows that the
valuation represented by vector u admits uncertainties. Hence we assume that
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u € F, and a particular P(x;) has a valuation u; = ;s + (1 — «;)n. The corre-
sponding segmental projections are

sTaful =1 - (1 —a)(1 —az) -+ (1 — ag)
STV[ll] =103 *** AR.

It is interesting to notice that these formulae have been described at the end of
the XVII century, in a comment about the confiability of testimonies (see [1] and
71, p. 184).

It can be demonstrated that the vector quantifiers are connected by the fol-
lowing theorem:

Theorem 7.1 V[u] = N3[Nu].

Proof: Let ¢3[u] =Clu; ® C(u; ® u;)] =CI ® C)(uz ® u, ® u;). Using
De Morgan’s relations, we get:

CAR®C)(u; @ u; ®uy)
=ND(N® N)[I® ND(N® N)] (u3 ® u; ® uy)
= ND[NI ® NND(N ® N)] (u3 ® u; ® u;)
= ND( ® D)(Nu; ® Nu, ® Nu;).
Hence
¢;[u] = Nd;[Nu].
The extension by induction of this procedure completes the proof.
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