
A Time Lower Bound for Satisfiability ⋆

Dieter van Melkebeek a,∗,1

aDepartment of Computer Sciences, Univesity of Wisconsin, Madison, WI 53706,

USA.

Ran Raz b

bFaculty of Mathematics and Computer Science, Weizmann Institute of Science,

Rehovot 76100, Israel.

Abstract

We show that a deterministic Turing machine with one d-dimensional work tape
and random access to the input cannot solve satisfiability in time na for a <
√

(d + 2)/(d + 1). For conondeterministic machines, we obtain a similar lower bound
for any a such that a3 < 1+a/(d+1). The same bounds apply to almost all natural
NP-complete problems known.

Key words: Computational Complexity, Lower bounds, Satisfiability
1991 MSC: 68Q10, 68Q15, 68Q25

⋆ A preliminary version of this paper appeared in the Proceedings of the 31st In-
ternational Colloquium on Automata, Languages and Programming.
∗ Corresponding author.

Email addresses: dieter@cs.wisc.edu (Dieter van Melkebeek),
ran.raz@weizmann.ac.il (Ran Raz).

URLs: www.cs.wisc.edu/~dieter (Dieter van Melkebeek),
www.wisdom.weizmann.ac.il/~ranraz (Ran Raz).
1 Partially supported by NSF Career award CCR-0133693.

Preprint submitted to Elsevier Science 2 June 2004

1 Introduction

Proving time lower bounds for natural problems remains the most difficult
challenge in computational complexity. We know exponential lower bounds on
severely restricted models of computation (e.g., for parity on constant depth
circuits) and polynomial lower bounds on somewhat restricted models (e.g., for
palindromes on single tape Turing machines) but no nontrivial lower bounds
on general random-access machines. In this paper, we exploit the recent time-
space lower bounds for satisfiability on general random-access machines to
establish new lower bounds of the second type, namely a time lower bound
for satisfiability on Turing machines with one multidimensional work tape and
random access to the input.

1.1 Lower Bounds for Satisfiability

Satisfiability constitutes the seminal NP-complete problem and is of major
practical importance. While we expect the problem to take time 2Ω(n) in the
worst case, the sad state of affairs is that we cannot even rule out the existence
of a linear-time algorithm on a random-access Turing machine.

We do have nontrivial lower bounds on the running time of random-access
Turing machines that solve satisfiability in sublinear space. We have seen con-
siderable progress on such time-space lower bounds in recent years [9,4,10,5].
The state-of-the-art is a time lower bound of essentially nφ for algorithms us-
ing subpolynomial space, where φ denotes the golden ratio, about 1.618. More
precisely, the following holds:

Theorem 1 (Fortnow-Van Melkebeek [5]) Let φ
.
= (

√
5+1)/2 denote the

golden ratio. For any constant a < φ there exists a positive constant b such

that satisfiability cannot be solved on a deterministic random-access Turing

machine in time na and space nb.

A nice feature of Theorem 1 is its model independence – the proof works for
any reasonable model of computation. However, the theorem does not yield
any lower bounds for algorithms that use linear space, e.g., algorithms that
explicitly store an assignment to the given formula.

An almost quadratic time lower bound for satisfiability on single tape Turing
machines immediately follows from the quadratic lower bound for palindromes
in that model because of the standard efficient translation of any problem in
NP to satisfiability. This result does not rely on the inherent difficulty of
satisfiability, though. It rather exploits an artifact of the single tape Turing
machine model – that the machine has to waste a lot of time in moving its

2

tape head between both ends of the tape in order to retrieve information about
the input. As soon as we include a work tape separate from the input tape,
palindromes can be decided in linear time.

1.2 Our Results

We consider models of computation whose power lies between single tape
Turing machines and random-access Turing machines, and establish time lower
bounds of the form na where a is a constant larger than 1. Our proofs rely on
the fact that satisfiability captures nondeterministic computation.

The first model we consider is that of a Turing machine with two tapes, namely
an input tape and one work tape. The model is known as the single tape off-line
Turing machine, and constitutes the strongest model with two-way access to
the input on which superlinear time lower bounds for natural decision problems
were established. Maass et al. [11] proved a lower bound of Ω(n log n) for a
problem in P, and Kannan [8] sketched a lower bound of n1.104 for satisfiability.

We improve Kannan’s lower bound to na for any constant a <
√

3/2 ≈ 1.224.
In fact, our result also holds if we allow random access to the input.

We generalize our lower bound to the case of Turing machines with a d-
dimensional work tape.

Theorem 2 (Main Result) For any positive integer d and any constant a <
√

(d + 2)/(d + 1), satisfiability cannot be solved in time na on a deterministic

Turing machine with a d-dimensional work tape and random access to the

input.

Dietzfelbinger and Hühne [3] proved a polynomial lower bound in this model
but with the additional restriction that the input tape is one-way. Theorem
2 provides the first superlinear time lower bound for Turing machines with a
planar or higher dimensional work tape and random-access to the input.

Our approach also applies to conondeterministic algorithms for satisfiability,
or equivalently, to nondeterministic algorithms for tautologies.

Theorem 3 For any positive integer d and any constant a such that a3 <
1+a/(d+1), satisfiability cannot be solved in time na on a conondeterministic

Turing machine with a d-dimensional work tape and random access to the

input.

The bound in Theorem 3 is somewhat weaker than the one in Theorem 2. Let
g(d) denote the solution a > 1 of the equation a3 = 1+a/(d+1). The function

g(d) lies somewhere between the deterministic bound f(d)
.
=

√

(d + 2)/(d + 1)

3

 1

 1.02

 1.04

 1.06

 1.08

 1.1

 1.12

 1.14

 1.16

 1.18

 1.2

 1.22

 1.24

 1 2 3 4 5 6 7 8 9 10

dimension d

f(d)
g(d)
h(d)

Fig. 1. Plot of the exponent a as a function of the single work tape’s dimension d
in the time lower bounds of the form na for satisfiability: the deterministic bound
f(d), the conondeterministic bound g(d), and the lower bound h(d) = (f(d))2/3 for
g(d).

and h(d)
.
= (f(d))2/3 = 3

√

(d + 2)/(d + 1). See Figure 1.2 for a plot of these
functions.

Time lower bounds for satisfiability immediately imply time lower bounds for
problems to which satisfiability efficiently reduces. Almost all known natural
NP-complete problems translate to satisfiability in quasilinear (n · poly log n)
time such that each bit of the translation can be computed in polylogarithmic
time on a random-access Turing machine. As a corollary to Theorems 2 and
3, we can extend our lower bounds to all such problems.

Corollary 1 The lower bounds of Theorems 2 and 3 apply to any problem to

which satisfiability Karp reduces in time n1+o(1) on a random-access Turing

machine such that each bit of the reduction can be computed in time no(1).

1.3 Our Approach

Our starting point is the recent time-space lower bounds for satisfiability on
random-access machines (see [14] for a survey). The high-level structure of
these arguments is that of a proof by indirect diagonalization. We start from
the assumption that satisfiability has a deterministic algorithm that runs in
time t and space s. Since satisfiability captures nondeterministic (quasi-)linear

4

time in a very strong sense, we can roughly view our assumption as the inclu-
sion

NTIME(n) ⊆ DTISP(t, s), (1)

where DTISP(t, s) denotes the class of problems that can be solved determin-
istically in time t and space s simultaneously. Then we use (1) to derive more
and more unlikely inclusions of complexity classes, up to the point where we
reach a contradiction with a diagonalization result.

A crucial step in the proof of Theorem 1 is an inclusion of the form

DTISP(T, S) ⊆ NTIME(f(T, S)), (2)

where f(T, S) ≪ T , which actually follows from a weaker hypothesis than (1),
namely

NTIME(n) ⊆ DTIME(t). (3)

Inclusion (2) describes a speedup of deterministic space bounded computations
on nondeterministic machines and is proved by a combination of the following
two arguments.

• We can speed up DTISP(T, S) computations on an alternating machine by
breaking up the computation tableau into b blocks, guessing the configura-
tions at the b−1 common boundaries of the blocks, and universally verifying
the computation on each of the blocks of size T/b. This yields the inclusion

DTISP(T, S) ⊆ Σ2TIME(b · S + T/b).

Applying this idea k times recursively with block numbers b1, b2, . . . , bk,
respectively, and exploiting the closure under complementation of deter-
ministic classes to save about half of the alternations [5], we get

DTISP(T, S) ⊆ Σk+1TIME((
∑

j

bj) · S + T/(
∏

j

bj)). (4)

• We can eliminate alternations using the hypothesis (3). If t(n) is of the form
na for some constant a, (3) allows us to eliminate one alternation from an
alternating computation at the cost of raising the running time to the power
a. Eliminating all k alternations of the right-hand side of (4) from back to
front yields a nondeterministic simulation running in time f(T, S), where
the actual form of f(T, S) depends on a and the choice of b1, b2, . . . , bk.

The proof of Theorem 1 then proceeds as follows. For any smooth bound
τ(n) ≥ n, the hypothesis (1) implies an inclusion of the form NTIME(τ) ⊆

5

DTISP(T, S). Combining with (2) leads to the conclusion NTIME(τ) ⊆ NTIME(f(T, S)),
which contradicts the nondeterministic time hierarchy theorem as long as
f(T, S) = o(τ). The rest of the proof of Theorem 1 involves selecting optimal
values for the number of alternations k and the block numbers b1, b2, . . . , bk so
as to minimize the function f(T, S).

Now, suppose we try a similar strategy to obtain a time lower bound instead of
a time-space lower bound. Thus, our aim is to derive a contradiction from the
hypothesis NTIME(n) ⊆ DTIME(t) where t is of the form t(n) = na for as large
a constant a as possible. Note that we can still exploit the speedup of space
bounded computations by nondeterminism given by (2) since that step only
used the hypothesis (3). The problem is to obtain a deterministic simulation
of NTIME(τ) that runs in small space. Such a simulation immediately follows
from the stronger hypothesis (1) but we do not know how to derive it from
the weaker hypothesis (3) when the underlying model of computation allows
random memory access. In case of sequential memory access, however, we can
use the notion of crossing sequences [6] to break up the computation into
pieces that each run in small space, and then apply (2).

Consider a deterministic computation that takes t steps on a Turing machine
with a single work tape and random access to the input. We can simulate such
a computation on an alternating random-access machine as follows: Break up
the tape into b blocks of size t/b each. Guess the crossing sequences at all the
block boundaries. By choosing an appropriate offset for the blocks, we can
argue that the total number of crossings we need to guess is no more than
b. Then switch to a universal mode and verify the computation on each of
the b blocks given the crossing sequences for that block. The verification for
a given block can be performed in time T = t and space S = t/b. This gives
us the time-space bounded computation that is critical for the argument of
Theorem 1. We can speed up (the complement of) that computation as in (4)
and obtain a simulation that essentially lives in

Σk+2TIME(b + (
∑

j≥1

bj) · S + T/(
∏

j≥1

bj)). (5)

Now, suppose there exists a Turing machine with a single work tape and
random access to the input that solves satisfiability in time t. Since random-
access machines can efficiently simulate sequential machines, we have that,
roughly, NTIME(n) ⊆ DTIME(t), so we can eliminate alternations at the cost
of a small increase in running time as before. Using a similar argument as in
the proof of Theorem 1, we obtain a contradiction to the nondeterministic time
hierarchy theorem for small t. It turns out that k = 1 leads to the strongest
results for this approach – we can rule out running times t(n) up to na for

a < 3

√

3/2.

6

We can do better by exploiting the following slack in our argument. We mod-
eled the verification of any given block as a computation that takes time T = t
and uses space S = t/b. We cannot improve the upper bound T = t for all
blocks since it is possible for the computation to spend all its time in one
particular block. On average, though, the time the computation spends on a
block will be much less. We can benefit as follows from the fact that the total
time spent on all blocks together is at most t.

Let ti denote the time spent on block i. At the second existential level of (5), for
a given block i, we guess a configuration after each t/b1 steps the computation
spends on block i. Thus, we really only need to guess b1ti/t configurations
for block i at that level. The total number of configurations we guess at the
second existential level is therefore bounded by

∑

i b1ti/t = b1. We can as well
guess all these b1 configurations at the first existential level. This saves us one
alternation, leading to a simulation that lives in

Σk+1TIME(b + (
∑

j≥1

bj) · S + T/(
∏

j≥1

bj)). (6)

Using this improvement, we manage to rule out running times t(n) up to na

for a <
√

3/2.

A more direct way of obtaining a simulation of type (6) is the following. The
above verification process for all blocks combined can be executed on a random
access machine in roughly time O(t) and space O(S). Thus, we can transform
a deterministic time t computation on a Turing machine with one work tape
and random access to the input into (i) nondeterministically guessing an offset
and at most b crossings, followed by (ii) a deterministic computation that
runs in time O(t) and space O(S) on a random access machine. Applying
(4) to (ii) results in a simulation of type (6). Similar strategies to reduce the
space complexity for one-tape off-line Turing machine computations have been
considered in the past but either incurred an additional cost in running time
due to the use of one-tape off-line Turing machines for the simulation [7,12],
or else involved a nontrivial number of alternations [8].

Our arguments carry over to Turing machines with a d-dimensional work tape
and random access to the input, as well as to conondeterministic machines.

1.4 Organization

In Section 2, we describe the various machine models we consider in this
paper, and provide the required technical details of the known time-space lower
bounds for satisfiability. Section 3 contains the derivation of our main result

7

for Turing machines with a one-dimensional work tape and random access to
the input. In Section 4, we extend that result to Turing machines with one d-
dimensional work tape for arbitrary positive integers d, to conondeterministic
Turing machines, and to NP-complete problems other than satisfiability.

2 Preliminaries

2.1 Machine Models

We use two different machine models – one with sequential memory access
and one with random memory access. Both have random read access to the
input.

Our main result holds for a sequential memory access model with one d-
dimensional work tape for some positive integer d. The work tape has one
tape head. In each computation step, the memory cell under the tape head
can be accessed (read and/or written) and the tape head can be moved to a
neighboring memory cell.

Our proofs also make use of machines with random memory access. We model
random access using an auxiliary index tape. An index tape acts as a one-
dimensional one-way write-only tape. In any given computation step, the ma-
chine can decide to access the cell indexed by the contents of the auxiliary
index tape, after which the auxiliary index tape is automatically reset.

The random memory access model can simulate the sequential memory access
model with a logarithmic overhead in time.

All notation for complexity classes, e.g., NTIME(t), refers to the random
memory access model. We omit explicit constructibility conditions and other
smoothness requirements on time and space bounds. Eventually, we only need
to consider polynomial bounds, which meet all conditions needed.

2.2 Time-Space Lower Bounds for Satisfiability

We use a number of ingredients from the known time-space lower bounds for
satisfiability. First, a reduction capturing the very close relationship between
satisfiability and nondeterministic computation.

Lemma 1 (Cook [2]) There exists a constant c such that for every lan-

guage L ∈ NTIME(τ) where τ(n) ≥ n, there exists a reduction from L to

8

satisfiability that maps an input x of length n to a formula φx of length

N ≤ τ(n) · (log τ(n))c. Moreover, given x and an index i, the ith bit of φx

can be computed in time (log τ(n))c.

Second, we exploit the following crucial ingredient, which quantifies a speedup
of deterministic time-space bounded computations on nondeterministic ma-
chines that follows if we can simulate nondeterminism very efficiently on de-
terministic machines.

Lemma 2 (Fortnow-van Melkebeek [5]) Suppose that

NTIME(n) ⊆ DTIME(na)

for some constant a ≥ 1. Then for any integer k ≥ 0 and functions T (n) and

S(n),

DTISP(T, S) ⊆ NTIME((T · Sk)ck + (n + S)ak

), (7)

where c0 = 1 and ck+1 = ack/(1 + ck).

Finally, we also use the nondeterministic time hierarchy theorem.

Lemma 3 (Seiferas-Fischer-Meyer [13]) Let τ1(n) and τ2(n) be time bounds.

If τ1(n + 1) ∈ o(τ2(n)) then

NTIME(τ2) 6⊆ NTIME(τ1).

In case τ1(n) = ne1 and τ2(n) = ne2 where e1 and e2 are positive constants,
Lemma 3 implies that nondeterministic machines can do strictly more in time
τ2 than in time τ1 if e2 > e1 [1].

3 Result for One-Dimensional Tapes

In this section, we derive our time lower bound for satisfiability on determin-
istic machines with a one-dimensional work tape and random access to the
input. We refer to Section 1.3 of the introduction for the intuition behind the
derivation and follow the direct approach discussed at the end of that section.

The proof goes by contradiction. We start from the hypothesis that satisfia-
bility can be solved by a machine M with one work tape and random access
to the input in time na for some constant a ≥ 1. We then argue that for

a <
√

3/2, this hypothesis leads to a contradiction with the nondeterministic
time hierarchy theorem.

9

Let L be a language in NTIME(τ) for some smooth function τ(n) ≥ n which
we will specify later. Let x be an input of length n and φx the Boolean formula
of length N ≤ τ(n) · (log τ(n))c that captures the membership of x to L, as
given by Lemma 1. We decide the membership of x to L by simulating M on
input φx on a random-access machine. Since each bit of φx can be computed
on the fly in time poly log τ , the running time of the simulation is at most
a factor poly log τ times the running time of simulating M on φx when φx is
given as input.

Consider the computation of M on input φx. Since M runs in time at most
t

.
= Na, M cannot access any memory cells outside the initial segment of

length t. We break up this initial segment into b + 1 consecutive blocks of
roughly equal size S, and number the blocks 0 through b. More precisely, all
blocks except possibly blocks 0 and b contain exactly S cells, and blocks 0 and
b contain no more than S cells. See Figure 2, where f denotes the number of
cells in block 0.

f <= S S S S S<=

0 1 2 b − 1 b0 0

t

Fig. 2. Breaking up the work tape

Note that f and S fully determine the blocks. The value of b is essentially
equal to t/S; more precisely, t/S − 1 ≤ b < t/S + 1. The parameter S will be
set later. We now determine a value for f .

For a given partition into blocks, the computation of M induces a crossing
sequence at the boundary of any two consecutive blocks. The crossing sequence
at a given boundary consists of a collection of records, one for each time the
tape head crosses that boundary. The record corresponding to a particular
crossing contains the time step of the crossing, its location on the tape, and
the internal state of M as well as the configuration of the index tape for
the input at the time of the crossing. Note that each crossing record involves
O(log t) bits of information.

Let Xf denote the list of all crossings over all the block boundaries for a
given value of f (and S). By choosing the offset f appropriately, we can
ensure that Xf contains no more than b+1 crossings. This is because the sets
Xf , 1 ≤ f ≤ S, form a partition of the collection of all crossings (over all
boundaries between consecutive memory cells) during the computation. Since
there can be at most one crossing per time step, the total number of crossings
is no more than t. By averaging, there exists an offset f , 1 ≤ f ≤ S, such that
Xf contains no more than t/S ≤ b + 1 crossings.

10

Once we know f and Xf , we can break up the computation of M into b + 1
independent parts, namely one for each block. We can check the correctness
of Xf by verifying, for each block i, the consistency of the left end and the
right end crossings. The verification process for block i involves the following:

• If i > 0 and there is no crossing record for the left boundary then accept if
there is no crossing record for the right boundary either and reject otherwise.

• Initialize block i as empty.
• Start from the time, internal state of M , and contents of the index tape as

specified in the first crossing record for the left boundary (which for i = 0
default to time 0, M ’s initial state, and an empty index tape, respectively).
Simulate M up to the point where M either halts or leaves block i. In case
M halts, accept if M accepts and reject otherwise. If not, verify that the
current time, internal state of M , and contents of the index tape are as
specified in the next crossing record for the boundary being crossed (which
defaults to the first crossing record in case of crossing the right boundary).
Reject if there is no such record or if there is no consistency.

• If there is no next crossing record for the same boundary that was just
crossed, accept if there are no further crossing records for the other boundary
either and reject otherwise. If there is a next crossing record for the same
boundary, then continue the process in the previous step starting from that
record.

If we require the crossing sequences in Xf to be ordered by boundary from
left to right, and within a given boundary by increasing time stamp, the ver-
ification process for a given block i can be executed in time O(ti · logO(1) t)
and space O(S + log t) on a random access Turing machine, where ti denotes
the time M spends on block i. Thus, given f and Xf , the overall verification

process runs in time T = O(t logO(1) t) and space O(S + log t) on a random
access Turing machine. By incorporating some clocking, we can make sure the
same holds for every f and list of crossings X.

Let us denote by AcceptM (x, f, X) the predicate that the tests for all blocks i
are passed on input x, offset f , and list of crossings X. By the above, we can
decide membership of x to L by evaluating the following condition:

(∃ offset 1 ≤ f ≤ S)(∃ set X of at most b crossings) AcceptM(x, f, X).(8)

We now analyze how efficiently we can evaluate (8) on a nondeterministic
random access machine based on our hypothesis. In order to simplify the
expressions, we neglect multiplicative factors of the form logO(1) t.

Since AcceptM (x, f, X) involves a DTISP(T, S) computation on an input of
length O(n + b), Lemma 2 allows us to transform (8) into a nondeterministic

11

computation running in time

O(b + (T · Sk)ck + (n + b + S)ak

) (9)

for any integer k ≥ 0. We obtain a contradiction with the nondeterministic
time hierarchy theorem provided (9) is o(τ(n−1)/poly log τ(n)). Our goal now
is to select the parameters in such a way that we obtain that contradiction for
values of a as large as possible.

Recall that T = t, S = t/b, and t = τa. Setting b = tβ for some constant
β ∈ (0, 1) and letting τ(n) = ne for a sufficiently large constant e, we obtain
the contradiction we seek as long as

a · max((1 + k(1 − β))ck, βak, (1 − β)ak) < 1. (10)

The first interesting value of k is k = 1. For k = 1, requirement (10) simplifies
to

a2 · max(1 − β/2, β) < 1,

for which the optimal choice of β = 2/3 leads to the bound a <
√

3/2.

Further calculations show that values of k ≥ 2 do not lead to better bounds
on a. By dropping the first component of the maximum expression in (10),
the optimal setting of β = 1/2 leads to the necessary condition that ak+1 < 2,

which is stricter than a <
√

3/2 for k > 2. For k = 2, dropping the second term

of the maximum expression in (10) and setting β optimally to β = 1 − 1/a
results in the necessary condition a2 < 1. Thus, the result claimed in the
statement of Theorem 2 for d = 1 is the best we can get using our approach.

4 Extensions

In this section, we extend the result from the previous section for machines
with a one-dimensional work tape to machines with a d-dimensional work
tape for arbitrary positive integers d. We also derive a similar lower bound
for conondeterministic machines, and argue that all our bounds apply to NP-
complete problems other than satisfiability.

4.1 Multi-Dimensional Tapes

We follow the proof outline of Section 3. We assume that satisfiability can be
solved on a machine M with one d-dimensional tape and random access to

12

the input in time na for some constant a ≥ 1, and argue that this assumption
leads to a contradiction with the nondeterministic time hierarchy theorem for

a <
√

(d + 2)/(d + 1).

We now break up each tape dimension into b parts. The number of blocks
becomes bd; the number of possible offsets f as well as the space occupied by
a single block becomes S = (t/b)d.

There still exists a choice for the offset f such that the set of crossings Xf

is of size at most b. The averaging argument can be modified as follows. Any
given crossing that occurs during the computation of M can appear in up to
(t/b)d−1 of the sets Xf . This is because the crossing fixes the component of f
in the dimension of the crossing but leaves the remaining d − 1 components
of f free. Thus, we get the inequality

∑

f |Xf | ≤ t · (t/b)d−1. Since there are
(t/b)d possible offsets, this implies that there exists at least one offset f for
which |Xf | ≤ b.

With these modified parameters, (8) still holds, as well as the bound (9). Using
the same settings as before, condition (10) generalizes to

a · max((1 + kd(1 − β))ck, βak, d(1 − β)ak) < 1. (11)

For k = 1, the first interesting value for k, (11) becomes

a2 · max((1 + d(1 − β))/2, β, d(1− β)) < 1,

for which the optimal choice of β = (d + 1)/(d + 2) leads to the bound a <
√

(d + 2)/(d + 1).

Again, k = 1 turns out to give the best results. This can be seen as follows.
Dropping the first term in the maximum expression in (11) and setting β
optimally to β = d/(d+1) leads to the necessary condition that ak+1d/(d+1) <

1, which is more stringent than a <
√

(d + 2)/(d + 1) for k > 1 and d ≥ 2.

Note that a sufficient strengthening of Theorem 2 for general dimension d
would imply a time lower bound for satisfiability on multi-tape Turing ma-
chines. This follows from the well-known simulation of a k-tape Turing machine
running in time t on a Turing machine with one d-dimensional work tape in
time O(t d

√
t) [15].

4.2 Conondeterministic Machines

The argument used in the proof of Theorem 2 can be modified for cononde-
terministic instead of deterministic machines.

13

There are two key modifications. The first one is the use of the following
diagonalization result instead of the nondeterministic time hierarchy theorem
given in Lemma 3.

Lemma 4 Let τ(n) be a time bound.

coNTIME(τ) 6⊆ NTIME(o(τ)).

Thus, assuming there exists a conondeterministic Turing machine with one d-
dimensional work tape and random access to the input that solves satisfiability
in time t(n) = na, we aim for a contradiction to Lemma 4 by showing that an
arbitrary language L ∈ coNTIME(τ) can be simulated on a nondeterministic
machine in time o(τ).

We can decide L by evaluating the predicate (8), in which the matrix AcceptM

now involves a NTISP(T, S) computation (instead of DTISP(T, S)) on an input
of length O(n + b log t). The second key modification is that we apply the
following lemma instead of Lemma 2 to speed up the computation of AcceptM .

Lemma 5 (Fortnow-van Melkebeek [5]) Suppose that

NTIME(n) ⊆ coNTIME(na)

for some constant a ≥ 1. Then for any integer k ≥ 0 and functions T (n) and

S(n),

NTISP(T, S) ⊆ NTIME((T · Sk)gk + (n + S)a2k

),

where g0 = 1 and gk+1 = a2gk/(1 + agk).

After applying Lemma 5, (8) turns into a nondeterministic algorithm for de-
ciding L that runs in time

b + (T · Sk)gk + (n + b + S)a2k

(12)

times a term of the form poly log t. We obtain a contradiction with Lemma 4
provided (12) is o(τ/poly log τ). Setting the parameters as before, we get this
contradiction as long as there exists an integer k ≥ 0 and a constant β ∈ (0, 1)
such that

a · max((1 + kd(1 − β))gk, βa2k, d(1 − β)a2k) < 1. (13)

For k = 1, (13) becomes

a3 · max((1 + d(1 − β))/(1 + a), β, d(1 − β)) < 1,

14

for which the optimal setting of β = (d+ 1)/(a+ d +1) leads to the condition
that a3 < 1 + a/(d + 1).

Once again, we do not obtain stronger results for higher values of k, as can
be seen as follows. Dropping the first term in the maximum expression of (13)
and setting β optimally to β = d/(d + 1) leads to the necessary condition
a2k+1 < 1 + 1/d, which is more stringent than a3 < 1 + a/(d + 1) for k > 1
and d ≥ 1.

4.3 NP-Complete Problems Other Than Satisfiability

We now sketch a proof of Corollary 1.

Let A be a language to which satisfiability reduces under a Karp reduction
R that runs in time n1+o(1) on a random access machine such that each bit
of the reduction can be computed in time no(1) on a random access machine.
Note that the latter computation can be simulated in time no(1) on a Turing
machine with one work tape and random access to the input. Suppose that
there is a Turing machine M with a d-dimensional work tape and random
access to the input that solves A in time t(n). Then we can construct a Turing
machine N of the same type that solves satisfiability as follows: On input x, N
simulates M on input R(x) by interleaving the cells of M ’s work tape by no(1)

auxiliary cells in one dimension of N ’s work tape. Each time M needs access
to a bit of R(x), N uses the no(1) auxiliary cells around the cell corresponding
to N ’s tape head location to compute the required bit of R(x) from scratch.
The resulting simulation N runs in time t(n1+o(1)) · no(1). The statement of

Theorem 2 then rules out that t(n) ≤ na for constant a <
√

(d + 2)/(d + 1).

The proof of Theorem 3 carries over in a similar way.

Acknowledgments

We would like to thank Ravi Kannan, Rahul Santhanam, and the anonymous
ICALP referees for helpful discussions, pointers to the literature, and other
suggestions.

References

[1] S. Cook. A hierarchy theorem for nondeterministic time complexity. Journal

of Computer and System Sciences, 7:343–353, 1973.

15

[2] S. Cook. Short propositional formulas represent nondeterministic computations.
Information Processing Letters, 26:269–270, 1988.

[3] M. Dietzfelbinger and M. Hühne. Matching upper and lower bounds for
simulations of several tapes on one multidimensional tape. Computational

Complexity, 8:371–392, 1999.

[4] L. Fortnow. Time-space tradeoffs for satisfiability. Journal of Computer and

System Sciences, 60:337–353, 2000.

[5] L. Fortnow and D. van Melkebeek. Time-space tradeoffs for nondeterministic
computation. In Proceedings of the 15th IEEE Conference on Computational

Complexity, pages 2–13. IEEE, 2000.

[6] F. Hennie. One-tape off-line turing machine computations. Information and

Control, 8:553–578, 1965.

[7] J. Hopcroft and J. Ullman. Relations between time and tape complexities.
Journal of the ACM, 15:414–427, 1968.

[8] R. Kannan. Alternation and the power of nondeterminism. In Proceedings of

the 25th ACM Symposium on the Theory of Computing, pages 344–346. ACM,
1983.

[9] R. Kannan. Towards separating nondeterminism from determinism.
Mathematical Systems Theory, 17:29–45, 1984.

[10] R. Lipton and A. Viglas. On the complexity of SAT. In Proceedings of the 40th

IEEE Symposium on Foundations of Computer Science, pages 459–464. IEEE,
1999.

[11] W. Maass, G. Schnitger, E. Szemeredi, and G. Turan. Two tapes versus one
for off-line Turing machines. Computational Complexity, 3:392–401, 1993.

[12] V. Nepomnjaščĭı. Rudimentary predicates and Turing calculations. Soviet

Mathematics–Doklady, 11:1462–1465, 1970.

[13] J. Seiferas, M. Fischer, and A. Meyer. Separating nondeterministic time
complexity classes. Journal of the ACM, 25:146–167, 1978.

[14] D. van Melkebeek. Time-space lower bounds for satisfiability. Bulletin of the

European Association for Theoretical Computer Science, 73:57–77, 2001.

[15] K. Wagner and G. Wechsung. Computational Complexity. Reidel Publishing,
1986.

16

